The CD28/B7 Pathway: A Novel Regulator of Plasma Cell Function

  • Modesta N. Njau
  • Joshy JacobEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 785)


The CD28/B7 pathway is pivotal for the activation, optimal function, and regulation of T cell function. While the CD28 receptor and its ligands B7.1/B7.2 are also expressed on plasma cells, little is known of the role of the CD28/B7 pathway in plasma cell function. In this chapter we discuss the recent studies that have examined the role of CD28 expression on plasma cell function. Both stimulatory and inhibitory effects of CD28 on plasma cells have been reported. Based on our findings we propose that under homeostatic conditions the CD28/B7 interaction mediates regulation of plasma cell function whereas during inflammation this pathway can be perturbed to ramp up Ab production from existing plasma cells.


Plasma cells CD28 B cells Antibody CD28/B7 





Programmed death


Programmed death ligand


B cell activating factor


B cell activating factor receptor


A proliferation-inducing ligand


Transmembrane activator, calcium modulator, and cyclophilin ligand interactor


Non-obese diabetic mice


  1. 1.
    Gourley TS, Wherry EJ, Masopust D, Ahmed R. Generation and maintenance of immunological memory. Semin Immunol. 2004 Oct;16(5):323–33.PubMedCrossRefGoogle Scholar
  2. 2.
    Ahmed R, Gray D. Immunological memory and protective immunity: understanding their relation. Science. 1996 Apr 5;272(5258):54–60.PubMedCrossRefGoogle Scholar
  3. 3.
    McHeyzer-Williams M, Okitsu S, Wang N, McHeyzer-Williams L. Molecular programming of B cell ­memory. Nat Rev Immunol. 2012 Jan;12(1):24–34.Google Scholar
  4. 4.
    Jacob J, Przylepa J, Miller C, Kelsoe G. In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. III. The kinetics of V region mutation and selection in germinal center B cells. J Exp Med. 1993 Oct 1;178(4):1293–307.PubMedCrossRefGoogle Scholar
  5. 5.
    Jacob J, Kelsoe G, Rajewsky K, Weiss U. Intraclonal generation of antibody mutants in germinal centres. Nature. 1991 Dec 5;354(6352):389–92.PubMedCrossRefGoogle Scholar
  6. 6.
    Chappell CP, Dauner J, Jacob J. Ontogeny of the secondary antibody response: origins and clonal diversity. Adv Exp Med Biol. 2009;633:27–41.PubMedCrossRefGoogle Scholar
  7. 7.
    McHeyzer-Williams LJ, McHeyzer-Williams MG. Antigen-specific memory B cell development. Annu Rev Immunol. 2005;23:487–513.PubMedCrossRefGoogle Scholar
  8. 8.
    Slifka MK, Ahmed R. Long-term antibody production is sustained by antibody-secreting cells in the bone marrow following acute viral infection. Ann N Y Acad Sci. 1996 Oct 25;797:166–76.PubMedCrossRefGoogle Scholar
  9. 9.
    Jones PD, Ada GL. Persistence of influenza virus-specific antibody-secreting cells and B-cell memory after primary murine influenza virus infection. Cell Immunol. 1987 Oct 1;109(1):53–64.PubMedCrossRefGoogle Scholar
  10. 10.
    Gatto D, Pfister T, Jegerlehner A, Martin SW, Kopf M, Bachmann MF. Complement receptors regulate differentiation of bone marrow plasma cell precursors expressing transcription factors Blimp-1 and XBP-1. J Exp Med. 2005 Mar 21;201(6):993–1005.PubMedCrossRefGoogle Scholar
  11. 11.
    Good-Jacobson KL, Szumilas CG, Chen L, Sharpe AH, Tomayko MM, Shlomchik MJ. PD-1 regulates germinal center B cell survival and the formation and affinity of long-lived plasma cells. Nat Immunol. 2010 Jun;11(6):535–42.PubMedCrossRefGoogle Scholar
  12. 12.
    Good-Jacobson KL, Song E, Anderson S, Sharpe AH, Shlomchik MJ. CD80 expression on B cells regulates murine T follicular helper development, germinal center B cell survival, and plasma cell generation. J Immunol. 2012 May 1;188(9):4217–25.PubMedCrossRefGoogle Scholar
  13. 13.
    Zotos D, Coquet JM, Zhang Y, Light A, D’Costa K, Kallies A, et al. IL-21 regulates germinal center B cell differentiation and proliferation through a B cell-intrinsic mechanism. J Exp Med. 2010 Feb 15;207(2):365–78.PubMedCrossRefGoogle Scholar
  14. 14.
    O’Connor BP, Raman VS, Erickson LD, Cook WJ, Weaver LK, Ahonen C, et al. BCMA is essential for the survival of long-lived bone marrow plasma cells. J Exp Med. 2004 Jan 5;199(1):91–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Mackay F, Browning JL. BAFF: a fundamental ­survival factor for B cells. Nat Rev Immunol. 2002 Jul;2(7):465–75.PubMedCrossRefGoogle Scholar
  16. 16.
    Marsters SA, Yan M, Pitti RM, Haas PE, Dixit VM, Ashkenazi A. Interaction of the TNF homologues BLyS and APRIL with the TNF receptor homologues BCMA and TACI. Curr Biol. 2000 Jun 29;10(13):785–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Gotot J, Gottschalk C, Leopold S, Knolle PA, Yagita H, Kurts C, et al. Regulatory T cells use programmed death 1 ligands to directly suppress autoreactive B cells in vivo. Proc Natl Acad Sci USA. 2012 Jun 11.Google Scholar
  18. 18.
    Aruffo A, Seed B. Molecular cloning of a CD28 cDNA by a high-efficiency COS cell expression system. Proc Natl Acad Sci USA. 1987 Dec;84(23):8573–7.PubMedCrossRefGoogle Scholar
  19. 19.
    June CH, Ledbetter JA, Linsley PS, Thompson CB. Role of the CD28 receptor in T-cell activation. Immunol Today. 1990 Jun;11(6):211–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Kozbor D, Moretta A, Messner HA, Moretta L, Croce CM. Tp44 molecules involved in antigen-independent T cell activation are expressed on human plasma cells. J Immunol. 1987 Jun 15;138(12):4128–32.PubMedGoogle Scholar
  21. 21.
    Linsley PS, Brady W, Grosmaire L, Aruffo A, Damle NK, Ledbetter JA. Binding of the B cell activation antigen B7 to CD28 costimulates T cell proliferation and interleukin 2 mRNA accumulation. J Exp Med. 1991 Mar 1;173(3):721–30.PubMedCrossRefGoogle Scholar
  22. 22.
    Freeman GJ, Gribben JG, Boussiotis VA, Ng JW, Restivo VA, Jr., Lombard LA, et al. Cloning of B7-2: a CTLA-4 counter-receptor that costimulates human T cell proliferation. Science. 1993 Nov 5;262(5135):909–11.PubMedCrossRefGoogle Scholar
  23. 23.
    Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited. Annu Rev Immunol. 2005;23:515–48.PubMedCrossRefGoogle Scholar
  24. 24.
    Allison JP. CD28-B7 interactions in T-cell activation. Curr Opin Immunol. 1994 Jun;6(3):414–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Sharpe AH. Mechanisms of costimulation. Immunological reviews. 2009 May;229(1):5–11.PubMedCrossRefGoogle Scholar
  26. 26.
    Lenschow DJ, Walunas TL, Bluestone JA. CD28/B7 system of T cell costimulation. ARI. 1996;14:233–58.Google Scholar
  27. 27.
    Thompson CB, Lindsten T, Ledbetter JA, Kunkel SL, Young HA, Emerson SG, et al. CD28 activation pathway regulates the production of multiple T-cell-derived lymphokines/cytokines. Proc Natl Acad Sci USA. 1989 Feb;86(4):1333–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Boise LH, Minn AJ, Noel PJ, June CH, Accavitti MA, Lindsten T, et al. CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-XL. Immunity. 1995 Jul;3(1):87–98.PubMedCrossRefGoogle Scholar
  29. 29.
    Fox CJ, Hammerman PS, Thompson CB. Fuel feeds function: energy metabolism and the T-cell response. Nat Rev Immunol. 2005 Nov;5(11):844–52.PubMedCrossRefGoogle Scholar
  30. 30.
    Croft M, Bradley LM, Swain SL. Naive versus memory CD4 T cell response to antigen. Memory cells are less dependent on accessory cell costimulation and can respond to many antigen-presenting cell types including resting B cells. J Immunol. 1994 Mar 15;152(6):2675–85.Google Scholar
  31. 31.
    London CA, Lodge MP, Abbas AK. Functional responses and costimulator dependence of memory CD4+ T cells. J Immunol. 2000 Jan 1;164(1):265–72.PubMedGoogle Scholar
  32. 32.
    Kim SK, Schluns KS, Lefrancois L. Induction and visualization of mucosal memory CD8 T cells following systemic virus infection. J Immunol. 1999 Oct 15;163(8):4125–32.PubMedGoogle Scholar
  33. 33.
    Suresh M, Whitmire JK, Harrington LE, Larsen CP, Pearson TC, Altman JD, et al. Role of CD28-B7 interactions in generation and maintenance of CD8 T cell memory. J Immunol. 2001 Nov 15;167(10):5565–73.PubMedGoogle Scholar
  34. 34.
    Zammit DJ, Cauley LS, Pham QM, Lefrancois L. Dendritic cells maximize the memory CD8 T cell response to infection. Immunity. 2005 May;22(5):561–70.PubMedCrossRefGoogle Scholar
  35. 35.
    Belz GT, Wilson NS, Smith CM, Mount AM, Carbone FR, Heath WR. Bone marrow-derived cells expand memory CD8+ T cells in response to viral infections of the lung and skin. Eur J Immunol. 2006 Feb;36(2):327–35.PubMedCrossRefGoogle Scholar
  36. 36.
    Boesteanu AC, Katsikis PD. Memory T cells need CD28 costimulation to remember. Semin Immunol. 2009 Apr;21(2):69–77.PubMedCrossRefGoogle Scholar
  37. 37.
    Ndejembi MP, Teijaro JR, Patke DS, Bingaman AW, Chandok MR, Azimzadeh A, et al. Control of memory CD4 T cell recall by the CD28/B7 costimulatory pathway. J Immunol. 2006 Dec 1;177(11):7698–706.PubMedGoogle Scholar
  38. 38.
    Borowski AB, Boesteanu AC, Mueller YM, Carafides C, Topham DJ, Altman JD, et al. Memory CD8+ T cells require CD28 costimulation. J Immunol. 2007 Nov 15;179(10):6494–503.PubMedGoogle Scholar
  39. 39.
    Garidou L, Heydari S, Truong P, Brooks DG, McGavern DB. Therapeutic memory T cells require costimulation for effective clearance of a persistent viral infection. J Virol. 2009 Sep;83(17):8905–15.PubMedCrossRefGoogle Scholar
  40. 40.
    Fuse S, Zhang W, Usherwood EJ. Control of memory CD8+ T cell differentiation by CD80/CD86-CD28 costimulation and restoration by IL-2 during the recall response. J Immunol. 2008 Jan 15;180(2):1148–57.PubMedGoogle Scholar
  41. 41.
    Liston A, Rudensky AY. Thymic development and peripheral homeostasis of regulatory T cells. Curr Opin Immunol. 2007 Apr;19(2):176–85.PubMedCrossRefGoogle Scholar
  42. 42.
    Sakaguchi S. Regulatory T cells: key controllers of immunologic self-tolerance. Cell. 2000 May 26;101(5):455–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Salomon B, Lenschow DJ, Rhee L, Ashourian N, Singh B, Sharpe A, et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity. 2000;12(4):431–40.PubMedCrossRefGoogle Scholar
  44. 44.
    McAdam AJ, Chang TT, Lumelsky AE, Greenfield EA, Boussiotis VA, Duke-Cohan JS, et al. Mouse inducible costimulatory molecule (ICOS) expression is enhanced by CD28 costimulation and regulates differentiation of CD4+ T cells. J Immunol. 2000 Nov 1;165(9):5035–40.PubMedGoogle Scholar
  45. 45.
    de Boer M, Kasran A, Kwekkeboom J, Walter H, Vandenberghe P, Ceuppens JL. Ligation of B7 with CD28/CTLA-4 on T cells results in CD40 ligand expression, interleukin-4 secretion and efficient help for antibody production by B cells. Eur J Immunol. 1993 Dec;23(12):3120–5.PubMedCrossRefGoogle Scholar
  46. 46.
    Johnson-Leger C, Christensen J, Klaus GG. CD28 co-stimulation stabilizes the expression of the CD40 ligand on T cells. Int Immunol. 1998 Aug;10(8):1083–91.PubMedCrossRefGoogle Scholar
  47. 47.
    Snapper CM, Kehry MR, Castle BE, Mond JJ. Multivalent, but not divalent, antigen receptor cross-linkers synergize with CD40 ligand for induction of Ig synthesis and class switching in normal murine B cells. A redefinition of the TI-2 vs T cell-dependent antigen dichotomy. J Immunol. 1995 Feb 1;154(3):1177–87.PubMedGoogle Scholar
  48. 48.
    Tafuri A, Shahinian A, Bladt F, Yoshinaga SK, Jordana M, Wakeham A, et al. ICOS is essential for effective T-helper-cell responses. Nature. 2001 Jan 4;409(6816):105–9.PubMedCrossRefGoogle Scholar
  49. 49.
    McAdam AJ, Greenwald RJ, Levin MA, Chernova T, Malenkovich N, Ling V, et al. ICOS is critical for CD40-mediated antibody class switching. Nature. 2001 Jan 4;409(6816):102–5.PubMedCrossRefGoogle Scholar
  50. 50.
    Dong C, Temann UA, Flavell RA. Cutting edge: critical role of inducible costimulator in germinal center reactions. J Immunol. 2001 Mar 15;166(6):3659–62.PubMedGoogle Scholar
  51. 51.
    Noelle RJ, Roy M, Shepherd DM, Stamenkovic I, Ledbetter JA, Aruffo A. A 39-kDa protein on activated helper T cells binds CD40 and transduces the signal for cognate activation of B cells. Proc Natl Acad Sci USA. 1992 Jul 15;89(14):6550–4.PubMedCrossRefGoogle Scholar
  52. 52.
    Delogu A, Schebesta A, Sun Q, Aschenbrenner K, Perlot T, Busslinger M. Gene repression by Pax5 in B cells is essential for blood cell homeostasis and is reversed in plasma cells. Immunity. 2006 Mar;24(3):269–81.PubMedCrossRefGoogle Scholar
  53. 53.
    Robillard N, Jego G, Pellat-Deceunynck C, Pineau D, Puthier D, Mellerin MP, et al. CD28, a marker associated with tumoral expansion in multiple myeloma. Clin Cancer Res. 1998 Jun;4(6):1521–6.PubMedGoogle Scholar
  54. 54.
    Nair JR, Carlson LM, Koorella C, Rozanski CH, Byrne GE, Bergsagel PL, et al. CD28 expressed on malignant plasma cells induces a prosurvival and immunosuppressive microenvironment. J Immunol. 2011 Aug 1;187(3):1243–53.PubMedCrossRefGoogle Scholar
  55. 55.
    Bahlis NJ, King AM, Kolonias D, Carlson LM, Liu HY, Hussein MA, et al. CD28-mediated regulation of multiple myeloma cell proliferation and survival. Blood. 2007 Jun 1;109(11):5002–10.PubMedCrossRefGoogle Scholar
  56. 56.
    Pellat-Deceunynck C, Bataille R, Robillard N, Harousseau JL, Rapp MJ, Juge-Morineau N, et al. Expression of CD28 and CD40 in human myeloma cells: a comparative study with normal plasma cells. Blood. 1994 Oct 15;84(8):2597–603.PubMedGoogle Scholar
  57. 57.
    Qiu YH, Sun ZW, Shi Q, Su CH, Chen YJ, Shi YJ, et al. Apoptosis of multiple myeloma cells induced by agonist monoclonal antibody against human CD28. Cell Immunol. 2005 Jul–Aug;236(1–2):154–60.Google Scholar
  58. 58.
    Rozanski CH, Arens R, Carlson LM, Nair J, Boise LH, Chanan-Khan AA, et al. Sustained antibody responses depend on CD28 function in bone marrow-resident plasma cells. J Exp Med. 2011 Jul 4;208(7):1435–46.PubMedCrossRefGoogle Scholar
  59. 59.
    Njau MN, Kim JH, Chappell C, Ravindran R, Thomas L, Pulendran B, Jacob J. CD28-B7 interaction modulates long-lived and short-lived plasma cell function. J Immunol. 2012 Sep 15;189(6):2758–67.Google Scholar
  60. 60.
    Pulendran B, Smith KG, Nossal GJ. Soluble antigen can impede affinity maturation and the germinal center reaction but enhance extrafollicular immunoglobulin production. J Immunol. 1995 Aug 1;155(3):1141–50.PubMedGoogle Scholar
  61. 61.
    Borriello F, Sethna MP, Boyd SD, Schweitzer AN, Tivol EA, Jacoby D, et al. B7-1 and B7-2 have overlapping, critical roles in immunoglobulin class switching and germinal center formation. Immunity. 1997 Mar;6(3):303–13.PubMedCrossRefGoogle Scholar
  62. 62.
    Rau FC, Dieter J, Luo Z, Priest SO, Baumgarth N. B7-1/2 (CD80/CD86) direct signaling to B cells enhances IgG secretion. J Immunol. 2009 Dec 15;183(12):7661–71.PubMedCrossRefGoogle Scholar
  63. 63.
    Suvas S, Singh V, Sahdev S, Vohra H, Agrewala JN. Distinct role of CD80 and CD86 in the regulation of the activation of B cell and B cell lymphoma. J Biol Chem. 2002 Mar 8;277(10):7766–75.PubMedCrossRefGoogle Scholar
  64. 64.
    Sethna MP, van Parijs L, Sharpe AH, Abbas AK, Freeman GJ. A negative regulatory function of B7 revealed in B7-1 transgenic mice. Immunity. 1994 Aug;1(5):415–21.PubMedCrossRefGoogle Scholar
  65. 65.
    Pelletier N, McHeyzer-Williams LJ, Wong KA, Urich E, Fazilleau N, McHeyzer-Williams MG. Plasma cells negatively regulate the follicular helper T cell program. Nat Immunol. 2010 Dec;11(12):1110–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Magistrelli G, Jeannin P, Elson G, Gauchat JF, Nguyen TN, Bonnefoy JY, et al. Identification of three alternatively spliced variants of human CD28 mRNA. Biochem Biophys Res Commun. 1999 May 27;259(1):34–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Jeannin P, Magistrelli G, Aubry JP, Caron G, Gauchat JF, Renno T, et al. Soluble CD86 is a costimulatory molecule for human T lymphocytes. Immunity. 2000 Sep;13(3):303–12.PubMedCrossRefGoogle Scholar
  68. 68.
    Cao J, Zhang L, Huang S, Chen P, Zou L, Chen H, et al. Aberrant production of soluble co-stimulatory molecules CTLA-4 and CD28 in patients with chronic hepatitis B. Microb Pathog. 2011 Oct;51(4):262–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Hebbar M, Jeannin P, Magistrelli G, Hatron PY, Hachulla E, Devulder B, et al. Detection of circulating soluble CD28 in patients with systemic lupus erythematosus, primary Sjogren’s syndrome and systemic sclerosis. Clin Exp Immunol. 2004 May;136(2):388–92.PubMedCrossRefGoogle Scholar
  70. 70.
    Hock BD, O’Donnell JL, Taylor K, Steinkasserer A, McKenzie JL, Rothwell AG, et al. Levels of the soluble forms of CD80, CD86, and CD83 are elevated in the synovial fluid of rheumatoid arthritis patients. Tissue Antigens. 2006 Jan;67(1):57–60.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate CenterEmory UniversityAtlantaUSA

Personalised recommendations