Memory CD8+ T Cell Protection

  • Sanda Remakus
  • Luis J. SigalEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 785)


Memory CD8+ T cells play an essential role in controlling pathogenic infections. Therefore generating protective memory CD8+ T cells by vaccination is an attractive strategy for preventing and treating a variety of human diseases. Understanding what comprises a protective memory CD8+ T cell response will help optimize vaccine-induced CD8+ T cell immunity. Here we discuss essential antiviral effector functions and highlight how recall expansion of memory CD8+ T cells may affect the primary response.


Viral immunity T cell memory CD8+ T cells 



This work was supported by grants R01AI048849, R01AI065544, and 5U19AI083008 to L.J.S. and P30CA006927 to FCCC. S.R. was supported by training grant T32 CA-009035036 to FCCC. We thank Holly Gillin for editorial help.


  1. 1.
    Alivisatos, C.N. (1934). The First Immunologist, James Pylarino (1659–1718), and the Introduction of Variolation: (Section of the History of Medicine). Proc R Soc Med 27, 1099–1104.PubMedGoogle Scholar
  2. 2.
    Brown, J.R., and Mc, L.D. (1962). Smallpox–a retrospect. Can Med Assoc J 87, 765–767.PubMedGoogle Scholar
  3. 3.
    Fenner, F., Henderson, D.A., Arita, I., Jezek, Z., Ladnyi, D., and Organization, W.H. (1988). Smallpox and its eradication (Geneva: World Health Organization).Google Scholar
  4. 4.
    Zinkernagel, R.M., Bachmann, M.F., Kundig, T.M., Oehen, S., Pirchet, H., and Hengartner, H. (1996). On immunological memory. Annu Rev Immunol 14, 333–367.PubMedGoogle Scholar
  5. 5.
    Zinkernagel, R.M., and Hengartner, H. (2006). Protective ‘immunity’ by pre-existent neutralizing antibody titers and preactivated T cells but not by so-called ‘immunological memory’. Immunol Rev 211, 310–319.PubMedGoogle Scholar
  6. 6.
    Aggarwal, A., Kumar, S., Jaffe, R., Hone, D., Gross, M., and Sadoff, J. (1990). Oral Salmonella: malaria circumsporozoite recombinants induce specific CD8+ cytotoxic T cells. J Exp Med 172, 1083–1090.PubMedGoogle Scholar
  7. 7.
    Badovinac, V.P., Messingham, K.A., Jabbari, A., Haring, J.S., and Harty, J.T. (2005). Accelerated CD8+ T-cell memory and prime-boost response after dendritic-cell vaccination. Nat Med 11, 748–756.PubMedGoogle Scholar
  8. 8.
    Topham, D.J., Castrucci, M.R., Wingo, F.S., Belz, G.T., and Doherty, P.C. (2001). The role of antigen in the localization of naive, acutely activated, and memory CD8(+) T cells to the lung during influenza pneumonia. J Immunol 167, 6983–6990.PubMedGoogle Scholar
  9. 9.
    van der Most, R.G., Murali-Krishna, K., Whitton, J.L., Oseroff, C., Alexander, J., Southwood, S., Sidney, J., Chesnut, R.W., Sette, A., and Ahmed, R. (1998). Identification of Db- and Kb-restricted subdominant cytotoxic T-cell responses in lymphocytic choriomeningitis virus-infected mice. Virology 240, 158–167.PubMedGoogle Scholar
  10. 10.
    van der Most, R.G., Sette, A., Oseroff, C., Alexander, J., Murali-Krishna, K., Lau, L.L., Southwood, S., Sidney, J., Chesnut, R.W., Matloubian, M., and Ahmed, R. (1996). Analysis of cytotoxic T cell responses to dominant and subdominant epitopes during acute and chronic lymphocytic choriomeningitis virus infection. J Immunol 157, 5543–5554.PubMedGoogle Scholar
  11. 11.
    Xu, R.H., Fang, M., Klein-Szanto, A., and Sigal, L.J. (2007). Memory CD8+ T cells are gatekeepers of the lymph node draining the site of viral infection. Proc Natl Acad Sci U S A 104, 10992–10997.PubMedGoogle Scholar
  12. 12.
    Derjuga, A., Gourley, T.S., Holm, T.M., Heng, H.H., Shivdasani, R.A., Ahmed, R., Andrews, N.C., and Blank, V. (2004). Complexity of CNC transcription factors as revealed by gene targeting of the Nrf3 locus. Mol Cell Biol 24, 3286–3294.PubMedGoogle Scholar
  13. 13.
    Freitas do Rosario, A.P., Muxel, S.M., Rodriguez-Malaga, S.M., Sardinha, L.R., Zago, C.A., Castillo-Mendez, S.I., Alvarez, J.M., and D’Imperio Lima, M.R. (2008). Gradual decline in malaria-specific memory T cell responses leads to failure to maintain long-term protective immunity to Plasmodium chabaudi AS despite persistence of B cell memory and circulating antibody. J Immunol 181, 8344–8355.Google Scholar
  14. 14.
    Halwani, R., Doroudchi, M., Yassine-Diab, B., Janbazian, L., Shi, Y., Said, E.A., Haddad, E.K., and Sekaly, R.P. (2006). Generation and maintenance of human memory cells during viral infection. Springer Semin Immunopathol 28, 197–208.PubMedGoogle Scholar
  15. 15.
    Seder, R.A., and Hill, A.V. (2000). Vaccines against intracellular infections requiring cellular immunity. Nature 406, 793–798.PubMedGoogle Scholar
  16. 16.
    Cantor, H., and Boyse, E.A. (1975). Functional subclasses of T lymphocytes bearing different Ly antigens. II. Cooperation between subclasses of Ly+ cells in the generation of killer activity. J Exp Med 141, 1390–1399.PubMedGoogle Scholar
  17. 17.
    Kisielow, P., Hirst, J.A., Shiku, H., Beverley, P.C., Hoffman, M.K., Boyse, E.A., and Oettgen, H.F. (1975). Ly antigens as markers for functionally distinct subpopulations of thymus-derived lymphocytes of the mouse. Nature 253, 219–220.PubMedGoogle Scholar
  18. 18.
    Shiku, H., Kisielow, P., Bean, M.A., Takahashi, T., Boyse, E.A., Oettgen, H.F., and Old, L.J. (1975). Expression of T-cell differentiation antigens on effector cells in cell-mediated cytotoxicity in vitro. Evidence for functional heterogeneity related to the surface phenotype of T cells. J Exp Med 141, 227–241.Google Scholar
  19. 19.
    York, I.A., Goldberg, A.L., Mo, X.Y., and Rock, K.L. (1999). Proteolysis and class I major histocompatibility complex antigen presentation. Immunol Rev 172, 49–66.PubMedGoogle Scholar
  20. 20.
    York, I.A., and Rock, K.L. (1996). Antigen processing and presentation by the class I major histocompatibility complex. Ann. Rev. Immunol. 14, 369–396.Google Scholar
  21. 21.
    Williams, M.A., and Bevan, M.J. (2007). Effector and memory CTL differentiation. Annu Rev Immunol 25, 171–192.PubMedGoogle Scholar
  22. 22.
    Blattman, J.N., Antia, R., Sourdive, D.J., Wang, X., Kaech, S.M., Murali-Krishna, K., Altman, J.D., and Ahmed, R. (2002). Estimating the precursor frequency of naive antigen-specific CD8 T cells. J Exp Med 195, 657–664.PubMedGoogle Scholar
  23. 23.
    Butz, E., and Bevan, M.J. (1998). Dynamics of the CD8+ T cell response during acute LCMV infection. Adv Exp Med Biol 452, 111–122.PubMedGoogle Scholar
  24. 24.
    Murali-Krishna, K., Altman, J.D., Suresh, M., Sourdive, D.J., Zajac, A.J., Miller, J.D., Slansky, J., and Ahmed, R. (1998). Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8, 177–187.PubMedGoogle Scholar
  25. 25.
    Doherty, P.C., and Christensen, J.P. (2000). Accessing complexity: the dynamics of virus-specific T cell responses. Annu Rev Immunol 18, 561–592.PubMedGoogle Scholar
  26. 26.
    Fang, M., and Sigal, L.J. (2005). Antibodies and CD8+ T cells are complementary and essential for natural resistance to a highly lethal cytopathic virus. Journal of immunology 175, 6829–6836.Google Scholar
  27. 27.
    Fung-Leung, W.P., Kundig, T.M., Zinkernagel, R.M., and Mak, T.W. (1991). Immune response against lymphocytic choriomeningitis virus infection in mice without CD8 expression. J Exp Med 174, 1425–1429.PubMedGoogle Scholar
  28. 28.
    Ehtisham, S., Sunil-Chandra, N.P., and Nash, A.A. (1993). Pathogenesis of murine gammaherpesvirus infection in mice deficient in CD4 and CD8 T cells. J Virol 67, 5247–5252.PubMedGoogle Scholar
  29. 29.
    Behar, S.M., Dascher, C.C., Grusby, M.J., Wang, C.R., and Brenner, M.B. (1999). Susceptibility of mice deficient in CD1D or TAP1 to infection with Mycobacterium tuberculosis. J Exp Med 189, 1973–1980.PubMedGoogle Scholar
  30. 30.
    Muller, I., Cobbold, S.P., Waldmann, H., and Kaufmann, S.H. (1987). Impaired resistance to Mycobacterium tuberculosis infection after selective in vivo depletion of L3T4+ and Lyt-2+ T cells. Infect Immun 55, 2037–2041.PubMedGoogle Scholar
  31. 31.
    Sousa, A.O., Mazzaccaro, R.J., Russell, R.G., Lee, F.K., Turner, O.C., Hong, S., Van Kaer, L., and Bloom, B.R. (2000). Relative contributions of distinct MHC class I-dependent cell populations in protection to tuberculosis infection in mice. Proc Natl Acad Sci U S A 97, 4204–4208.PubMedGoogle Scholar
  32. 32.
    Arnaiz-Villena, A., Timon, M., Corell, A., Perez-Aciego, P., Martin-Villa, J.M., and Regueiro, J.R. (1992). Brief report: primary immunodeficiency caused by mutations in the gene encoding the CD3-gamma subunit of the T-lymphocyte receptor. N Engl J Med 327, 529–533.PubMedGoogle Scholar
  33. 33.
    de la Calle-Martin, O., Hernandez, M., Ordi, J., Casamitjana, N., Arostegui, J.I., Caragol, I., Ferrando, M., Labrador, M., Rodriguez-Sanchez, J.L., and Espanol, T. (2001). Familial CD8 deficiency due to a mutation in the CD8 alpha gene. J Clin Invest 108, 117–123.PubMedGoogle Scholar
  34. 34.
    Kagi, D., Vignaux, F., Ledermann, B., Burki, K., Depraetere, V., Nagata, S., Hengartner, H., and Golstein, P. (1994b). Fas and perforin pathways as major mechanisms of T cell-mediated cytotoxicity. Science 265, 528–530.PubMedGoogle Scholar
  35. 35.
    Kagi, D., Ledermann, B., Burki, K., Zinkernagel, R.M., and Hengartner, H. (1996). Molecular mechanisms of lymphocyte-mediated cytotoxicity and their role in immunological protection and pathogenesis in vivo. Annu Rev Immunol 14, 207–232.PubMedGoogle Scholar
  36. 36.
    Russell, J.H., and Dobos, C.B. (1980). Mechanisms of immune lysis. II. CTL-induced nuclear disintegration of the target begins within minutes of cell contact. J Immunol 125, 1256–1261.Google Scholar
  37. 37.
    Trapani, J.A., Jans, D.A., Jans, P.J., Smyth, M.J., Browne, K.A., and Sutton, V.R. (1998). Efficient nuclear targeting of granzyme B and the nuclear consequences of apoptosis induced by granzyme B and perforin are caspase-dependent, but cell death is caspase-independent. J Biol Chem 273, 27934–27938.PubMedGoogle Scholar
  38. 38.
    Trapani, J.A., and Smyth, M.J. (2002). Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2, 735–747.PubMedGoogle Scholar
  39. 39.
    Alejo, A., Ruiz-Arguello, M.B., Ho, Y., Smith, V.P., Saraiva, M., and Alcami, A. (2006). A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus. Proc Natl Acad Sci U S A 103, 5995–6000.PubMedGoogle Scholar
  40. 40.
    Harty, J.T., Tvinnereim, A.R., and White, D.W. (2000). CD8+ T cell effector mechanisms in resistance to infection. Annu Rev Immunol 18, 275-308.PubMedGoogle Scholar
  41. 41.
    Istrail, S., Florea, L., Halldorsson, B.V., Kohlbacher, O., Schwartz, R.S., Yap, V.B., Yewdell, J.W., and Hoffman, S.L. (2004). Comparative immunopeptidomics of humans and their pathogens. Proc Natl Acad Sci U S A 101, 13268–13272.PubMedGoogle Scholar
  42. 42.
    Smyth, M.J., and Trapani, J.A. (1998). The relative role of lymphocyte granule exocytosis versus death receptor-mediated cytotoxicity in viral pathophysiology. J Virol 72, 1–9.PubMedGoogle Scholar
  43. 43.
    Brown, D.M., Lee, S., Garcia-Hernandez, M.D., and Swain, S.L. (2012). Multi-functional CD4 cells expressing IFN-gamma and perforin mediate protection against lethal influenza infection. J Virol.Google Scholar
  44. 44.
    Fang, M., Siciliano, N.A., Hersperger, A.R., Roscoe, F., Hu, A., Ma, X., Shamsedeen, A.R., Eisenlohr, L.C., and Sigal, L.J. (2012). Perforin-dependent CD4+ T-cell cytotoxicity contributes to control a murine poxvirus infection. Proc Natl Acad Sci U S A 109, 9983–9988.Google Scholar
  45. 45.
    French, A.R., and Yokoyama, W.M. (2003). Natural killer cells and viral infections. Curr Opin Immunol 15, 45–51.PubMedGoogle Scholar
  46. 46.
    Marshall, N.B., and Swain, S.L. (2011). Cytotoxic CD4 T cells in antiviral immunity. J Biomed Biotechnol 2011, 954602.PubMedGoogle Scholar
  47. 47.
    Harty, J.T., and Bevan, M.J. (1999). Responses of CD8(+) T cells to intracellular bacteria. Curr Opin Immunol 11, 89–93.PubMedGoogle Scholar
  48. 48.
    Schoenborn, J.R., and Wilson, C.B. (2007). Regulation of interferon-gamma during innate and adaptive immune responses. Adv Immunol 96, 41–101.PubMedGoogle Scholar
  49. 49.
    Boehm, U., Klamp, T., Groot, M., and Howard, J.C. (1997). Cellular responses to interferon-gamma. Annu Rev Immunol 15, 749–795.PubMedGoogle Scholar
  50. 50.
    Farrar, M.A., and Schreiber, R.D. (1993). The molecular cell biology of interferon-gamma and its receptor. Annu Rev Immunol 11, 571–611.PubMedGoogle Scholar
  51. 51.
    Saha, B., Jyothi Prasanna, S., Chandrasekar, B., and Nandi, D. (2010). Gene modulation and immunoregulatory roles of interferon gamma. Cytokine 50, 1–14.PubMedGoogle Scholar
  52. 52.
    Casanova, J.L., and Ochs, H. (1999). Interferon-gamma receptor deficiency: An expanding clinical phenotype? J Pediatr 135, 543–545.PubMedGoogle Scholar
  53. 53.
    Tau, G., and Rothman, P. (1999). Biologic functions of the IFN-gamma receptors. Allergy 54, 1233–1251.PubMedGoogle Scholar
  54. 54.
    Kagi, D., Ledermann, B., Burki, K., Seiler, P., Odermatt, B., Olsen, K.J., Podack, E.R., Zinkernagel, R.M., and Hengartner, H. (1994a). Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 369, 31–37.PubMedGoogle Scholar
  55. 55.
    Kagi, D., Seiler, P., Pavlovic, J., Ledermann, B., Burki, K., Zinkernagel, R.M., and Hengartner, H. (1995). The roles of perforin- and Fas-dependent cytotoxicity in protection against cytopathic and noncytopathic viruses. Eur J Immunol 25, 3256–3262.PubMedGoogle Scholar
  56. 56.
    Stenger, S., Hanson, D.A., Teitelbaum, R., Dewan, P., Niazi, K.R., Froelich, C.J., Ganz, T., Thoma-Uszynski, S., Melian, A., Bogdan, C., et al. (1998). An antimicrobial activity of cytolytic T cells mediated by granulysin. Science 282, 121–125.PubMedGoogle Scholar
  57. 57.
    Mullbacher, A., Ebnet, K., Blanden, R.V., Hla, R.T., Stehle, T., Museteanu, C., and Simon, M.M. (1996). Granzyme A is critical for recovery of mice from infection with the natural cytopathic viral pathogen, ectromelia. Proc Natl Acad Sci U S A 93, 5783–5787.PubMedGoogle Scholar
  58. 58.
    Mullbacher, A., Hla, R.T., Museteanu, C., and Simon, M.M. (1999a). Perforin is essential for control of ectromelia virus but not related poxviruses in mice. J Virol 73, 1665–1667.PubMedGoogle Scholar
  59. 59.
    Mullbacher, A., Waring, P., Tha Hla, R., Tran, T., Chin, S., Stehle, T., Museteanu, C., and Simon, M.M. (1999b). Granzymes are the essential downstream effector molecules for the control of primary virus infections by cytolytic leukocytes. Proc Natl Acad Sci U S A 96, 13950–13955.PubMedGoogle Scholar
  60. 60.
    Karupiah, G., Fredrickson, T.N., Holmes, K.L., Khairallah, L.H., and Buller, R.M. (1993). Importance of interferons in recovery from mousepox. J Virol 67, 4214–4226.PubMedGoogle Scholar
  61. 61.
    Huang, S., Hendriks, W., Althage, A., Hemmi, S., Bluethmann, H., Kamijo, R., Vilcek, J., Zinkernagel, R.M., and Aguet, M. (1993). Immune response in mice that lack the interferon-gamma receptor. Science 259, 1742–1745.PubMedGoogle Scholar
  62. 62.
    Remakus, S., and Sigal, L.J. (2011). Gamma interferon and perforin control the strength, but not the hierarchy, of immunodominance of an antiviral CD8+ T cell response. Journal of virology 85, 12578–12584.PubMedGoogle Scholar
  63. 63.
    van den Broek, M.F., Muller, U., Huang, S., Zinkernagel, R.M., and Aguet, M. (1995). Immune defence in mice lacking type I and/or type II interferon receptors. Immunol Rev 148, 5–18.PubMedGoogle Scholar
  64. 64.
    Fromm, P.D., Kling, J., Mack, M., Sedgwick, J.D., and Korner, H. (2012). Loss of TNF Signaling Facilitates the Development of a Novel Ly-6Clow Macrophage Population Permissive for Leishmania major Infection. J Immunol.Google Scholar
  65. 65.
    Jacobs, M., Marino, M.W., Brown, N., Abel, B., Bekker, L.G., Quesniaux, V.J., Fick, L., and Ryffel, B. (2000). Correction of defective host response to Mycobacterium bovis BCG infection in TNF-deficient mice by bone marrow transplantation. Lab Invest 80, 901–914.PubMedGoogle Scholar
  66. 66.
    Kirby, A.C., Raynes, J.G., and Kaye, P.M. (2005). The role played by tumor necrosis factor during localized and systemic infection with Streptococcus pneumoniae. J Infect Dis 191, 1538–1547.PubMedGoogle Scholar
  67. 67.
    Surh, C.D., Boyman, O., Purton, J.F., and Sprent, J. (2006). Homeostasis of memory T cells. Immunol Rev 211, 154–163.PubMedGoogle Scholar
  68. 68.
    Mackay, C.R., Marston, W.L., and Dudler, L. (1990). Naive and memory T cells show distinct pathways of lymphocyte recirculation. J Exp Med 171, 801–817.PubMedGoogle Scholar
  69. 69.
    Sanders, M.E., Makgoba, M.W., Sharrow, S.O., Stephany, D., Springer, T.A., Young, H.A., and Shaw, S. (1988). Human memory T lymphocytes express increased levels of three cell adhesion molecules (LFA-3, CD2, and LFA-1) and three other molecules (UCHL1, CDw29, and Pgp-1) and have enhanced IFN-gamma production. J Immunol 140, 1401–1407.PubMedGoogle Scholar
  70. 70.
    Ahmed, R., and Gray, D. (1996). Immunological memory and protective immunity: understanding their relation. Science 272, 54–60.PubMedGoogle Scholar
  71. 71.
    Dianzani, U., Luqman, M., Rojo, J., Yagi, J., Baron, J.L., Woods, A., Janeway, C.A., Jr., and Bottomly, K. (1990). Molecular associations on the T cell surface correlate with immunological memory. Eur J Immunol 20, 2249–2257.PubMedGoogle Scholar
  72. 72.
    Iezzi, G., Karjalainen, K., and Lanzavecchia, A. (1998). The duration of antigenic stimulation determines the fate of naive and effector T cells. Immunity 8, 89–95.PubMedGoogle Scholar
  73. 73.
    Fitzpatrick, D.R., Shirley, K.M., and Kelso, A. (1999). Cutting edge: stable epigenetic inheritance of regional IFN-gamma promoter demethylation in CD44highCD8+ T lymphocytes. J Immunol 162, 5053–5057.PubMedGoogle Scholar
  74. 74.
    Mullen, A.C., High, F.A., Hutchins, A.S., Lee, H.W., Villarino, A.V., Livingston, D.M., Kung, A.L., Cereb, N., Yao, T.P., Yang, S.Y., and Reiner, S.L. (2001). Role of T-bet in commitment of TH1 cells before IL-12-dependent selection. Science 292, 1907–1910.PubMedGoogle Scholar
  75. 75.
    Mullen, A.C., Hutchins, A.S., High, F.A., Lee, H.W., Sykes, K.J., Chodosh, L.A., and Reiner, S.L. (2002). Hlx is induced by and genetically interacts with T-bet to promote heritable T(H)1 gene induction. Nat Immunol 3, 652–658.PubMedGoogle Scholar
  76. 76.
    Gebhardt, T., Wakim, L.M., Eidsmo, L., Reading, P.C., Heath, W.R., and Carbone, F.R. (2009). Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat Immunol 10, 524–530.PubMedGoogle Scholar
  77. 77.
    Masopust, D., Choo, D., Vezys, V., Wherry, E.J., Duraiswamy, J., Akondy, R., Wang, J., Casey, K.A., Barber, D.L., Kawamura, K.S., et al. (2010). Dynamic T cell migration program provides resident memory within intestinal epithelium. J Exp Med 207, 553–564.PubMedGoogle Scholar
  78. 78.
    Masopust, D., Vezys, V., Marzo, A.L., and Lefrancois, L. (2001). Preferential localization of effector memory cells in nonlymphoid tissue. Science 291, 2413–2417.PubMedGoogle Scholar
  79. 79.
    Sallusto, F., Lenig, D., Forster, R., Lipp, M., and Lanzavecchia, A. (1999). Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712.PubMedGoogle Scholar
  80. 80.
    Gourley, T.S., Wherry, E.J., Masopust, D., and Ahmed, R. (2004). Generation and maintenance of immunological memory. Semin Immunol 16, 323–333.PubMedGoogle Scholar
  81. 81.
    Jameson, S.C., and Masopust, D. (2009). Diversity in T cell memory: an embarrassment of riches. Immunity 31, 859–871.PubMedGoogle Scholar
  82. 82.
    Masopust, D., Kaech, S.M., Wherry, E.J., and Ahmed, R. (2004). The role of programming in memory T-cell development. Curr Opin Immunol 16, 217–225.PubMedGoogle Scholar
  83. 83.
    Verhoeven, D., Teijaro, J.R., and Farber, D.L. (2008). Heterogeneous memory T cells in antiviral immunity and immunopathology. Viral Immunol 21, 99–113.PubMedGoogle Scholar
  84. 84.
    Wherry, E.J., Teichgraber, V., Becker, T.C., Masopust, D., Kaech, S.M., Antia, R., von Andrian, U.H., and Ahmed, R. (2003). Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat Immunol 4, 225–234.PubMedGoogle Scholar
  85. 85.
    Hikono, H., Kohlmeier, J.E., Takamura, S., Wittmer, S.T., Roberts, A.D., and Woodland, D.L. (2007). Activation phenotype, rather than central- or effector-memory phenotype, predicts the recall efficacy of memory CD8+ T cells. J Exp Med 204, 1625–1636.PubMedGoogle Scholar
  86. 86.
    Roberts, A.D., Ely, K.H., and Woodland, D.L. (2005). Differential contributions of central and effector memory T cells to recall responses. J Exp Med 202, 123–133.PubMedGoogle Scholar
  87. 87.
    Bachmann, M.F., Wolint, P., Schwarz, K., Jager, P., and Oxenius, A. (2005). Functional properties and lineage relationship of CD8+ T cell subsets identified by expression of IL-7 receptor alpha and CD62L. J Immunol 175, 4686–4696.PubMedGoogle Scholar
  88. 88.
    Harty, J.T., and Badovinac, V.P. (2008). Shaping and reshaping CD8+ cell memory. Nat Rev Immuno 8, 107–119.Google Scholar
  89. 89.
    Sallusto, F., Lanzavecchia, A., Araki, K., and Ahmed, R. (2008). From vaccines to memory and back. Immunity 33, 451–463.Google Scholar
  90. 90.
    Kannanganat, S., Ibegbu, C., Chennareddi, L., Robinson, H.L., and Amara, R.R. (2007). Multiple-cytokine-producing antiviral CD4 T cells are ­functionally superior to single-cytokine-producing cells. J Virol 81, 8468–8476.PubMedGoogle Scholar
  91. 91.
    Seder, R.A., Darrah, P.A., and Roederer, M. (2008). T-cell quality in memory and protection: implications for vaccine design. Nat Rev Immunol 8, 247–258.PubMedGoogle Scholar
  92. 92.
    Darrah, P.A., Patel, D.T., De Luca, P.M., Lindsay, R.W., Davey, D.F., Flynn, B.J., Hoff, S.T., Andersen, P., Reed, S.G., Morris, S.L., et al. (2007). Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat Med 13, 843–850.PubMedGoogle Scholar
  93. 93.
    Kohlmeier, J.E., Cookenham, T., Roberts, A.D., Miller, S.C., and Woodland, D.L. (2010). Type I interferons regulate cytolytic activity of memory CD8(+) T cells in the lung airways during respiratory virus challenge. Immunity 33, 96–105.PubMedGoogle Scholar
  94. 94.
    de Alencar, B.C., Persechini, P.M., Haolla, F.A., de Oliveira, G., Silverio, J.C., Lannes-Vieira, J., Machado, A.V., Gazzinelli, R.T., Bruna-Romero, O., and Rodrigues, M.M. (2009). Perforin and gamma interferon expression are required for CD4+ and CD8+ T-cell-dependent protective immunity against a human parasite, Trypanosoma cruzi, elicited by heterologous plasmid DNA prime-recombinant adenovirus 5 boost vaccination. Infect Immun 77, 4383–4395.PubMedGoogle Scholar
  95. 95.
    Colmenares, M., Kima, P.E., Samoff, E., Soong, L., and McMahon-Pratt, D. (2003). Perforin and gamma interferon are critical CD8+ T-cell-mediated responses in vaccine-induced immunity against Leishmania amazonensis infection. Infect Immun 71, 3172–3182.PubMedGoogle Scholar
  96. 96.
    Kedl, R.M., Rees, W.A., Hildeman, D.A., Schaefer, B., Mitchell, T., Kappler, J., and Marrack, P. (2000). T cells compete for access to antigen-bearing antigen-presenting cells. J Exp Med 192, 1105–1113.PubMedGoogle Scholar
  97. 97.
    Forbes, E.K., Biswas, S., Collins, K.A., Gilbert, S.C., Hill, A.V., and Draper, S.J. (2011). Combining liver- and blood-stage malaria viral-vectored vaccines: investigating mechanisms of CD8+ T cell interference. J Immunol 187, 3738–3750.PubMedGoogle Scholar
  98. 98.
    van den Broek, M.E., Kagi, D., Ossendorp, F., Toes, R., Vamvakas, S., Lutz, W.K., Melief, C.J., Zinkernagel, R.M., and Hengartner, H. (1996). Decreased tumor surveillance in perforin-deficient mice. J Exp Med 184, 1781–1790.PubMedGoogle Scholar
  99. 99.
    Welsh, R.M., Selin, L.K., and Szomolanyi-Tsuda, E. (2004). Immunological memory to viral infections. Annu Rev Immunol 22, 711–743.PubMedGoogle Scholar
  100. 100.
    Zehn, D., Lee, S.Y., and Bevan, M.J. (2009). Complete but curtailed T-cell response to very low-affinity antigen. Nature 458, 211–214.PubMedGoogle Scholar
  101. 101.
    Guarda, G., Hons, M., Soriano, S.F., Huang, A.Y., Polley, R., Martin-Fontecha, A., Stein, J.V., Germain, R.N., Lanzavecchia, A., and Sallusto, F. (2007). L-selectin-negative CCR7- effector and memory CD8+ T cells enter reactive lymph nodes and kill dendritic cells. Nat Immunol 8, 743–752.PubMedGoogle Scholar
  102. 102.
    Badovinac, V.P., Messingham, K.A., Hamilton, S.E., and Harty, J.T. (2003). Regulation of CD8+ T cells undergoing primary and secondary responses to infection in the same host. J Immunol 170, 4933–4942.PubMedGoogle Scholar
  103. 103.
    Turner, S.J., Cross, R., Xie, W., and Doherty, P.C. (2001). Concurrent naive and memory CD8(+) T cell responses to an influenza A virus. J Immunol 167, 2753–2758.PubMedGoogle Scholar
  104. 104.
    Barber, D.L., Wherry, E.J., and Ahmed, R. (2003). Cutting edge: rapid in vivo killing by memory CD8 T cells. J Immunol 171, 27–31.PubMedGoogle Scholar
  105. 105.
    Kaech, S.M., Hemby, S., Kersh, E., and Ahmed, R. (2002). Molecular and functional profiling of memory CD8 T cell differentiation. Cell 111, 837–851.PubMedGoogle Scholar
  106. 106.
    Lalvani, A., Brookes, R., Hambleton, S., Britton, W.J., Hill, A.V., and McMichael, A.J. (1997). Rapid effector function in CD8+ memory T cells. J Exp Med 186, 859–865.PubMedGoogle Scholar
  107. 107.
    Selin, L.K., and Welsh, R.M. (1997). Cytolytically active memory CTL present in lymphocytic choriomeningitis virus-immune mice after clearance of virus infection. J Immunol 158, 5366–5373.PubMedGoogle Scholar
  108. 108.
    Otis, E.O. (1909). The great white plague, tuber­culosis (New York,: Crowell).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Immune Cell Development and Host DefenseThe Research Institute of Fox Chase Cancer CenterPhiladelphiaUSA

Personalised recommendations