Skip to main content

Kisspeptin Antagonists

  • Chapter
  • First Online:
Book cover Kisspeptin Signaling in Reproductive Biology

Abstract

Kisspeptin is now known to be an important regulator of the hypothalamic-­pituitary-gonadal axis and is the target of a range of regulators, such as steroid hormone feedback, nutritional and metabolic regulation. Kisspeptin binds to its cognate receptor, KISS1R (also called GPR54), on GnRH neurons and stimulates their activity, which in turn provides an obligatory signal for GnRH secretion—thus gating down-stream events supporting reproduction. The development of peripherally active kisspeptin antagonists could offer a unique therapeutic agent for treating hormone-dependent disorders of reproduction, including precocious puberty, endometriosis, and metastatic prostate cancer. The following chapter discusses the advances made in the search for both peptide and small molecule kisspeptin antagonists and their use in delineating the role of kisspeptin within the reproductive system. To date, four peptide antagonists and one small molecule antagonist have been designed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Centeno ML et al (2007) Hypothalamic gonadotrophin-releasing hormone expression in female monkeys with different sensitivity to stress. J Neuroendocrinol 19(8):594–604

    Article  PubMed  CAS  Google Scholar 

  2. Porkka-Heiskanen T et al (1997) Rapid photoperiod-induced increase in detectable GnRH mRNA-containing cells in Siberian hamster. Am J Physiol 273(6 Pt 2):R2032–R2039

    PubMed  CAS  Google Scholar 

  3. Millar RP (2005) GnRHs and GnRH receptors. Anim Reprod Sci 88(1–2):5–28

    Article  PubMed  CAS  Google Scholar 

  4. Popa SM, Clifton DK, Steiner RA (2008) The role of kisspeptins and GPR54 in the neuroendocrine regulation of reproduction. Annu Rev Physiol 70:213–238

    Article  PubMed  CAS  Google Scholar 

  5. Roseweir AK, Millar RP (2009) The role of kisspeptin in the control of gonadotrophin secretion. Hum Reprod Update 15(2):203–212

    Article  PubMed  CAS  Google Scholar 

  6. Seminara SB et al (2003) The GPR54 gene as a regulator of puberty. N Engl J Med 349(17):1614–1627

    Article  PubMed  CAS  Google Scholar 

  7. de Roux N et al (2003) Hypogonadotropic hypogonadism due to loss of function of the KiSS1-­derived peptide receptor GPR54. Proc Natl Acad Sci U S A 100(19):10972–10976

    Article  PubMed  Google Scholar 

  8. Smith JT et al (2005) Differential regulation of KiSS-1 mRNA expression by sex steroids in the brain of the male mouse. Endocrinology 146(7):2976–2984

    Article  PubMed  CAS  Google Scholar 

  9. Smith JT et al (2007) KiSS-1 messenger ribonucleic acid expression in the hypothalamus of the ewe is regulated by sex steroids and season. Endocrinology 148(3):1150–1157

    Article  PubMed  CAS  Google Scholar 

  10. Pompolo S et al (2006) Colocalization of kisspeptin and gonadotropin-releasing hormone in the ovine brain. Endocrinology 147(2):804–810

    Article  PubMed  CAS  Google Scholar 

  11. Shibata M et al (2007) Evidence that down regulation of hypothalamic KiSS-1 expression is involved in the negative feedback action of testosterone to regulate luteinising hormone secretion in the adult male rhesus monkey (Macaca mulatta). J Neuroendocrinol 19(6):432–438

    Article  PubMed  CAS  Google Scholar 

  12. Rance NE (2009) Menopause and the human hypothalamus: evidence for the role of kisspeptin/neurokinin B neurons in the regulation of estrogen negative feedback. Peptides 30(1):111–122

    Article  PubMed  CAS  Google Scholar 

  13. Smith JT et al (2005) Regulation of Kiss1 gene expression in the brain of the female mouse. Endocrinology 146(9):3686–3692

    Article  PubMed  CAS  Google Scholar 

  14. Adachi S et al (2007) Involvement of anteroventral periventricular metastin/kisspeptin neurons in estrogen positive feedback action on luteinizing hormone release in female rats. J Reprod Dev 53(2):367–378

    Article  PubMed  CAS  Google Scholar 

  15. Estrada KM et al (2006) Elevated KiSS-1 expression in the arcuate nucleus prior to the cyclic preovulatory gonadotrophin-releasing hormone/lutenising hormone surge in the ewe suggests a stimulatory role for kisspeptin in oestrogen-positive feedback. J Neuroendocrinol 18(10):806–809

    Article  PubMed  CAS  Google Scholar 

  16. Takino T et al (2003) Cleavage of metastasis suppressor gene product KiSS-1 protein/metastin by matrix metalloproteinases. Oncogene 22(30):4617–4626

    Article  PubMed  CAS  Google Scholar 

  17. Kotani M et al (2001) The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem 276(37):34631–34636

    Article  PubMed  CAS  Google Scholar 

  18. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289(5480):739–745; Am J Ophthalmol 130(6):865.

    Google Scholar 

  19. Orsini MJ et al (2007) Metastin (KiSS-1) mimetics identified from peptide structure-activity relationship-derived pharmacophores and directed small molecule database screening. J Med Chem 50(3):462–471

    Article  PubMed  CAS  Google Scholar 

  20. Gutierrez-Pascual E et al (2009) In vivo and in vitro structure-activity relationships and ­structural conformation of Kisspeptin-10-related peptides. Mol Pharmacol 76(1):58–67

    Article  PubMed  CAS  Google Scholar 

  21. Ohtaki T et al (2001) Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature 411(6837):613–617

    Article  PubMed  CAS  Google Scholar 

  22. Muir AI et al (2001) AXOR12, a novel human G protein-coupled receptor, activated by the peptide KiSS-1. J Biol Chem 276(31):28969–28975

    Article  PubMed  CAS  Google Scholar 

  23. Niida A et al (2006) Design and synthesis of downsized metastin (45-54) analogs with maintenance of high GPR54 agonistic activity. Bioorg Med Chem Lett 16(1):134–137

    Article  PubMed  CAS  Google Scholar 

  24. Kobayashi T et al (2010) Synthesis and structure-activity relationships of 2-acylamino-4,6-­diphenylpyridine derivatives as novel antagonists of GPR54. Bioorg Med Chem 18(11):3841–3859

    Article  PubMed  CAS  Google Scholar 

  25. Kobayashi T et al (2010) 2-Acylamino-4,6-diphenylpyridine derivatives as novel GPR54 antagonists with good brain exposure and in vivo efficacy for plasma LH level in male rats. Bioorg Med Chem 18(14):5157–5171

    Article  PubMed  CAS  Google Scholar 

  26. Roseweir AK et al (2009) Discovery of potent kisspeptin antagonists delineate physiological mechanisms of gonadotropin regulation. J Neurosci 29(12):3920–3929

    Article  PubMed  CAS  Google Scholar 

  27. Han SK et al (2005) Activation of gonadotropin-releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty. J Neurosci 25(49):11349–11356

    Article  PubMed  CAS  Google Scholar 

  28. Guerriero KA et al (2012) Developmental changes in GnRH release in response to kisspeptin agonist and antagonist in female rhesus monkeys (Macaca mulatta): implication for the mechanism of puberty. Endocrinology 153(2):825–836

    Article  PubMed  CAS  Google Scholar 

  29. Plant TM et al (1978) The arcuate nucleus and the control of gonadotropin and prolactin secretion in the female rhesus monkey (Macaca mulatta). Endocrinology 102(1):52–62

    Article  PubMed  CAS  Google Scholar 

  30. Li XF et al (2009) Kisspeptin signalling in the hypothalamic arcuate nucleus regulates GnRH pulse generator frequency in the rat. PLoS One 4(12):e8334

    Article  PubMed  Google Scholar 

  31. Pineda R et al (2010) Critical roles of kisspeptins in female puberty and preovulatory gonadotropin surges as revealed by a novel antagonist. Endocrinology 151(2):722–730

    Article  PubMed  CAS  Google Scholar 

  32. Navarro VM et al (2004) Advanced vaginal opening and precocious activation of the reproductive axis by KiSS-1 peptide, the endogenous ligand of GPR54. J Physiol 561(Pt 2):379–386

    Article  PubMed  CAS  Google Scholar 

  33. Franceschini I et al (2006) Kisspeptin immunoreactive cells of the ovine preoptic area and arcuate nucleus co-express estrogen receptor alpha. Neurosci Lett 401(3):225–230

    Article  PubMed  CAS  Google Scholar 

  34. Kinoshita M et al (2005) Involvement of central metastin in the regulation of preovulatory luteinizing hormone surge and estrous cyclicity in female rats. Endocrinology 146(10):4431–4436

    Article  PubMed  CAS  Google Scholar 

  35. Smith JT et al (2011) Kisspeptin is essential for the full preovulatory LH surge and stimulates GnRH release from the isolated ovine median eminence. Endocrinology 152(3):1001–1012

    Article  PubMed  CAS  Google Scholar 

  36. Dalkin AC et al (1989) The frequency of gonadotropin-releasing-hormone stimulation differentially regulates gonadotropin subunit messenger ribonucleic acid expression. Endocrinology 125(2):917–924

    Article  PubMed  CAS  Google Scholar 

  37. Smith JT et al (2006) KiSS-1 neurones are direct targets for leptin in the ob/ob mouse. J Neuroendocrinol 18(4):298–303

    Article  PubMed  CAS  Google Scholar 

  38. Cheng G et al (2010) The kisspeptin/neurokinin B/dynorphin (KNDy) cell population of the arcuate nucleus: sex differences and effects of prenatal testosterone in sheep. Endocrinology 151(1):301–311

    Article  PubMed  CAS  Google Scholar 

  39. Goodman RL et al (2007) Kisspeptin neurons in the arcuate nucleus of the ewe express both dynorphin A and neurokinin B. Endocrinology 148(12):5752–5760

    Article  PubMed  CAS  Google Scholar 

  40. Wakabayashi Y et al (2010) Neurokinin B and dynorphin A in kisspeptin neurons of the arcuate nucleus participate in generation of periodic oscillation of neural activity driving pulsatile gonadotropin-releasing hormone secretion in the goat. J Neurosci 30(8):3124–3132

    Article  PubMed  CAS  Google Scholar 

  41. Cejudo Roman A et al (2012) Analysis of the expression of neurokinin B, kisspeptin, and their cognate receptors NK(3)R and KISS1R in the human female genital tract. Fertil Steril 97(5):1213–1219

    Article  PubMed  CAS  Google Scholar 

  42. Durnerin CI et al (2008) Effects of recombinant LH treatment on folliculogenesis and responsiveness to FSH stimulation. Hum Reprod 23(2):421–426

    Article  PubMed  CAS  Google Scholar 

  43. Drakakis P et al (2009) Early hCG addition to rFSH for ovarian stimulation in IVF provides better results and the cDNA copies of the hCG receptor may be an indicator of successful stimulation. Reprod Biol Endocrinol 7:110

    Article  PubMed  Google Scholar 

  44. Millar RP et al (2010) Kisspeptin antagonists: unraveling the role of kisspeptin in reproductive physiology. Brain Res 1364:81–89

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert P. Millar M.Sc., Ph.D., M.R.C.Path., F.R.C.P.Path. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Roseweir, A.K., Millar, R.P. (2013). Kisspeptin Antagonists. In: Kauffman, A., Smith, J. (eds) Kisspeptin Signaling in Reproductive Biology. Advances in Experimental Medicine and Biology, vol 784. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6199-9_8

Download citation

Publish with us

Policies and ethics