Skip to main content

A Brief Review on Photoanode, Electrolyte, and Photocathode Materials for Dye-Sensitized Solar Cell Based on Natural Dye Photosensitizers

  • Chapter
  • First Online:
Developments in Sustainable Chemical and Bioprocess Technology

Abstract

The dye-sensitized solar cell is a promising alternative for a new generation of photovoltaic devices due to its lightweight, flexibility, low cost, environmentally friendly materials. One important aspect of the DSSC is the potential of using dyes found in flowers, leaves, and fruits to be used as they are cheap and easily attained. However, the photovoltaic performances of dye-sensitized solar cells are greatly dependent on the CR which can be attributed to dye molecular size, semiconductor nanostructures properties, interaction between the semiconductor and dye, semiconductor/dye/electrolyte resistance, and dye aggregation (Narayan 2012). This paper briefly reviews recent developments in DSSC using natural dye photosensitizers, photoanode materials, various phases of the electrolytes, and nonmetal photocathode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bazargan, M. H., Byranvand, M. A., Kharat, A. N. (2010). A new counter electrode based on copper sheet for flexible dye sensitized solar cells. Chalcogenide Letters, 7(8), 515–519.

    Google Scholar 

  • Calogero, G., di Marco, G., Cazzanti, S., Caramori, S., Argazzi, R., di Carlo, A., et al. (2010). Efficient dye-sensitized solar cells using red turnip and purple wild sicilian prickly pear fruits. International Journal of Molecular Sciences, 11, 254–267.

    Article  PubMed  CAS  Google Scholar 

  • Chen, H.-Y., Kuang, D.-B., & Su, C.-Y. (2012). Hierarchically micro/nanostructured photoanode materials for dye-sensitized solar cells. Journal of Materials Chemistry, 22, 15475–15489.

    Article  CAS  Google Scholar 

  • Hernandez-Martinez, A. R., Estevez, M., Vargas, S., Quintanilla, F., Rodriguez, R. (2012). Natural pigment-based dye sensitized solar cells, Vol. 10. In :First International Congress on Instrumentation and Applied Sciences, Oct 26–29, Cancun, Quintana Roo, Mexico.

    Google Scholar 

  • Huang, W. C., Zhang, X. L., Huang, F. H., Zhang, Z. P., He, J. J., & Cheng, Y. B. (2012). An alternative flexible electrode for dye-sensitized solar cells. Journal of Nanoparticle Research, 14, 838. doi:10.1007/s11051-012-0838-0.

    Article  Google Scholar 

  • Jasim, K. E. (2012). Natural dye-sensitized solar cell based on nanocrystalline TiO2. Sains Malaysiana, 41, 1011–1016.

    CAS  Google Scholar 

  • Jayaweera, P. V. V., Perera, A. G. U., & Tennakone, K. (2008). Why Gratzel’s cell works so well. Inorganica Chimica Acta, 361(3), 707–711.

    Article  CAS  Google Scholar 

  • Jena, A., Mohanty, S. P., Kumar, P., Naduvath, J., Gondane, V., Lekha, P., et al. (2012). Dye sensitized solar cells: a review. Transactions of the Indian Ceramic Society, 71(1), 1–16.

    Article  CAS  Google Scholar 

  • Kelly, C. A., & Meyer, G. J. (2001). Excited state processes at sensitized nanocrystalline thin film semiconductor interfaces. Coordination Chemistry Reviews, 211, 295–315.

    Article  CAS  Google Scholar 

  • Lee, W. J., Ramasamy, E., Lee, D. Y., & Song, J. S. (2009). Efficient dye-sensitized solar cells with catalytic multiwall carbon nanotube counter electrodes. ACS applied materials & interfaces, 1, 1145–1149.

    Article  CAS  Google Scholar 

  • Lin, J. Y., LIAO, J. H., & WEI, T. C. (2010). Honeycomb-like CoS counter electrodes for transparent dye-sensitized solar cells. Electrochemical and Solid-State Letters, 14(4), D41–D44.

    Article  Google Scholar 

  • Meng, Q. B., Takahashi, K., Zhang, X. T., Sutanto, I., Rao, T. N., Sato, O., et al. (2003). Fabrication of an efficient solid-state dye-sensitized solar cell. Langmuir, 19(9), 3572–3574.

    Article  CAS  Google Scholar 

  • Narayan, M. R. (2012). Review: dye sensitized solar cells based on natural photosensitizers. Renewable and Sustainable Energy Reviews, 16(1), 208–215.

    CAS  Google Scholar 

  • O’Regan, B., & Gratzel, M. (1991). A low-cost, high efficiency solar cell based on dye- sensitized colloidal TiO2 films. Nature, 353, 737–740.

    Article  Google Scholar 

  • Sandquist, C., & McHale, J. L. (2011). Improved efficiency of betanin-based dye- sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 221, 90–97.

    Article  CAS  Google Scholar 

  • Saelim, N.-O., Magaraphan, R., & Sreethawong, T. (2011). Preparation of sol– gel TiO2/purified Na-bentonite composites and their photovoltaic application for natural dye-sensitized solar cells. Energy Conversion and Management, 52, 2815–2818.

    Article  CAS  Google Scholar 

  • Sellinger, A., Leijthens, T., Ding, I. K., Giovenzana, T., Bloking, J. T., & Mcgehee, M. D. (2012). Hole transport materials with low glass transition temperature and high solubility for application in solid-state dye-sentitized solar cells. ACS Nano, 6(2), 1455–1462.

    Article  PubMed  Google Scholar 

  • Senthil, T. S., Muthukumarasamy, N., Velauthapillai, D., Agilan, S., Thambidurai, M., & Balasundaraprabhu, R. (2011). Natural dye (cyanidin 3-O-glucoside) sensitized nanocrystalline TiO2 solar cell fabricated using liquid electrolyte/quasi-solid-state polymer electrolyte. Renewable Energy, 36, 2484–2488.

    Article  CAS  Google Scholar 

  • Wang, P., Dai, Q., & Zakeeruddin, S. M. (2004). Ambient temperature plastic crystal electrolyte for efficient, all-solid-state dye-sensitized solar cell. Journal of the American Chemical Society, 126, 13590.

    Article  PubMed  CAS  Google Scholar 

  • Wongcharee, K., Meeyoo, V., & Chavadej, S. (2007). Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers. Solar Energy Materials and Solar Cells, 91, 566–571.

    Article  CAS  Google Scholar 

  • Wu, J., Lan, Z., Hao, S., Li, P., Lin, J., Huang, M., Fang, L., & Huang, Y. (2008).Progress on the electrolyte for the dye sensitized solar cell. Pure Appl.Chem. 80(11), 2241–2258.

    Google Scholar 

  • Zhang, D. W., Li, X. D., Chen, S., Tao, F., Sun, Z., Yin, X. J., et al. (2011). Fabrication of double-walled carbon nanotube counter electrodes for dye- sensitized solar cells. Journal of Solid State Electrochemistry, 14, 1541–1546.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Universiti Malaysia Sabah and the Ministry of Higher Education, Malaysia, for supporting this research under the grant numbers SBK0025-TK-2012, ERGS0019-TK-1/2012, and ERGS0022-TK-1-2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. F. Mansa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mansa, R.F. et al. (2013). A Brief Review on Photoanode, Electrolyte, and Photocathode Materials for Dye-Sensitized Solar Cell Based on Natural Dye Photosensitizers. In: Pogaku, R., Bono, A., Chu, C. (eds) Developments in Sustainable Chemical and Bioprocess Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-6208-8_37

Download citation

Publish with us

Policies and ethics