Skip to main content

Memory CD8+ T Cell Protection

  • Chapter
  • First Online:
Crossroads Between Innate and Adaptive Immunity IV

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 785))

Abstract

Memory CD8+ T cells play an essential role in controlling pathogenic infections. Therefore generating protective memory CD8+ T cells by vaccination is an attractive strategy for preventing and treating a variety of human diseases. Understanding what comprises a protective memory CD8+ T cell response will help optimize vaccine-induced CD8+ T cell immunity. Here we discuss essential antiviral effector functions and highlight how recall expansion of memory CD8+ T cells may affect the primary response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alivisatos, C.N. (1934). The First Immunologist, James Pylarino (1659–1718), and the Introduction of Variolation: (Section of the History of Medicine). Proc R Soc Med 27, 1099–1104.

    PubMed  CAS  Google Scholar 

  2. Brown, J.R., and Mc, L.D. (1962). Smallpox–a retrospect. Can Med Assoc J 87, 765–767.

    PubMed  CAS  Google Scholar 

  3. Fenner, F., Henderson, D.A., Arita, I., Jezek, Z., Ladnyi, D., and Organization, W.H. (1988). Smallpox and its eradication (Geneva: World Health Organization).

    Google Scholar 

  4. Zinkernagel, R.M., Bachmann, M.F., Kundig, T.M., Oehen, S., Pirchet, H., and Hengartner, H. (1996). On immunological memory. Annu Rev Immunol 14, 333–367.

    PubMed  CAS  Google Scholar 

  5. Zinkernagel, R.M., and Hengartner, H. (2006). Protective ‘immunity’ by pre-existent neutralizing antibody titers and preactivated T cells but not by so-called ‘immunological memory’. Immunol Rev 211, 310–319.

    PubMed  CAS  Google Scholar 

  6. Aggarwal, A., Kumar, S., Jaffe, R., Hone, D., Gross, M., and Sadoff, J. (1990). Oral Salmonella: malaria circumsporozoite recombinants induce specific CD8+ cytotoxic T cells. J Exp Med 172, 1083–1090.

    PubMed  CAS  Google Scholar 

  7. Badovinac, V.P., Messingham, K.A., Jabbari, A., Haring, J.S., and Harty, J.T. (2005). Accelerated CD8+ T-cell memory and prime-boost response after dendritic-cell vaccination. Nat Med 11, 748–756.

    PubMed  CAS  Google Scholar 

  8. Topham, D.J., Castrucci, M.R., Wingo, F.S., Belz, G.T., and Doherty, P.C. (2001). The role of antigen in the localization of naive, acutely activated, and memory CD8(+) T cells to the lung during influenza pneumonia. J Immunol 167, 6983–6990.

    PubMed  CAS  Google Scholar 

  9. van der Most, R.G., Murali-Krishna, K., Whitton, J.L., Oseroff, C., Alexander, J., Southwood, S., Sidney, J., Chesnut, R.W., Sette, A., and Ahmed, R. (1998). Identification of Db- and Kb-restricted subdominant cytotoxic T-cell responses in lymphocytic choriomeningitis virus-infected mice. Virology 240, 158–167.

    PubMed  Google Scholar 

  10. van der Most, R.G., Sette, A., Oseroff, C., Alexander, J., Murali-Krishna, K., Lau, L.L., Southwood, S., Sidney, J., Chesnut, R.W., Matloubian, M., and Ahmed, R. (1996). Analysis of cytotoxic T cell responses to dominant and subdominant epitopes during acute and chronic lymphocytic choriomeningitis virus infection. J Immunol 157, 5543–5554.

    PubMed  Google Scholar 

  11. Xu, R.H., Fang, M., Klein-Szanto, A., and Sigal, L.J. (2007). Memory CD8+ T cells are gatekeepers of the lymph node draining the site of viral infection. Proc Natl Acad Sci U S A 104, 10992–10997.

    PubMed  CAS  Google Scholar 

  12. Derjuga, A., Gourley, T.S., Holm, T.M., Heng, H.H., Shivdasani, R.A., Ahmed, R., Andrews, N.C., and Blank, V. (2004). Complexity of CNC transcription factors as revealed by gene targeting of the Nrf3 locus. Mol Cell Biol 24, 3286–3294.

    PubMed  CAS  Google Scholar 

  13. Freitas do Rosario, A.P., Muxel, S.M., Rodriguez-Malaga, S.M., Sardinha, L.R., Zago, C.A., Castillo-Mendez, S.I., Alvarez, J.M., and D’Imperio Lima, M.R. (2008). Gradual decline in malaria-specific memory T cell responses leads to failure to maintain long-term protective immunity to Plasmodium chabaudi AS despite persistence of B cell memory and circulating antibody. J Immunol 181, 8344–8355.

    Google Scholar 

  14. Halwani, R., Doroudchi, M., Yassine-Diab, B., Janbazian, L., Shi, Y., Said, E.A., Haddad, E.K., and Sekaly, R.P. (2006). Generation and maintenance of human memory cells during viral infection. Springer Semin Immunopathol 28, 197–208.

    PubMed  Google Scholar 

  15. Seder, R.A., and Hill, A.V. (2000). Vaccines against intracellular infections requiring cellular immunity. Nature 406, 793–798.

    PubMed  CAS  Google Scholar 

  16. Cantor, H., and Boyse, E.A. (1975). Functional subclasses of T lymphocytes bearing different Ly antigens. II. Cooperation between subclasses of Ly+ cells in the generation of killer activity. J Exp Med 141, 1390–1399.

    PubMed  CAS  Google Scholar 

  17. Kisielow, P., Hirst, J.A., Shiku, H., Beverley, P.C., Hoffman, M.K., Boyse, E.A., and Oettgen, H.F. (1975). Ly antigens as markers for functionally distinct subpopulations of thymus-derived lymphocytes of the mouse. Nature 253, 219–220.

    PubMed  CAS  Google Scholar 

  18. Shiku, H., Kisielow, P., Bean, M.A., Takahashi, T., Boyse, E.A., Oettgen, H.F., and Old, L.J. (1975). Expression of T-cell differentiation antigens on effector cells in cell-mediated cytotoxicity in vitro. Evidence for functional heterogeneity related to the surface phenotype of T cells. J Exp Med 141, 227–241.

    CAS  Google Scholar 

  19. York, I.A., Goldberg, A.L., Mo, X.Y., and Rock, K.L. (1999). Proteolysis and class I major histocompatibility complex antigen presentation. Immunol Rev 172, 49–66.

    PubMed  CAS  Google Scholar 

  20. York, I.A., and Rock, K.L. (1996). Antigen processing and presentation by the class I major histocompatibility complex. Ann. Rev. Immunol. 14, 369–396.

    CAS  Google Scholar 

  21. Williams, M.A., and Bevan, M.J. (2007). Effector and memory CTL differentiation. Annu Rev Immunol 25, 171–192.

    PubMed  CAS  Google Scholar 

  22. Blattman, J.N., Antia, R., Sourdive, D.J., Wang, X., Kaech, S.M., Murali-Krishna, K., Altman, J.D., and Ahmed, R. (2002). Estimating the precursor frequency of naive antigen-specific CD8 T cells. J Exp Med 195, 657–664.

    PubMed  CAS  Google Scholar 

  23. Butz, E., and Bevan, M.J. (1998). Dynamics of the CD8+ T cell response during acute LCMV infection. Adv Exp Med Biol 452, 111–122.

    PubMed  CAS  Google Scholar 

  24. Murali-Krishna, K., Altman, J.D., Suresh, M., Sourdive, D.J., Zajac, A.J., Miller, J.D., Slansky, J., and Ahmed, R. (1998). Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8, 177–187.

    PubMed  CAS  Google Scholar 

  25. Doherty, P.C., and Christensen, J.P. (2000). Accessing complexity: the dynamics of virus-specific T cell responses. Annu Rev Immunol 18, 561–592.

    PubMed  CAS  Google Scholar 

  26. Fang, M., and Sigal, L.J. (2005). Antibodies and CD8+ T cells are complementary and essential for natural resistance to a highly lethal cytopathic virus. Journal of immunology 175, 6829–6836.

    CAS  Google Scholar 

  27. Fung-Leung, W.P., Kundig, T.M., Zinkernagel, R.M., and Mak, T.W. (1991). Immune response against lymphocytic choriomeningitis virus infection in mice without CD8 expression. J Exp Med 174, 1425–1429.

    PubMed  CAS  Google Scholar 

  28. Ehtisham, S., Sunil-Chandra, N.P., and Nash, A.A. (1993). Pathogenesis of murine gammaherpesvirus infection in mice deficient in CD4 and CD8 T cells. J Virol 67, 5247–5252.

    PubMed  CAS  Google Scholar 

  29. Behar, S.M., Dascher, C.C., Grusby, M.J., Wang, C.R., and Brenner, M.B. (1999). Susceptibility of mice deficient in CD1D or TAP1 to infection with Mycobacterium tuberculosis. J Exp Med 189, 1973–1980.

    PubMed  CAS  Google Scholar 

  30. Muller, I., Cobbold, S.P., Waldmann, H., and Kaufmann, S.H. (1987). Impaired resistance to Mycobacterium tuberculosis infection after selective in vivo depletion of L3T4+ and Lyt-2+ T cells. Infect Immun 55, 2037–2041.

    PubMed  CAS  Google Scholar 

  31. Sousa, A.O., Mazzaccaro, R.J., Russell, R.G., Lee, F.K., Turner, O.C., Hong, S., Van Kaer, L., and Bloom, B.R. (2000). Relative contributions of distinct MHC class I-dependent cell populations in protection to tuberculosis infection in mice. Proc Natl Acad Sci U S A 97, 4204–4208.

    PubMed  CAS  Google Scholar 

  32. Arnaiz-Villena, A., Timon, M., Corell, A., Perez-Aciego, P., Martin-Villa, J.M., and Regueiro, J.R. (1992). Brief report: primary immunodeficiency caused by mutations in the gene encoding the CD3-gamma subunit of the T-lymphocyte receptor. N Engl J Med 327, 529–533.

    PubMed  CAS  Google Scholar 

  33. de la Calle-Martin, O., Hernandez, M., Ordi, J., Casamitjana, N., Arostegui, J.I., Caragol, I., Ferrando, M., Labrador, M., Rodriguez-Sanchez, J.L., and Espanol, T. (2001). Familial CD8 deficiency due to a mutation in the CD8 alpha gene. J Clin Invest 108, 117–123.

    PubMed  Google Scholar 

  34. Kagi, D., Vignaux, F., Ledermann, B., Burki, K., Depraetere, V., Nagata, S., Hengartner, H., and Golstein, P. (1994b). Fas and perforin pathways as major mechanisms of T cell-mediated cytotoxicity. Science 265, 528–530.

    PubMed  CAS  Google Scholar 

  35. Kagi, D., Ledermann, B., Burki, K., Zinkernagel, R.M., and Hengartner, H. (1996). Molecular mechanisms of lymphocyte-mediated cytotoxicity and their role in immunological protection and pathogenesis in vivo. Annu Rev Immunol 14, 207–232.

    PubMed  CAS  Google Scholar 

  36. Russell, J.H., and Dobos, C.B. (1980). Mechanisms of immune lysis. II. CTL-induced nuclear disintegration of the target begins within minutes of cell contact. J Immunol 125, 1256–1261.

    CAS  Google Scholar 

  37. Trapani, J.A., Jans, D.A., Jans, P.J., Smyth, M.J., Browne, K.A., and Sutton, V.R. (1998). Efficient nuclear targeting of granzyme B and the nuclear consequences of apoptosis induced by granzyme B and perforin are caspase-dependent, but cell death is caspase-independent. J Biol Chem 273, 27934–27938.

    PubMed  CAS  Google Scholar 

  38. Trapani, J.A., and Smyth, M.J. (2002). Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2, 735–747.

    PubMed  CAS  Google Scholar 

  39. Alejo, A., Ruiz-Arguello, M.B., Ho, Y., Smith, V.P., Saraiva, M., and Alcami, A. (2006). A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus. Proc Natl Acad Sci U S A 103, 5995–6000.

    PubMed  CAS  Google Scholar 

  40. Harty, J.T., Tvinnereim, A.R., and White, D.W. (2000). CD8+ T cell effector mechanisms in resistance to infection. Annu Rev Immunol 18, 275-308.

    PubMed  CAS  Google Scholar 

  41. Istrail, S., Florea, L., Halldorsson, B.V., Kohlbacher, O., Schwartz, R.S., Yap, V.B., Yewdell, J.W., and Hoffman, S.L. (2004). Comparative immunopeptidomics of humans and their pathogens. Proc Natl Acad Sci U S A 101, 13268–13272.

    PubMed  CAS  Google Scholar 

  42. Smyth, M.J., and Trapani, J.A. (1998). The relative role of lymphocyte granule exocytosis versus death receptor-mediated cytotoxicity in viral pathophysiology. J Virol 72, 1–9.

    PubMed  CAS  Google Scholar 

  43. Brown, D.M., Lee, S., Garcia-Hernandez, M.D., and Swain, S.L. (2012). Multi-functional CD4 cells expressing IFN-gamma and perforin mediate protection against lethal influenza infection. J Virol.

    Google Scholar 

  44. Fang, M., Siciliano, N.A., Hersperger, A.R., Roscoe, F., Hu, A., Ma, X., Shamsedeen, A.R., Eisenlohr, L.C., and Sigal, L.J. (2012). Perforin-dependent CD4+ T-cell cytotoxicity contributes to control a murine poxvirus infection. Proc Natl Acad Sci U S A 109, 9983–9988.

    Google Scholar 

  45. French, A.R., and Yokoyama, W.M. (2003). Natural killer cells and viral infections. Curr Opin Immunol 15, 45–51.

    PubMed  CAS  Google Scholar 

  46. Marshall, N.B., and Swain, S.L. (2011). Cytotoxic CD4 T cells in antiviral immunity. J Biomed Biotechnol 2011, 954602.

    PubMed  Google Scholar 

  47. Harty, J.T., and Bevan, M.J. (1999). Responses of CD8(+) T cells to intracellular bacteria. Curr Opin Immunol 11, 89–93.

    PubMed  CAS  Google Scholar 

  48. Schoenborn, J.R., and Wilson, C.B. (2007). Regulation of interferon-gamma during innate and adaptive immune responses. Adv Immunol 96, 41–101.

    PubMed  CAS  Google Scholar 

  49. Boehm, U., Klamp, T., Groot, M., and Howard, J.C. (1997). Cellular responses to interferon-gamma. Annu Rev Immunol 15, 749–795.

    PubMed  CAS  Google Scholar 

  50. Farrar, M.A., and Schreiber, R.D. (1993). The molecular cell biology of interferon-gamma and its receptor. Annu Rev Immunol 11, 571–611.

    PubMed  CAS  Google Scholar 

  51. Saha, B., Jyothi Prasanna, S., Chandrasekar, B., and Nandi, D. (2010). Gene modulation and immunoregulatory roles of interferon gamma. Cytokine 50, 1–14.

    PubMed  CAS  Google Scholar 

  52. Casanova, J.L., and Ochs, H. (1999). Interferon-gamma receptor deficiency: An expanding clinical phenotype? J Pediatr 135, 543–545.

    PubMed  CAS  Google Scholar 

  53. Tau, G., and Rothman, P. (1999). Biologic functions of the IFN-gamma receptors. Allergy 54, 1233–1251.

    PubMed  CAS  Google Scholar 

  54. Kagi, D., Ledermann, B., Burki, K., Seiler, P., Odermatt, B., Olsen, K.J., Podack, E.R., Zinkernagel, R.M., and Hengartner, H. (1994a). Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 369, 31–37.

    PubMed  CAS  Google Scholar 

  55. Kagi, D., Seiler, P., Pavlovic, J., Ledermann, B., Burki, K., Zinkernagel, R.M., and Hengartner, H. (1995). The roles of perforin- and Fas-dependent cytotoxicity in protection against cytopathic and noncytopathic viruses. Eur J Immunol 25, 3256–3262.

    PubMed  CAS  Google Scholar 

  56. Stenger, S., Hanson, D.A., Teitelbaum, R., Dewan, P., Niazi, K.R., Froelich, C.J., Ganz, T., Thoma-Uszynski, S., Melian, A., Bogdan, C., et al. (1998). An antimicrobial activity of cytolytic T cells mediated by granulysin. Science 282, 121–125.

    PubMed  CAS  Google Scholar 

  57. Mullbacher, A., Ebnet, K., Blanden, R.V., Hla, R.T., Stehle, T., Museteanu, C., and Simon, M.M. (1996). Granzyme A is critical for recovery of mice from infection with the natural cytopathic viral pathogen, ectromelia. Proc Natl Acad Sci U S A 93, 5783–5787.

    PubMed  CAS  Google Scholar 

  58. Mullbacher, A., Hla, R.T., Museteanu, C., and Simon, M.M. (1999a). Perforin is essential for control of ectromelia virus but not related poxviruses in mice. J Virol 73, 1665–1667.

    PubMed  CAS  Google Scholar 

  59. Mullbacher, A., Waring, P., Tha Hla, R., Tran, T., Chin, S., Stehle, T., Museteanu, C., and Simon, M.M. (1999b). Granzymes are the essential downstream effector molecules for the control of primary virus infections by cytolytic leukocytes. Proc Natl Acad Sci U S A 96, 13950–13955.

    PubMed  CAS  Google Scholar 

  60. Karupiah, G., Fredrickson, T.N., Holmes, K.L., Khairallah, L.H., and Buller, R.M. (1993). Importance of interferons in recovery from mousepox. J Virol 67, 4214–4226.

    PubMed  CAS  Google Scholar 

  61. Huang, S., Hendriks, W., Althage, A., Hemmi, S., Bluethmann, H., Kamijo, R., Vilcek, J., Zinkernagel, R.M., and Aguet, M. (1993). Immune response in mice that lack the interferon-gamma receptor. Science 259, 1742–1745.

    PubMed  CAS  Google Scholar 

  62. Remakus, S., and Sigal, L.J. (2011). Gamma interferon and perforin control the strength, but not the hierarchy, of immunodominance of an antiviral CD8+ T cell response. Journal of virology 85, 12578–12584.

    PubMed  CAS  Google Scholar 

  63. van den Broek, M.F., Muller, U., Huang, S., Zinkernagel, R.M., and Aguet, M. (1995). Immune defence in mice lacking type I and/or type II interferon receptors. Immunol Rev 148, 5–18.

    PubMed  Google Scholar 

  64. Fromm, P.D., Kling, J., Mack, M., Sedgwick, J.D., and Korner, H. (2012). Loss of TNF Signaling Facilitates the Development of a Novel Ly-6Clow Macrophage Population Permissive for Leishmania major Infection. J Immunol.

    Google Scholar 

  65. Jacobs, M., Marino, M.W., Brown, N., Abel, B., Bekker, L.G., Quesniaux, V.J., Fick, L., and Ryffel, B. (2000). Correction of defective host response to Mycobacterium bovis BCG infection in TNF-deficient mice by bone marrow transplantation. Lab Invest 80, 901–914.

    PubMed  CAS  Google Scholar 

  66. Kirby, A.C., Raynes, J.G., and Kaye, P.M. (2005). The role played by tumor necrosis factor during localized and systemic infection with Streptococcus pneumoniae. J Infect Dis 191, 1538–1547.

    PubMed  CAS  Google Scholar 

  67. Surh, C.D., Boyman, O., Purton, J.F., and Sprent, J. (2006). Homeostasis of memory T cells. Immunol Rev 211, 154–163.

    PubMed  CAS  Google Scholar 

  68. Mackay, C.R., Marston, W.L., and Dudler, L. (1990). Naive and memory T cells show distinct pathways of lymphocyte recirculation. J Exp Med 171, 801–817.

    PubMed  CAS  Google Scholar 

  69. Sanders, M.E., Makgoba, M.W., Sharrow, S.O., Stephany, D., Springer, T.A., Young, H.A., and Shaw, S. (1988). Human memory T lymphocytes express increased levels of three cell adhesion molecules (LFA-3, CD2, and LFA-1) and three other molecules (UCHL1, CDw29, and Pgp-1) and have enhanced IFN-gamma production. J Immunol 140, 1401–1407.

    PubMed  CAS  Google Scholar 

  70. Ahmed, R., and Gray, D. (1996). Immunological memory and protective immunity: understanding their relation. Science 272, 54–60.

    PubMed  CAS  Google Scholar 

  71. Dianzani, U., Luqman, M., Rojo, J., Yagi, J., Baron, J.L., Woods, A., Janeway, C.A., Jr., and Bottomly, K. (1990). Molecular associations on the T cell surface correlate with immunological memory. Eur J Immunol 20, 2249–2257.

    PubMed  CAS  Google Scholar 

  72. Iezzi, G., Karjalainen, K., and Lanzavecchia, A. (1998). The duration of antigenic stimulation determines the fate of naive and effector T cells. Immunity 8, 89–95.

    PubMed  CAS  Google Scholar 

  73. Fitzpatrick, D.R., Shirley, K.M., and Kelso, A. (1999). Cutting edge: stable epigenetic inheritance of regional IFN-gamma promoter demethylation in CD44highCD8+ T lymphocytes. J Immunol 162, 5053–5057.

    PubMed  CAS  Google Scholar 

  74. Mullen, A.C., High, F.A., Hutchins, A.S., Lee, H.W., Villarino, A.V., Livingston, D.M., Kung, A.L., Cereb, N., Yao, T.P., Yang, S.Y., and Reiner, S.L. (2001). Role of T-bet in commitment of TH1 cells before IL-12-dependent selection. Science 292, 1907–1910.

    PubMed  CAS  Google Scholar 

  75. Mullen, A.C., Hutchins, A.S., High, F.A., Lee, H.W., Sykes, K.J., Chodosh, L.A., and Reiner, S.L. (2002). Hlx is induced by and genetically interacts with T-bet to promote heritable T(H)1 gene induction. Nat Immunol 3, 652–658.

    PubMed  CAS  Google Scholar 

  76. Gebhardt, T., Wakim, L.M., Eidsmo, L., Reading, P.C., Heath, W.R., and Carbone, F.R. (2009). Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat Immunol 10, 524–530.

    PubMed  CAS  Google Scholar 

  77. Masopust, D., Choo, D., Vezys, V., Wherry, E.J., Duraiswamy, J., Akondy, R., Wang, J., Casey, K.A., Barber, D.L., Kawamura, K.S., et al. (2010). Dynamic T cell migration program provides resident memory within intestinal epithelium. J Exp Med 207, 553–564.

    PubMed  CAS  Google Scholar 

  78. Masopust, D., Vezys, V., Marzo, A.L., and Lefrancois, L. (2001). Preferential localization of effector memory cells in nonlymphoid tissue. Science 291, 2413–2417.

    PubMed  CAS  Google Scholar 

  79. Sallusto, F., Lenig, D., Forster, R., Lipp, M., and Lanzavecchia, A. (1999). Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712.

    PubMed  CAS  Google Scholar 

  80. Gourley, T.S., Wherry, E.J., Masopust, D., and Ahmed, R. (2004). Generation and maintenance of immunological memory. Semin Immunol 16, 323–333.

    PubMed  CAS  Google Scholar 

  81. Jameson, S.C., and Masopust, D. (2009). Diversity in T cell memory: an embarrassment of riches. Immunity 31, 859–871.

    PubMed  CAS  Google Scholar 

  82. Masopust, D., Kaech, S.M., Wherry, E.J., and Ahmed, R. (2004). The role of programming in memory T-cell development. Curr Opin Immunol 16, 217–225.

    PubMed  CAS  Google Scholar 

  83. Verhoeven, D., Teijaro, J.R., and Farber, D.L. (2008). Heterogeneous memory T cells in antiviral immunity and immunopathology. Viral Immunol 21, 99–113.

    PubMed  CAS  Google Scholar 

  84. Wherry, E.J., Teichgraber, V., Becker, T.C., Masopust, D., Kaech, S.M., Antia, R., von Andrian, U.H., and Ahmed, R. (2003). Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat Immunol 4, 225–234.

    PubMed  CAS  Google Scholar 

  85. Hikono, H., Kohlmeier, J.E., Takamura, S., Wittmer, S.T., Roberts, A.D., and Woodland, D.L. (2007). Activation phenotype, rather than central- or effector-memory phenotype, predicts the recall efficacy of memory CD8+ T cells. J Exp Med 204, 1625–1636.

    PubMed  CAS  Google Scholar 

  86. Roberts, A.D., Ely, K.H., and Woodland, D.L. (2005). Differential contributions of central and effector memory T cells to recall responses. J Exp Med 202, 123–133.

    PubMed  CAS  Google Scholar 

  87. Bachmann, M.F., Wolint, P., Schwarz, K., Jager, P., and Oxenius, A. (2005). Functional properties and lineage relationship of CD8+ T cell subsets identified by expression of IL-7 receptor alpha and CD62L. J Immunol 175, 4686–4696.

    PubMed  CAS  Google Scholar 

  88. Harty, J.T., and Badovinac, V.P. (2008). Shaping and reshaping CD8+ cell memory. Nat Rev Immuno 8, 107–119.

    Google Scholar 

  89. Sallusto, F., Lanzavecchia, A., Araki, K., and Ahmed, R. (2008). From vaccines to memory and back. Immunity 33, 451–463.

    Google Scholar 

  90. Kannanganat, S., Ibegbu, C., Chennareddi, L., Robinson, H.L., and Amara, R.R. (2007). Multiple-cytokine-producing antiviral CD4 T cells are ­functionally superior to single-cytokine-producing cells. J Virol 81, 8468–8476.

    PubMed  CAS  Google Scholar 

  91. Seder, R.A., Darrah, P.A., and Roederer, M. (2008). T-cell quality in memory and protection: implications for vaccine design. Nat Rev Immunol 8, 247–258.

    PubMed  CAS  Google Scholar 

  92. Darrah, P.A., Patel, D.T., De Luca, P.M., Lindsay, R.W., Davey, D.F., Flynn, B.J., Hoff, S.T., Andersen, P., Reed, S.G., Morris, S.L., et al. (2007). Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat Med 13, 843–850.

    PubMed  CAS  Google Scholar 

  93. Kohlmeier, J.E., Cookenham, T., Roberts, A.D., Miller, S.C., and Woodland, D.L. (2010). Type I interferons regulate cytolytic activity of memory CD8(+) T cells in the lung airways during respiratory virus challenge. Immunity 33, 96–105.

    PubMed  CAS  Google Scholar 

  94. de Alencar, B.C., Persechini, P.M., Haolla, F.A., de Oliveira, G., Silverio, J.C., Lannes-Vieira, J., Machado, A.V., Gazzinelli, R.T., Bruna-Romero, O., and Rodrigues, M.M. (2009). Perforin and gamma interferon expression are required for CD4+ and CD8+ T-cell-dependent protective immunity against a human parasite, Trypanosoma cruzi, elicited by heterologous plasmid DNA prime-recombinant adenovirus 5 boost vaccination. Infect Immun 77, 4383–4395.

    PubMed  Google Scholar 

  95. Colmenares, M., Kima, P.E., Samoff, E., Soong, L., and McMahon-Pratt, D. (2003). Perforin and gamma interferon are critical CD8+ T-cell-mediated responses in vaccine-induced immunity against Leishmania amazonensis infection. Infect Immun 71, 3172–3182.

    PubMed  CAS  Google Scholar 

  96. Kedl, R.M., Rees, W.A., Hildeman, D.A., Schaefer, B., Mitchell, T., Kappler, J., and Marrack, P. (2000). T cells compete for access to antigen-bearing antigen-presenting cells. J Exp Med 192, 1105–1113.

    PubMed  CAS  Google Scholar 

  97. Forbes, E.K., Biswas, S., Collins, K.A., Gilbert, S.C., Hill, A.V., and Draper, S.J. (2011). Combining liver- and blood-stage malaria viral-vectored vaccines: investigating mechanisms of CD8+ T cell interference. J Immunol 187, 3738–3750.

    PubMed  CAS  Google Scholar 

  98. van den Broek, M.E., Kagi, D., Ossendorp, F., Toes, R., Vamvakas, S., Lutz, W.K., Melief, C.J., Zinkernagel, R.M., and Hengartner, H. (1996). Decreased tumor surveillance in perforin-deficient mice. J Exp Med 184, 1781–1790.

    PubMed  Google Scholar 

  99. Welsh, R.M., Selin, L.K., and Szomolanyi-Tsuda, E. (2004). Immunological memory to viral infections. Annu Rev Immunol 22, 711–743.

    PubMed  CAS  Google Scholar 

  100. Zehn, D., Lee, S.Y., and Bevan, M.J. (2009). Complete but curtailed T-cell response to very low-affinity antigen. Nature 458, 211–214.

    PubMed  CAS  Google Scholar 

  101. Guarda, G., Hons, M., Soriano, S.F., Huang, A.Y., Polley, R., Martin-Fontecha, A., Stein, J.V., Germain, R.N., Lanzavecchia, A., and Sallusto, F. (2007). L-selectin-negative CCR7- effector and memory CD8+ T cells enter reactive lymph nodes and kill dendritic cells. Nat Immunol 8, 743–752.

    PubMed  CAS  Google Scholar 

  102. Badovinac, V.P., Messingham, K.A., Hamilton, S.E., and Harty, J.T. (2003). Regulation of CD8+ T cells undergoing primary and secondary responses to infection in the same host. J Immunol 170, 4933–4942.

    PubMed  CAS  Google Scholar 

  103. Turner, S.J., Cross, R., Xie, W., and Doherty, P.C. (2001). Concurrent naive and memory CD8(+) T cell responses to an influenza A virus. J Immunol 167, 2753–2758.

    PubMed  CAS  Google Scholar 

  104. Barber, D.L., Wherry, E.J., and Ahmed, R. (2003). Cutting edge: rapid in vivo killing by memory CD8 T cells. J Immunol 171, 27–31.

    PubMed  CAS  Google Scholar 

  105. Kaech, S.M., Hemby, S., Kersh, E., and Ahmed, R. (2002). Molecular and functional profiling of memory CD8 T cell differentiation. Cell 111, 837–851.

    PubMed  CAS  Google Scholar 

  106. Lalvani, A., Brookes, R., Hambleton, S., Britton, W.J., Hill, A.V., and McMichael, A.J. (1997). Rapid effector function in CD8+ memory T cells. J Exp Med 186, 859–865.

    PubMed  CAS  Google Scholar 

  107. Selin, L.K., and Welsh, R.M. (1997). Cytolytically active memory CTL present in lymphocytic choriomeningitis virus-immune mice after clearance of virus infection. J Immunol 158, 5366–5373.

    PubMed  CAS  Google Scholar 

  108. Otis, E.O. (1909). The great white plague, tuber­culosis (New York,: Crowell).

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants R01AI048849, R01AI065544, and 5U19AI083008 to L.J.S. and P30CA006927 to FCCC. S.R. was supported by training grant T32 CA-009035036 to FCCC. We thank Holly Gillin for editorial help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis J. Sigal D.V.M., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Remakus, S., Sigal, L.J. (2013). Memory CD8+ T Cell Protection. In: Katsikis, P., Schoenberger, S., Pulendran, B. (eds) Crossroads Between Innate and Adaptive Immunity IV. Advances in Experimental Medicine and Biology, vol 785. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6217-0_9

Download citation

Publish with us

Policies and ethics