Skip to main content

The Interaction Between Filarial Parasites and Human Monocyte/Macrophage Populations

  • Chapter
  • First Online:
Crossroads Between Innate and Adaptive Immunity IV

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 785))

Abstract

Lymphatic filariasis is a mafor tropical disease affecting approximately 120 million people worldwide. Patent infection, by and large, is clinically asymptomatic but is associated with the inability of T cells to proliferate or produce IFN-γ in response to parasite antigen. Monocyte dysfunction is one hypothesis felt to explain the lack of an antigen-specific T cell response. In fact, monocytes from filaria-infected individuals have been shown to be studded with internalized filarial antigens. Understanding how the phenotype and the function of these monocytes are altered through the internalization of these parasite antigens is one of the areas our laboratory has focused on. In fact, the existence and/or function of alternatively activated macrophages in murine models of filarial infections have been extensively studied. Whether this population of macrophages can be induced in human filarial infections is the main focus of this review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization. (2011). Global programme to eliminate lymphatic filariasis: progress report on mass drug administration, 2010. Wkly Epidemiol Rec 35, 377–388.

    Google Scholar 

  2. Nutman, T.B. (2001). Lymphatic filariasis: new insights and prospects for control. Curr Opin Infect Dis 14, 539–546.

    Article  PubMed  CAS  Google Scholar 

  3. Maizels, R.M., Balic, A., Gomez-Escobar, N., Nair, M., Taylor, M.D., and Allen, F.E. (2004). Helminth parasites—masters of regulation. Immunol Rev 201, 89–116.

    Article  PubMed  CAS  Google Scholar 

  4. Mahanty, S., Luke, H.E., Kumaraswami, V., Narayanan, P.R., Vifayshekaran, V., and Nutman, T.B. (1996). Stage-specific induction of cytokines regulates the immune response in lymphatic filariasis. Exp Parasitol 84, 282–290.

    Article  PubMed  CAS  Google Scholar 

  5. King, C.L., Mahanty, S., Kumaraswami, V., Abrams, F.S., Regunathan, F., Fayaraman, K., Ottesen, E.A., and Nutman, T.B. (1993). Cytokine control of parasite-specific anergy in human lymphatic filariasis. Preferential induction of a regulatory T helper type 2 lymphocyte subset. F Clin Invest 92, 1667–1673.

    Article  PubMed  CAS  Google Scholar 

  6. Loke, P., MacDonald, A.S., and Allen, F.E. (2000a). Antigen-presenting cells recruited by Brugia malayi induce Th2 differentiation of naive CD4+ T cells. Eur F Immunol 30, 1127–1135.

    Article  PubMed  CAS  Google Scholar 

  7. Whelan, M., Harnett, M.M., Houston, K.M., Patel, V., Harnett, W., and Rigley, K.P. (2000). A filarial nematode-secreted product signals dendritic cells to acquire a phenotype that drives development of Th2 cells. F Immunol 164, 6453–6460.

    PubMed  CAS  Google Scholar 

  8. Semnani, R.T., Sabzevari, H., Iyer, R., and Nutman, T.B. (2001). Filarial antigens impair the function of human dendritic cells during differentiation. Infect Immun 69, 5813–5822.

    Article  PubMed  CAS  Google Scholar 

  9. Fenson, F.S., O’Connor, R., Osborne, F., and Devaney, E. (2002). Infection with Brugia microfilariae induces apoptosis of CD4+ T lymphocytes: a mechanism of immune unresponsiveness in filariasis. Eur F Immunol 32, 858–867.

    Article  PubMed  CAS  Google Scholar 

  10. Semnani, R.T., Venugopal, P.G., Mahapatra, L., Skinner, F.A., Meylan, F., Chien, D., Dorward, D.W., Chaussabel, D., Siegel, R.M., and Nutman, T.B. (2008b). Induction of TRAIL- and TNF-α-dependent apoptosis in human monocyte-derived dendritic cells by microfilariae of Brugia malayi. F Immunol 181, 7081–7089.

    PubMed  CAS  Google Scholar 

  11. Semnani, R.T., Venugopal, P.G., Leifer, C.A., Mostbock, S., Sabzevari, H., and Nutman, T.B. (2008a). Inhibition of TLR3 and TLR4 function and expression in human dendritic cells by helminth parasites. Blood 112, 1290–1298.

    Article  PubMed  CAS  Google Scholar 

  12. Hume, D.A., Robinson, A.P., MacPherson, G.G., and Gordon, S. (1983). The mononuclear phagocyte system of the mouse defined by immunohistochemical localization of antigen F4/80. Relationship between macrophages, Langerhans cells, reticular cells, and dendritic cells in lymphoid and hematopoietic organs. F Exp Med 158, 1522–1536.

    Article  PubMed  CAS  Google Scholar 

  13. Grage-Griebenow, E., Flad, H.D., and Ernst, M. (2001). Heterogeneity of human peripheral blood monocyte subsets. F Leukoc Biol 69, 11–20.

    PubMed  CAS  Google Scholar 

  14. Stein, M., and Keshav, S. (1992). The versatility of macrophages. Clin Exp Allergy 22, 19–27.

    Article  PubMed  CAS  Google Scholar 

  15. Valledor, A.F., Comalada, M., Santamaria-Babi, L.F., Lloberas, F., and Celada, A. (2010). Macrophage proinflammatory activation and deactivation: a question of balance. Adv Immunol 108, 1–20.

    Article  PubMed  CAS  Google Scholar 

  16. Stein, M., Keshav, S., Harris, N., and Gordon, S. (1992). Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. F Exp Med 176, 287–292.

    Article  PubMed  CAS  Google Scholar 

  17. Gordon, S. (2003). Alternative activation of macrophages. Nat Rev Immunol 3, 23–35.

    Article  PubMed  CAS  Google Scholar 

  18. Dalton, D.K., Pitts-Meek, S., Keshav, S., Figari, I.S., Bradley, A., and Stewart, T.A. (1993). Multiple defects of immune cell function in mice with disrupted interferon-γ genes. Science 259, 1739–1742.

    Article  PubMed  CAS  Google Scholar 

  19. Munder, M., Eichmann, K., and Modolell, M. (1998). Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: competitive regulation by CD4+ T cells correlates with Th1/Th2 phenotype. F Immunol 160, 5347–5354.

    PubMed  CAS  Google Scholar 

  20. Munder, M., Mollinedo, F., Calafat, F., Canchado, F., Gil-Lamaignere, C., Fuentes, F.M., Luckner, C., Doschko, G., Soler, G., Eichmann, K., et al. (2005). Arginase I is constitutively expressed in human granulocytes and participates in fungicidal activity. Blood 105, 2549–2556.

    Article  PubMed  CAS  Google Scholar 

  21. Modolell, M., Corraliza, I.M., Link, F., Soler, G., and Eichmann, K. (1995). Reciprocal regulation of the nitric oxide synthase/arginase balance in mouse bone marrow-derived macrophages by TH1 and TH2 cytokines. Eur F Immunol 25, 1101–1104.

    Article  PubMed  CAS  Google Scholar 

  22. Kreider, T., Anthony, R.M., Urban, F.F. Fr., and Gause, W.C. (2007). Alternatively activated macrophages in helminth infections. Curr Opin Immunol 19, 448–453.

    Article  PubMed  CAS  Google Scholar 

  23. Doyle, A.G., Herbein, G., Montaner, L.F., Minty, A.F., Caput, D., Ferrara, P., and Gordon, S. (1994). Interleukin-13 alters the activation state of murine macrophages in vitro: comparison with interleukin-4 and interferon-γ. Eur F Immunol 24, 1441–1445.

    Article  PubMed  CAS  Google Scholar 

  24. Hesse, M., Modolell, M., La Flamme, A.C., Schito, M., Fuentes, F.M., Cheever, A.W., Pearce, E.F., and Wynn, T.A. (2001). Differential regulation of nitric oxide synthase-2 and arginase-1 by type 1/type 2 cytokines in vivo: granulomatous pathology is shaped by the pattern of L-arginine metabolism. F Immunol 167, 6533–6544.

    PubMed  CAS  Google Scholar 

  25. Loke, P., Nair, M.G., Parkinson, F., Guiliano, D., Blaxter, M., and Allen, F.E. (2002). IL-4 dependent alternatively-activated macrophages have a distinctive in vivo gene expression phenotype. BMC Immunol 3, 7.

    Article  PubMed  Google Scholar 

  26. Linehan, S.A., Coulson, P.S., Wilson, R.A., Mountford, A.P., Brombacher, F., Martinez-Pomares, L., and Gordon, S. (2003). IL-4 receptor signaling is required for mannose receptor expression by macrophages recruited to granulomata but not resident cells in mice infected with Schistosoma mansoni. Lab Invest 83, 1223–1231.

    Article  PubMed  CAS  Google Scholar 

  27. Horsnell, W.G., and Brombacher, F. (2010). Genes associated with alternatively activated macrophages discretely regulate helminth infection and pathogenesis in experimental mouse models. Immunobiology 215, 704–708.

    Article  PubMed  CAS  Google Scholar 

  28. Fenkins, S.F., and Allen, F.E. (2010). Similarity and diversity in macrophage activation by nematodes, trematodes, and cestodes. F Biomed Biotechnol 2010, 262609.

    Article  PubMed  Google Scholar 

  29. Mylonas, K.F., Nair, M.G., Prieto-Lafuente, L., Paape, D., and Allen, F.E. (2009). Alternatively activated macrophages elicited by helminth infection can be reprogrammed to enable microbial killing. F Immunol 182, 3084–3094.

    Article  PubMed  CAS  Google Scholar 

  30. Allen, F.E., Lawrence, R.A., and Maizels, R.M. (1996). APC from mice harbouring the filarial nematode, Brugia malayi, prevent cellular proliferation but not cytokine production. Int Immunol 8, 143–151.

    Article  PubMed  CAS  Google Scholar 

  31. Loke, P., MacDonald, A.S., Robb, A., Maizels, R.M., and Allen, F.E. (2000b). Alternatively activated macrophages induced by nematode infection inhibit proliferation via cell-to-cell contact. Eur F Immunol 30, 2669–2678.

    Article  PubMed  CAS  Google Scholar 

  32. MacDonald, A.S., Maizels, R.M., Lawrence, R.A., Dransfield, I., and Allen, F.E. (1998). Requirement for in vivo production of IL-4, but not IL-10, in the induction of proliferative suppression by filarial parasites. F Immunol 160, 1304–1312.

    PubMed  CAS  Google Scholar 

  33. Cipriano, I.M., Mariano, M., Freymuller, E., and Carneiro, C.R. (2003). Murine macrophages cultured with IL-4 acquire a phenotype similar to that of epithelioid cells from granulomatous inflammation. Inflammation 27, 201–211.

    Article  PubMed  CAS  Google Scholar 

  34. Gratchev, A., Kzhyshkowska, F., Utikal, F., and Goerdt, S. (2005). Interleukin-4 and dexamethasone counterregulate extracellular matrix remodelling and phagocytosis in type-2 macrophages. Scand J Immunol 61, 10–17.

    Article  PubMed  CAS  Google Scholar 

  35. Wainszelbaum, M.F., Proctor, B.M., Pontow, S.E., Stahl, P.D., and Barbieri, M.A. (2006). IL-4/PGE2 induction of an enlarged early endosomal compartment in mouse macrophages is Rab5-dependent. Exp Cell Res 312, 2238–2251.

    Article  PubMed  CAS  Google Scholar 

  36. Wirth, F.F., Kierszenbaum, F., and Zlotnik, A. (1989). Effects of IL-4 on macrophage functions: increased uptake and killing of a protozoan parasite (Trypanosoma cruzi). Immunology 66, 296–301.

    PubMed  CAS  Google Scholar 

  37. Varin, A., Mukhopadhyay, S., Herbein, G., and Gordon, S. (2010). Alternative activation of macrophages by IL-4 impairs phagocytosis of pathogens but potentiates microbial-induced signalling and cytokine secretion. Blood 115, 353–362.

    Article  PubMed  CAS  Google Scholar 

  38. Martinez, F.O., Gordon, S., Locati, M., and Mantovani, A. (2006). Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. F Immunol 177, 7303–7311.

    PubMed  CAS  Google Scholar 

  39. Raes, G., Brys, L., Dahal, B.K., Brandt, F., Grooten, F., Brombacher, F., Vanham, G., Noel, W., Bogaert, P., Boonefaes, T., et al. (2005). Macrophage galactose-type C-type lectins as novel markers for alternatively activated macrophages elicited by parasitic infections and allergic airway inflammation. F Leukoc Biol 77, 321–327.

    Article  PubMed  CAS  Google Scholar 

  40. Erdely, A., Kepka-Lenhart, D., Clark, M., Zeidler-Erdely, P., Polfakovic, M., Calhoun, W.F., and Morris, S.M. Fr. (2006). Inhibition of phosphodiesterase 4 amplifies cytokine-dependent induction of arginase in macrophages. Am F Physiol Lung Cell Mol Physiol 290, L534–539.

    Article  PubMed  CAS  Google Scholar 

  41. Martinez, F.O., Helming, L., and Gordon, S. (2009). Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27, 451–483.

    Article  PubMed  CAS  Google Scholar 

  42. Semnani, R.T., Mahapatra, L., Moore, V., Sanprasert, V., and Nutman, T.B. (2011). Functional and phenotypic characteristics of alternative activation induced in human monocytes by interleukin-4 or the parasitic nematode Brugia malayi. Infect Immun 79, 3957–965.

    Article  PubMed  CAS  Google Scholar 

  43. Pechkovsky, D.V., Prasse, A., Kollert, F., Engel, K.M., Dentler, F., Luttmann, W., Friedrich, K., Muller-Quernheim, F., and Zissel, G. (2010). Alternatively activated alveolar macrophages in pulmonary fibrosis-mediator production and intracellular signal transduction. Clin Immunol 137, 89–101.

    Article  PubMed  CAS  Google Scholar 

  44. Xu, H., Zhang, G.X., Ciric, B., and Rostami, A. (2008). IDO: a double-edged sword for TH1/TH2 regulation. Immunol Lett 121, 1–6.

    Article  PubMed  CAS  Google Scholar 

  45. Allen, F.E., and Loke, P. (2001). Divergent roles for macrophages in lymphatic filariasis. Parasite Immunol 23, 345–352.

    Article  PubMed  CAS  Google Scholar 

  46. Reyes, F.L., Terrazas, C.A., Vera-Arias, L., and Terrazas, L.I. (2009). Differential response of antigen presenting cells from susceptible and resistant strains of mice to Taenia crassiceps infection. Infect Genet Evol 9, 1115–1127.

    Article  PubMed  CAS  Google Scholar 

  47. Hoppstadter, F., Diesel, B., Zarbock, R., Breinig, T., Monz, D., Koch, M., Meyerhans, A., Gortner, L., Lehr, C.M., Huwer, H., and Kiemer, A.K. (2010). Differential cell reaction upon Toll-like receptor 4 and 9 activation in human alveolar and lung interstitial macrophages. Respir Res 11, 124.

    Article  PubMed  Google Scholar 

  48. Fuarez, E., Nunez, C., Sada, E., Ellner, F.F., Schwander, S.K., and Torres, M. (2010). Differential expression of Toll-like receptors on human alveolar macrophages and autologous peripheral monocytes. Respir Res 11, 2.

    Article  PubMed  Google Scholar 

  49. Semnani, R.T., Keiser, P.B., Coulibaly, Y.I., Keita, F., Diallo, A.A., Traore, D., Diallo, D.A., Doumbo, O.K., Traore, S.F., Kubofcik, F., et al. (2006). Filaria-induced monocyte dysfunction and its reversal following treatment. Infect Immun 74, 4409–4417.

    Article  PubMed  CAS  Google Scholar 

  50. Babu, S., Blauvelt, C.P., Kumaraswami, V., and Nutman, T.B. (2005). Diminished expression and function of TLR in lymphatic filariasis: a novel mechanism of immune dysregulation. F Immunol 175, 1170–1176.

    PubMed  CAS  Google Scholar 

  51. Babu, S., Kumaraswami, V., and Nutman, T.B. (2009). Alternatively activated and immunoregulatory monocytes in human filarial infections. F Infect Dis 199, 1827–1837.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Intramural Research Program of the Division of Intramural Research, National Institute of Allergy and Infectious Diseases, and National Institutes of Health. We thank Brenda Rae Marshall, DPSS, NIAID, for editing.

Because I am a government employee and this is a government work, the work is in the public domain in the United States. Notwithstanding any other agreements, the NIH reserves the right to provide the work to PubMedCentral for display and use by the public, and PubMedCentral may tag or modify the work consistent with its customary practices. You can establish rights ­outside of the USA subfect to a government use license.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roshanak Tolouei Semnani Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Semnani, R.T. (2013). The Interaction Between Filarial Parasites and Human Monocyte/Macrophage Populations. In: Katsikis, P., Schoenberger, S., Pulendran, B. (eds) Crossroads Between Innate and Adaptive Immunity IV. Advances in Experimental Medicine and Biology, vol 785. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6217-0_6

Download citation

Publish with us

Policies and ethics