The Interaction Between Filarial Parasites and Human Monocyte/Macrophage Populations

  • Roshanak Tolouei SemnaniEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 785)


Lymphatic filariasis is a mafor tropical disease affecting approximately 120 million people worldwide. Patent infection, by and large, is clinically asymptomatic but is associated with the inability of T cells to proliferate or produce IFN-γ in response to parasite antigen. Monocyte dysfunction is one hypothesis felt to explain the lack of an antigen-specific T cell response. In fact, monocytes from filaria-infected individuals have been shown to be studded with internalized filarial antigens. Understanding how the phenotype and the function of these monocytes are altered through the internalization of these parasite antigens is one of the areas our laboratory has focused on. In fact, the existence and/or function of alternatively activated macrophages in murine models of filarial infections have been extensively studied. Whether this population of macrophages can be induced in human filarial infections is the main focus of this review.


Human Alternatively activated macrophages Filarial parasites Monocytes Lymphatic filariasis 



This work was supported by the Intramural Research Program of the Division of Intramural Research, National Institute of Allergy and Infectious Diseases, and National Institutes of Health. We thank Brenda Rae Marshall, DPSS, NIAID, for editing.

Because I am a government employee and this is a government work, the work is in the public domain in the United States. Notwithstanding any other agreements, the NIH reserves the right to provide the work to PubMedCentral for display and use by the public, and PubMedCentral may tag or modify the work consistent with its customary practices. You can establish rights ­outside of the USA subfect to a government use license.


  1. 1.
    World Health Organization. (2011). Global programme to eliminate lymphatic filariasis: progress report on mass drug administration, 2010. Wkly Epidemiol Rec 35, 377–388.Google Scholar
  2. 2.
    Nutman, T.B. (2001). Lymphatic filariasis: new insights and prospects for control. Curr Opin Infect Dis 14, 539–546.PubMedCrossRefGoogle Scholar
  3. 3.
    Maizels, R.M., Balic, A., Gomez-Escobar, N., Nair, M., Taylor, M.D., and Allen, F.E. (2004). Helminth parasites—masters of regulation. Immunol Rev 201, 89–116.PubMedCrossRefGoogle Scholar
  4. 4.
    Mahanty, S., Luke, H.E., Kumaraswami, V., Narayanan, P.R., Vifayshekaran, V., and Nutman, T.B. (1996). Stage-specific induction of cytokines regulates the immune response in lymphatic filariasis. Exp Parasitol 84, 282–290.PubMedCrossRefGoogle Scholar
  5. 5.
    King, C.L., Mahanty, S., Kumaraswami, V., Abrams, F.S., Regunathan, F., Fayaraman, K., Ottesen, E.A., and Nutman, T.B. (1993). Cytokine control of parasite-specific anergy in human lymphatic filariasis. Preferential induction of a regulatory T helper type 2 lymphocyte subset. F Clin Invest 92, 1667–1673.PubMedCrossRefGoogle Scholar
  6. 6.
    Loke, P., MacDonald, A.S., and Allen, F.E. (2000a). Antigen-presenting cells recruited by Brugia malayi induce Th2 differentiation of naive CD4+ T cells. Eur F Immunol 30, 1127–1135.PubMedCrossRefGoogle Scholar
  7. 7.
    Whelan, M., Harnett, M.M., Houston, K.M., Patel, V., Harnett, W., and Rigley, K.P. (2000). A filarial nematode-secreted product signals dendritic cells to acquire a phenotype that drives development of Th2 cells. F Immunol 164, 6453–6460.PubMedGoogle Scholar
  8. 8.
    Semnani, R.T., Sabzevari, H., Iyer, R., and Nutman, T.B. (2001). Filarial antigens impair the function of human dendritic cells during differentiation. Infect Immun 69, 5813–5822.PubMedCrossRefGoogle Scholar
  9. 9.
    Fenson, F.S., O’Connor, R., Osborne, F., and Devaney, E. (2002). Infection with Brugia microfilariae induces apoptosis of CD4+ T lymphocytes: a mechanism of immune unresponsiveness in filariasis. Eur F Immunol 32, 858–867.PubMedCrossRefGoogle Scholar
  10. 10.
    Semnani, R.T., Venugopal, P.G., Mahapatra, L., Skinner, F.A., Meylan, F., Chien, D., Dorward, D.W., Chaussabel, D., Siegel, R.M., and Nutman, T.B. (2008b). Induction of TRAIL- and TNF-α-dependent apoptosis in human monocyte-derived dendritic cells by microfilariae of Brugia malayi. F Immunol 181, 7081–7089.PubMedGoogle Scholar
  11. 11.
    Semnani, R.T., Venugopal, P.G., Leifer, C.A., Mostbock, S., Sabzevari, H., and Nutman, T.B. (2008a). Inhibition of TLR3 and TLR4 function and expression in human dendritic cells by helminth parasites. Blood 112, 1290–1298.PubMedCrossRefGoogle Scholar
  12. 12.
    Hume, D.A., Robinson, A.P., MacPherson, G.G., and Gordon, S. (1983). The mononuclear phagocyte system of the mouse defined by immunohistochemical localization of antigen F4/80. Relationship between macrophages, Langerhans cells, reticular cells, and dendritic cells in lymphoid and hematopoietic organs. F Exp Med 158, 1522–1536.PubMedCrossRefGoogle Scholar
  13. 13.
    Grage-Griebenow, E., Flad, H.D., and Ernst, M. (2001). Heterogeneity of human peripheral blood monocyte subsets. F Leukoc Biol 69, 11–20.PubMedGoogle Scholar
  14. 14.
    Stein, M., and Keshav, S. (1992). The versatility of macrophages. Clin Exp Allergy 22, 19–27.PubMedCrossRefGoogle Scholar
  15. 15.
    Valledor, A.F., Comalada, M., Santamaria-Babi, L.F., Lloberas, F., and Celada, A. (2010). Macrophage proinflammatory activation and deactivation: a question of balance. Adv Immunol 108, 1–20.PubMedCrossRefGoogle Scholar
  16. 16.
    Stein, M., Keshav, S., Harris, N., and Gordon, S. (1992). Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. F Exp Med 176, 287–292.PubMedCrossRefGoogle Scholar
  17. 17.
    Gordon, S. (2003). Alternative activation of macrophages. Nat Rev Immunol 3, 23–35.PubMedCrossRefGoogle Scholar
  18. 18.
    Dalton, D.K., Pitts-Meek, S., Keshav, S., Figari, I.S., Bradley, A., and Stewart, T.A. (1993). Multiple defects of immune cell function in mice with disrupted interferon-γ genes. Science 259, 1739–1742.PubMedCrossRefGoogle Scholar
  19. 19.
    Munder, M., Eichmann, K., and Modolell, M. (1998). Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: competitive regulation by CD4+ T cells correlates with Th1/Th2 phenotype. F Immunol 160, 5347–5354.PubMedGoogle Scholar
  20. 20.
    Munder, M., Mollinedo, F., Calafat, F., Canchado, F., Gil-Lamaignere, C., Fuentes, F.M., Luckner, C., Doschko, G., Soler, G., Eichmann, K., et al. (2005). Arginase I is constitutively expressed in human granulocytes and participates in fungicidal activity. Blood 105, 2549–2556.PubMedCrossRefGoogle Scholar
  21. 21.
    Modolell, M., Corraliza, I.M., Link, F., Soler, G., and Eichmann, K. (1995). Reciprocal regulation of the nitric oxide synthase/arginase balance in mouse bone marrow-derived macrophages by TH1 and TH2 cytokines. Eur F Immunol 25, 1101–1104.PubMedCrossRefGoogle Scholar
  22. 22.
    Kreider, T., Anthony, R.M., Urban, F.F. Fr., and Gause, W.C. (2007). Alternatively activated macrophages in helminth infections. Curr Opin Immunol 19, 448–453.PubMedCrossRefGoogle Scholar
  23. 23.
    Doyle, A.G., Herbein, G., Montaner, L.F., Minty, A.F., Caput, D., Ferrara, P., and Gordon, S. (1994). Interleukin-13 alters the activation state of murine macrophages in vitro: comparison with interleukin-4 and interferon-γ. Eur F Immunol 24, 1441–1445.PubMedCrossRefGoogle Scholar
  24. 24.
    Hesse, M., Modolell, M., La Flamme, A.C., Schito, M., Fuentes, F.M., Cheever, A.W., Pearce, E.F., and Wynn, T.A. (2001). Differential regulation of nitric oxide synthase-2 and arginase-1 by type 1/type 2 cytokines in vivo: granulomatous pathology is shaped by the pattern of L-arginine metabolism. F Immunol 167, 6533–6544.PubMedGoogle Scholar
  25. 25.
    Loke, P., Nair, M.G., Parkinson, F., Guiliano, D., Blaxter, M., and Allen, F.E. (2002). IL-4 dependent alternatively-activated macrophages have a distinctive in vivo gene expression phenotype. BMC Immunol 3, 7.PubMedCrossRefGoogle Scholar
  26. 26.
    Linehan, S.A., Coulson, P.S., Wilson, R.A., Mountford, A.P., Brombacher, F., Martinez-Pomares, L., and Gordon, S. (2003). IL-4 receptor signaling is required for mannose receptor expression by macrophages recruited to granulomata but not resident cells in mice infected with Schistosoma mansoni. Lab Invest 83, 1223–1231.PubMedCrossRefGoogle Scholar
  27. 27.
    Horsnell, W.G., and Brombacher, F. (2010). Genes associated with alternatively activated macrophages discretely regulate helminth infection and pathogenesis in experimental mouse models. Immunobiology 215, 704–708.PubMedCrossRefGoogle Scholar
  28. 28.
    Fenkins, S.F., and Allen, F.E. (2010). Similarity and diversity in macrophage activation by nematodes, trematodes, and cestodes. F Biomed Biotechnol 2010, 262609.PubMedCrossRefGoogle Scholar
  29. 29.
    Mylonas, K.F., Nair, M.G., Prieto-Lafuente, L., Paape, D., and Allen, F.E. (2009). Alternatively activated macrophages elicited by helminth infection can be reprogrammed to enable microbial killing. F Immunol 182, 3084–3094.PubMedCrossRefGoogle Scholar
  30. 30.
    Allen, F.E., Lawrence, R.A., and Maizels, R.M. (1996). APC from mice harbouring the filarial nematode, Brugia malayi, prevent cellular proliferation but not cytokine production. Int Immunol 8, 143–151.PubMedCrossRefGoogle Scholar
  31. 31.
    Loke, P., MacDonald, A.S., Robb, A., Maizels, R.M., and Allen, F.E. (2000b). Alternatively activated macrophages induced by nematode infection inhibit proliferation via cell-to-cell contact. Eur F Immunol 30, 2669–2678.PubMedCrossRefGoogle Scholar
  32. 32.
    MacDonald, A.S., Maizels, R.M., Lawrence, R.A., Dransfield, I., and Allen, F.E. (1998). Requirement for in vivo production of IL-4, but not IL-10, in the induction of proliferative suppression by filarial parasites. F Immunol 160, 1304–1312.PubMedGoogle Scholar
  33. 33.
    Cipriano, I.M., Mariano, M., Freymuller, E., and Carneiro, C.R. (2003). Murine macrophages cultured with IL-4 acquire a phenotype similar to that of epithelioid cells from granulomatous inflammation. Inflammation 27, 201–211.PubMedCrossRefGoogle Scholar
  34. 34.
    Gratchev, A., Kzhyshkowska, F., Utikal, F., and Goerdt, S. (2005). Interleukin-4 and dexamethasone counterregulate extracellular matrix remodelling and phagocytosis in type-2 macrophages. Scand J Immunol 61, 10–17.PubMedCrossRefGoogle Scholar
  35. 35.
    Wainszelbaum, M.F., Proctor, B.M., Pontow, S.E., Stahl, P.D., and Barbieri, M.A. (2006). IL-4/PGE2 induction of an enlarged early endosomal compartment in mouse macrophages is Rab5-dependent. Exp Cell Res 312, 2238–2251.PubMedCrossRefGoogle Scholar
  36. 36.
    Wirth, F.F., Kierszenbaum, F., and Zlotnik, A. (1989). Effects of IL-4 on macrophage functions: increased uptake and killing of a protozoan parasite (Trypanosoma cruzi). Immunology 66, 296–301.PubMedGoogle Scholar
  37. 37.
    Varin, A., Mukhopadhyay, S., Herbein, G., and Gordon, S. (2010). Alternative activation of macrophages by IL-4 impairs phagocytosis of pathogens but potentiates microbial-induced signalling and cytokine secretion. Blood 115, 353–362.PubMedCrossRefGoogle Scholar
  38. 38.
    Martinez, F.O., Gordon, S., Locati, M., and Mantovani, A. (2006). Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. F Immunol 177, 7303–7311.PubMedGoogle Scholar
  39. 39.
    Raes, G., Brys, L., Dahal, B.K., Brandt, F., Grooten, F., Brombacher, F., Vanham, G., Noel, W., Bogaert, P., Boonefaes, T., et al. (2005). Macrophage galactose-type C-type lectins as novel markers for alternatively activated macrophages elicited by parasitic infections and allergic airway inflammation. F Leukoc Biol 77, 321–327.PubMedCrossRefGoogle Scholar
  40. 40.
    Erdely, A., Kepka-Lenhart, D., Clark, M., Zeidler-Erdely, P., Polfakovic, M., Calhoun, W.F., and Morris, S.M. Fr. (2006). Inhibition of phosphodiesterase 4 amplifies cytokine-dependent induction of arginase in macrophages. Am F Physiol Lung Cell Mol Physiol 290, L534–539.PubMedCrossRefGoogle Scholar
  41. 41.
    Martinez, F.O., Helming, L., and Gordon, S. (2009). Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27, 451–483.PubMedCrossRefGoogle Scholar
  42. 42.
    Semnani, R.T., Mahapatra, L., Moore, V., Sanprasert, V., and Nutman, T.B. (2011). Functional and phenotypic characteristics of alternative activation induced in human monocytes by interleukin-4 or the parasitic nematode Brugia malayi. Infect Immun 79, 3957–965.PubMedCrossRefGoogle Scholar
  43. 43.
    Pechkovsky, D.V., Prasse, A., Kollert, F., Engel, K.M., Dentler, F., Luttmann, W., Friedrich, K., Muller-Quernheim, F., and Zissel, G. (2010). Alternatively activated alveolar macrophages in pulmonary fibrosis-mediator production and intracellular signal transduction. Clin Immunol 137, 89–101.PubMedCrossRefGoogle Scholar
  44. 44.
    Xu, H., Zhang, G.X., Ciric, B., and Rostami, A. (2008). IDO: a double-edged sword for TH1/TH2 regulation. Immunol Lett 121, 1–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Allen, F.E., and Loke, P. (2001). Divergent roles for macrophages in lymphatic filariasis. Parasite Immunol 23, 345–352.PubMedCrossRefGoogle Scholar
  46. 46.
    Reyes, F.L., Terrazas, C.A., Vera-Arias, L., and Terrazas, L.I. (2009). Differential response of antigen presenting cells from susceptible and resistant strains of mice to Taenia crassiceps infection. Infect Genet Evol 9, 1115–1127.PubMedCrossRefGoogle Scholar
  47. 47.
    Hoppstadter, F., Diesel, B., Zarbock, R., Breinig, T., Monz, D., Koch, M., Meyerhans, A., Gortner, L., Lehr, C.M., Huwer, H., and Kiemer, A.K. (2010). Differential cell reaction upon Toll-like receptor 4 and 9 activation in human alveolar and lung interstitial macrophages. Respir Res 11, 124.PubMedCrossRefGoogle Scholar
  48. 48.
    Fuarez, E., Nunez, C., Sada, E., Ellner, F.F., Schwander, S.K., and Torres, M. (2010). Differential expression of Toll-like receptors on human alveolar macrophages and autologous peripheral monocytes. Respir Res 11, 2.PubMedCrossRefGoogle Scholar
  49. 49.
    Semnani, R.T., Keiser, P.B., Coulibaly, Y.I., Keita, F., Diallo, A.A., Traore, D., Diallo, D.A., Doumbo, O.K., Traore, S.F., Kubofcik, F., et al. (2006). Filaria-induced monocyte dysfunction and its reversal following treatment. Infect Immun 74, 4409–4417.PubMedCrossRefGoogle Scholar
  50. 50.
    Babu, S., Blauvelt, C.P., Kumaraswami, V., and Nutman, T.B. (2005). Diminished expression and function of TLR in lymphatic filariasis: a novel mechanism of immune dysregulation. F Immunol 175, 1170–1176.PubMedGoogle Scholar
  51. 51.
    Babu, S., Kumaraswami, V., and Nutman, T.B. (2009). Alternatively activated and immunoregulatory monocytes in human filarial infections. F Infect Dis 199, 1827–1837.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Laboratory of Parasitic DiseasesNational Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUSA

Personalised recommendations