Model Systems for Studying Kisspeptin Signalling: Mice and Cells

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 784)


Kisspeptins are a family of overlapping neuropeptides, encoded by the Kiss1 gene, that are required for activation and maintenance of the mammalian reproductive axis. Kisspeptins act within the hypothalamus to stimulate release of gonadotrophic releasing hormone and activation of the pituitary-gonadal axis. Robust model systems are required to dissect the regulatory mechanisms that control Kiss1 neuronal activity and to examine the molecular consequences of kisspeptin signalling. While studies in normal animals have been important in this, transgenic mice with targeted mutations affecting the kisspeptin signalling pathway have played a significant role in extending our understanding of kisspeptin physiology. Knock-out mice recapitulate the reproductive defects associated with mutations in humans and provide an experimentally tractable model system to interrogate regulatory feedback mechanisms. In addition, transgenic mice with cell-specific expression of modulator proteins such as the CRE recombinase or fluorescent reporter proteins such as GFP allow more sophisticated analyses such as cell or gene ablation or electrophysiological profiling. At a less complex level, immortalized cell lines have been useful for studying the role of kisspeptin in cell migration and metastasis and examining the intracellular signalling events associated with kisspeptin signalling.


Bacterial Artificial Chromosome GnRH Neuron Immortalize Cell Line Canonical Transient Receptor Potential Luteinizing Hormone Surge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank Takeda Cambridge for their continued support, Ann Silver for proof reading the review and the animal house staff for excellent husbandry. This work was supported by a grant from the BBSRC (BB/F01936X/1) and the Ford Physiology Fund (WHC).


  1. 1.
    Oakley AE, Clifton DK, Steiner RA (2009) Kisspeptin signaling in the brain. Endocr Rev 30(6):713–743PubMedCrossRefGoogle Scholar
  2. 2.
    d’Anglemont de Tassigny X, Colledge WH (2010) The role of kisspeptin signaling in reproduction. Physiology (Bethesda) 25(4):207–217CrossRefGoogle Scholar
  3. 3.
    Kotani M, Detheux M, Vandenbogaerde A, Communi D, Vanderwinden JM, Le Poul E et al (2001) The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem 276(37):34631–34636PubMedCrossRefGoogle Scholar
  4. 4.
    Muir AI, Chamberlain L, Elshourbagy NA, Michalovich D, Moore DJ, Calamari A et al (2001) AXOR12, a novel human G protein-coupled receptor, activated by the peptide KiSS-1. J Biol Chem 276(31):28969–28975PubMedCrossRefGoogle Scholar
  5. 5.
    Ohtaki T, Shintani Y, Honda S, Matsumoto H, Hori A, Kanehashi K et al (2001) Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature 411(6837):613–617PubMedCrossRefGoogle Scholar
  6. 6.
    Mikkelsen JD, Simonneaux V (2009) The neuroanatomy of the kisspeptin system in the mammalian brain. Peptides 30(1):26–33PubMedCrossRefGoogle Scholar
  7. 7.
    Clarkson J, Herbison AE (2006) Postnatal development of kisspeptin neurons in mouse hypothalamus; sexual dimorphism and projections to gonadotropin-releasing hormone neurons. Endocrinology 147(12):5817–5825PubMedCrossRefGoogle Scholar
  8. 8.
    Messager S, Chatzidaki EE, Ma D, Hendrick AG, Zahn D, Dixon J et al (2005) Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54. Proc Natl Acad Sci U S A 102(5):1761–1766PubMedCrossRefGoogle Scholar
  9. 9.
    Herbison AE, de Tassigny X, Doran J, Colledge WH (2010) Distribution and postnatal development of Gpr54 gene expression in mouse brain and gonadotropin-releasing hormone neurons. Endocrinology 151(1):312–321PubMedCrossRefGoogle Scholar
  10. 10.
    Gottsch ML, Cunningham MJ, Smith JT, Popa SM, Acohido BV, Crowley WF et al (2004) A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology 145(9):4073–4077PubMedCrossRefGoogle Scholar
  11. 11.
    Navarro VM, Castellano JM, Fernandez-Fernandez R, Barreiro ML, Roa J, Sanchez-Criado JE et al (2004) Developmental and hormonally regulated messenger ribonucleic acid expression of KiSS-1 and its putative receptor, GPR54, in rat hypothalamus and potent luteinizing hormone-releasing activity of KiSS-1 peptide. Endocrinology 145(10):4565–4574PubMedCrossRefGoogle Scholar
  12. 12.
    d’Anglemont de Tassigny X, Fagg LA, Carlton MB, Colledge WH (2008) Kisspeptin can stimulate gonadotropin-releasing hormone (GnRH) release by a direct action at GnRH nerve terminals. Endocrinology 149(8):3926–3932PubMedCrossRefGoogle Scholar
  13. 13.
    Clarkson J, d’Anglemont de Tassigny X, Colledge WH, Caraty A, Herbison AE (2009) Distribution of kisspeptin neurones in the adult female mouse brain. J Neuroendocrinol 21(8):673–682PubMedCrossRefGoogle Scholar
  14. 14.
    Kauffman AS, Gottsch ML, Roa J, Byquist AC, Crown A, Clifton DK et al (2007) Sexual ­differentiation of Kiss1 gene expression in the brain of the rat. Endocrinology 148(4):1774–1783PubMedCrossRefGoogle Scholar
  15. 15.
    Smith JT, Cunningham MJ, Rissman EF, Clifton DK, Steiner RA (2005) Regulation of Kiss1 gene expression in the brain of the female mouse. Endocrinology 146(9):3686–3692PubMedCrossRefGoogle Scholar
  16. 16.
    Adachi S, Yamada S, Takatsu Y, Matsui H, Kinoshita M, Takase K et al (2007) Involvement of anteroventral periventricular metastin/kisspeptin neurons in estrogen positive feedback action on luteinizing hormone release in female rats. J Reprod Dev 53(2):367–378PubMedCrossRefGoogle Scholar
  17. 17.
    Clarkson J, d’Anglemont de Tassigny X, Moreno AS, Colledge WH, Herbison AE (2008) Kisspeptin-GPR54 signaling is essential for preovulatory gonadotropin-releasing hormone neuron activation and the luteinizing hormone surge. J Neurosci 28(35):8691–8697PubMedCrossRefGoogle Scholar
  18. 18.
    Smith JT, Dungan HM, Stoll EA, Gottsch ML, Braun RE, Eacker SM et al (2005) Differential regulation of KiSS-1 mRNA expression by sex steroids in the brain of the male mouse. Endocrinology 146(7):2976–2984PubMedCrossRefGoogle Scholar
  19. 19.
    Navarro VM (2012) New insights into the control of pulsatile GnRH release: the role of kiss1/neurokinin B neurons. Front Endocrinol (Lausanne) 3:48Google Scholar
  20. 20.
    Lehman MN, Coolen LM, Goodman RL (2010) Minireview: kisspeptin/neurokinin B/dynorphin (KNDy) cells of the arcuate nucleus: a central node in the control of gonadotropin-releasing hormone secretion. Endocrinology 151(8):3479–3489PubMedCrossRefGoogle Scholar
  21. 21.
    Navarro VM, Gottsch ML, Wu M, Garcia-Galiano D, Hobbs SJ, Bosch MA et al (2011) Regulation of NKB pathways and their roles in the control of Kiss1 neurons in the arcuate nucleus of the male mouse. Endocrinology 152(11):4265–4275PubMedCrossRefGoogle Scholar
  22. 22.
    Colledge WH (2009) Transgenic mouse models to study Gpr54/kisspeptin physiology. Peptides 30(1):34–41PubMedCrossRefGoogle Scholar
  23. 23.
    Colledge WH, Mei H, d’Anglemont de Tassigny X (2010) Mouse models to study the central regulation of puberty. Mol Cell Endocrinol 324(1–2):12–20PubMedCrossRefGoogle Scholar
  24. 24.
    Capecchi MR (2005) Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat Rev Genet 6(6):507–512PubMedCrossRefGoogle Scholar
  25. 25.
    Glaser S, Anastassiadis K, Stewart AF (2005) Current issues in mouse genome engineering. Nat Genet 37(11):1187–1193PubMedCrossRefGoogle Scholar
  26. 26.
    Seminara SB, Messager S, Chatzidaki EE, Thresher RR, Acierno JS Jr, Shagoury JK et al (2003) The GPR54 gene as a regulator of puberty. N Engl J Med 349(17):1614–1627PubMedCrossRefGoogle Scholar
  27. 27.
    Funes S, Hedrick JA, Vassileva G, Markowitz L, Abbondanzo S, Golovko A et al (2003) The KiSS-1 receptor GPR54 is essential for the development of the murine reproductive system. Biochem Biophys Res Commun 312(4):1357–1363PubMedCrossRefGoogle Scholar
  28. 28.
    Garcia-Galiano D, van Ingen Schenau D, Leon S, Krajnc-Franken MA, Manfredi-Lozano M, Romero-Ruiz A et al (2012) Kisspeptin signaling is indispensable for neurokinin B, but not glutamate, stimulation of gonadotropin secretion in mice. Endocrinology 153(1):316–328PubMedCrossRefGoogle Scholar
  29. 29.
    Lapatto R, Pallais JC, Zhang D, Chan YM, Mahan A, Cerrato F et al (2007) Kiss1-/- mice exhibit more variable hypogonadism than Gpr54-/- mice. Endocrinology 148(10):4927–4936PubMedCrossRefGoogle Scholar
  30. 30.
    Dungan HM, Gottsch ML, Zeng H, Gragerov A, Bergmann JE, Vassilatis DK et al (2007) The role of kisspeptin-GPR54 signaling in the tonic regulation and surge release of gonadotropin-releasing hormone/luteinizing hormone. J Neurosci 27(44):12088–12095PubMedCrossRefGoogle Scholar
  31. 31.
    Kauffman AS, Park JH, McPhie-Lalmansingh AA, Gottsch ML, Bodo C, Hohmann JG et al (2007) The kisspeptin receptor GPR54 is required for sexual differentiation of the brain and behavior. J Neurosci 27(33):8826–8835PubMedCrossRefGoogle Scholar
  32. 32.
    d’Anglemont de Tassigny X, Fagg LA, Dixon JP, Day K, Leitch HG, Hendrick AG et al (2007) Hypogonadotropic hypogonadism in mice lacking a functional Kiss1 gene. Proc Natl Acad Sci U S A 104(25):10714–10719PubMedCrossRefGoogle Scholar
  33. 33.
    Matsuda T, Cepko CL (2007) Controlled expression of transgenes introduced by in vivo electroporation. Proc Natl Acad Sci U S A 104(3):1027–1032PubMedCrossRefGoogle Scholar
  34. 34.
    Franceschini I, Lomet D, Cateau M, Delsol G, Tillet Y, Caraty A (2006) Kisspeptin immunoreactive cells of the ovine preoptic area and arcuate nucleus co-express estrogen receptor alpha. Neurosci Lett 401(3):225–230PubMedCrossRefGoogle Scholar
  35. 35.
    Mei H, Walters C, Carter R, Colledge WH (2011) Gpr54-/- mice show more pronounced defects in spermatogenesis than Kiss1-/- mice and improved spermatogenesis with age when exposed to dietary phytoestrogens. Reproduction 141(3):357–366PubMedCrossRefGoogle Scholar
  36. 36.
    Chan YM, Broder-Fingert S, Wong KM, Seminara SB (2009) Kisspeptin/Gpr54-independent gonadotrophin-releasing hormone activity in Kiss1 and Gpr54 mutant mice. J Neuroendocrinol 21(12):1015–1023PubMedCrossRefGoogle Scholar
  37. 37.
    Pampillo M, Camuso N, Taylor JE, Szereszewski JM, Ahow MR, Zajac M et al (2009) Regulation of GPR54 signaling by GRK2 and {beta}-arrestin. Mol Endocrinol 23(12):2060–2074PubMedCrossRefGoogle Scholar
  38. 38.
    d’Anglemont de Tassigny X, Ackroyd KJ, Chatzidaki EE, Colledge WH (2010) Kisspeptin signaling is required for peripheral but not central stimulation of gonadotropin-releasing ­hormone neurons by NMDA. J Neurosci 30(25):8581–8590PubMedCrossRefGoogle Scholar
  39. 39.
    Mayer C, Boehm U (2011) Female reproductive maturation in the absence of kisspeptin/GPR54 signaling. Nat Neurosci 14(6):704–710PubMedCrossRefGoogle Scholar
  40. 40.
    Wen S, Gotze IN, Mai O, Schauer C, Leinders-Zufall T, Boehm U (2011) Genetic identification of GnRH receptor neurons: a new model for studying neural circuits underlying reproductive physiology in the mouse brain. Endocrinology 152(4):1515–1526PubMedCrossRefGoogle Scholar
  41. 41.
    Irwig MS, Fraley GS, Smith JT, Acohido BV, Popa SM, Cunningham MJ et al (2004) Kisspeptin activation of gonadotropin releasing hormone neurons and regulation of KiSS-1 mRNA in the male rat. Neuroendocrinology 80(4):264–272PubMedCrossRefGoogle Scholar
  42. 42.
    Gottsch ML, Popa SM, Lawhorn JK, Qiu J, Tonsfeldt KJ, Bosch MA et al (2011) Molecular properties of Kiss1 neurons in the arcuate nucleus of the mouse. Endocrinology 152(11):4298–4309PubMedCrossRefGoogle Scholar
  43. 43.
    Mayer C, Acosta-Martinez M, Dubois SL, Wolfe A, Radovick S, Boehm U et al (2010) Timing and completion of puberty in female mice depend on estrogen receptor alpha-­signaling in kisspeptin neurons. Proc Natl Acad Sci U S A 107(52):22693–22698PubMedCrossRefGoogle Scholar
  44. 44.
    Cravo RM, Margatho LO, Osborne-Lawrence S, Donato J Jr, Atkin S, Bookout AL et al (2011) Characterization of Kiss1 neurons using transgenic mouse models. Neuroscience 173:37–56PubMedCrossRefGoogle Scholar
  45. 45.
    Ahima RS (2005) Central actions of adipocyte hormones. Trends Endocrinol Metab 16(7):307–313PubMedCrossRefGoogle Scholar
  46. 46.
    Ahima RS, Dushay J, Flier SN, Prabakaran D, Flier JS (1997) Leptin accelerates the onset of puberty in normal female mice. J Clin Invest 99(3):391–395PubMedCrossRefGoogle Scholar
  47. 47.
    Carro E, Pinilla L, Seoane LM, Considine RV, Aguilar E, Casanueva FF et al (1997) Influence of endogenous leptin tone on the estrous cycle and luteinizing hormone pulsatility in female rats. Neuroendocrinology 66(6):375–377PubMedCrossRefGoogle Scholar
  48. 48.
    Chehab FF, Lim ME, Lu R (1996) Correction of the sterility defect in homozygous obese female mice by treatment with the human recombinant leptin. Nat Genet 12(3):318–320PubMedCrossRefGoogle Scholar
  49. 49.
    Mounzih K, Lu R, Chehab FF (1997) Leptin treatment rescues the sterility of genetically obese ob/ob males. Endocrinology 138(3):1190–1193PubMedCrossRefGoogle Scholar
  50. 50.
    Donato J Jr, Cravo RM, Frazao R, Gautron L, Scott MM, Lachey J et al (2011) Leptin’s effect on puberty in mice is relayed by the ventral premammillary nucleus and does not require signaling in Kiss1 neurons. J Clin Invest 121(1):355–368PubMedCrossRefGoogle Scholar
  51. 51.
    Herbison AE, Porteous R, Pape JR, Mora JM, Hurst PR (2008) Gonadotropin-releasing ­hormone neuron requirements for puberty, ovulation, and fertility. Endocrinology 149(2):597–604PubMedCrossRefGoogle Scholar
  52. 52.
    Srinivas S, Watanabe T, Lin CS, William CM, Tanabe Y, Jessell TM et al (2001) Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol 1:4PubMedCrossRefGoogle Scholar
  53. 53.
    Suter KJ, Song WJ, Sampson TL, Wuarin JP, Saunders JT, Dudek FE et al (2000) Genetic targeting of green fluorescent protein to gonadotropin-releasing hormone neurons: characterization of whole-cell electrophysiological properties and morphology. Endocrinology 141(1):412–419PubMedCrossRefGoogle Scholar
  54. 54.
    Spergel DJ, Kruth U, Shimshek DR, Sprengel R, Seeburg PH (2001) Using reporter genes to label selected neuronal populations in transgenic mice for gene promoter, anatomical, and physiological studies. Prog Neurobiol 63(6):673–686PubMedCrossRefGoogle Scholar
  55. 55.
    Han SK, Gottsch ML, Lee KJ, Popa SM, Smith JT, Jakawich SK et al (2005) Activation of gonadotropin-releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty. J Neurosci 25(49):11349–11356PubMedCrossRefGoogle Scholar
  56. 56.
    Liu X, Lee K, Herbison AE (2008) Kisspeptin excites gonadotropin-releasing hormone ­neurons through a phospholipase C/calcium-dependent pathway regulating multiple ion channels. Endocrinology 149(9):4605–4614PubMedCrossRefGoogle Scholar
  57. 57.
    Pielecka-Fortuna J, Chu Z, Moenter SM (2008) Kisspeptin acts directly and indirectly to increase gonadotropin-releasing hormone neuron activity and its effects are modulated by estradiol. Endocrinology 149(4):1979–1986PubMedCrossRefGoogle Scholar
  58. 58.
    Pielecka-Fortuna J, Defazio RA, Moenter SM (2011) Voltage-gated potassium currents are targets of diurnal changes in estradiol feedback regulation and kisspeptin action on gonadotropin-releasing hormone neurons in mice. Biol Reprod 85(5):987–995PubMedCrossRefGoogle Scholar
  59. 59.
    Zhang C, Roepke TA, Kelly MJ, Ronnekleiv OK (2008) Kisspeptin depolarizes gonadotropin-releasing hormone neurons through activation of TRPC-like cationic channels. J Neurosci 28(17):4423–4434PubMedCrossRefGoogle Scholar
  60. 60.
    Zhang XB, Spergel DJ (2012) Kisspeptin inhibits high-voltage activated ca2+ channels in GnRH neurons via multiple ca(2+) influx and release pathways. Neuroendocrinology 96(1):68–80PubMedCrossRefGoogle Scholar
  61. 61.
    Chu Z, Tomaiuolo M, Bertram R, Moenter SM (2012) Two types of burst firing in gonadotropin-releasing hormone (GnRH) neurones. J Neuroendocrinol 24(7):1065–1077PubMedCrossRefGoogle Scholar
  62. 62.
    Castano JP, Martinez-Fuentes AJ, Gutierrez-Pascual E, Vaudry H, Tena-Sempere M, Malagon MM (2009) Intracellular signaling pathways activated by kisspeptins through GPR54: do multiple signals underlie function diversity? Peptides 30(1):10–15PubMedCrossRefGoogle Scholar
  63. 63.
    Stafford LJ, Xia C, Ma W, Cai Y, Liu M (2002) Identification and characterization of mouse metastasis-suppressor KiSS1 and its G-protein-coupled receptor. Cancer Res 62(19):5399–5404PubMedGoogle Scholar
  64. 64.
    Roseweir AK, Katz AA, Millar RP (2012) Kisspeptin-10 inhibits cell migration in vitro via a receptor-GSK3 beta-FAK feedback loop in HTR8SVneo cells. Placenta 33(5):408–415PubMedCrossRefGoogle Scholar
  65. 65.
    Zajac M, Law J, Cvetkovic DD, Pampillo M, McColl L, Pape C et al (2011) GPR54 (KISS1R) transactivates EGFR to promote breast cancer cell invasiveness. PLoS One 6(6):e21599PubMedCrossRefGoogle Scholar
  66. 66.
    Lee JH, Miele ME, Hicks DJ, Phillips KK, Trent JM, Weissman BE et al (1996) KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. J Natl Cancer Inst 88(23):1731–1737PubMedCrossRefGoogle Scholar
  67. 67.
    Daugherty RL, Gottardi CJ (2007) Phospho-regulation of Beta-catenin adhesion and signaling functions. Physiology (Bethesda) 22:303–309CrossRefGoogle Scholar
  68. 68.
    Jiang Y, Berk M, Singh LS, Tan H, Yin L, Powell CT et al (2005) KiSS1 suppresses metastasis in human ovarian cancer via inhibition of protein kinase C alpha. Clin Exp Metastasis 22(5):369–376PubMedCrossRefGoogle Scholar
  69. 69.
    Harrington EO, Loffler J, Nelson PR, Kent KC, Simons M, Ware JA (1997) Enhancement of migration by protein kinase Calpha and inhibition of proliferation and cell cycle progression by protein kinase Cdelta in capillary endothelial cells. J Biol Chem 272(11):7390–7397PubMedCrossRefGoogle Scholar
  70. 70.
    Thomason HA, Cooper NH, Ansell DM, Chiu M, Merrit AJ, Hardman MJ et al (2012) Direct evidence that PKCalpha positively regulates wound re-epithelialisation: correlation with changes in desmosomal adhesiveness. J Pathol 227(3):346–356PubMedCrossRefGoogle Scholar
  71. 71.
    O’Neill AK, Gallegos LL, Justilien V, Garcia EL, Leitges M, Fields AP et al (2011) Protein kinase Calpha promotes cell migration through a PDZ-dependent interaction with its novel substrate discs large homolog 1 (DLG1). J Biol Chem 286(50):43559–43568PubMedCrossRefGoogle Scholar
  72. 72.
    Bilban M, Ghaffari-Tabrizi N, Hintermann E, Bauer S, Molzer S, Zoratti C et al (2004) Kisspeptin-10, a KiSS-1/metastin-derived decapeptide, is a physiological invasion inhibitor of primary human trophoblasts. J Cell Sci 117(pt 8):1319–1328PubMedCrossRefGoogle Scholar
  73. 73.
    Yoshioka K, Ohno Y, Horiguchi Y, Ozu C, Namiki K, Tachibana M (2008) Effects of a KiSS-1 peptide, a metastasis suppressor gene, on the invasive ability of renal cell carcinoma cells through a modulation of a matrix metalloproteinase 2 expression. Life Sci 83(9–10):332–338PubMedCrossRefGoogle Scholar
  74. 74.
    Navenot JM, Wang Z, Chopin M, Fujii N, Peiper SC (2005) Kisspeptin-10-induced signaling of GPR54 negatively regulates chemotactic responses mediated by CXCR4: a potential mechanism for the metastasis suppressor activity of kisspeptins. Cancer Res 65(22):10450–10456PubMedCrossRefGoogle Scholar
  75. 75.
    Mellon PL, Windle JJ, Goldsmith PC, Padula CA, Roberts JL, Weiner RI (1990) Immortalization of hypothalamic GnRH neurons by genetically targeted tumorigenesis. Neuron 5(1):1–10PubMedCrossRefGoogle Scholar
  76. 76.
    Radovick S, Wray S, Lee E, Nicols DK, Nakayama Y, Weintraub BD et al (1991) Migratory arrest of gonadotropin-releasing hormone neurons in transgenic mice. Proc Natl Acad Sci U S A 88(8):3402–3406PubMedCrossRefGoogle Scholar
  77. 77.
    Zhen S, Dunn IC, Wray S, Liu Y, Chappell PE, Levine JE et al (1997) An alternative gonadotropin-releasing hormone (GnRH) RNA splicing product found in cultured GnRH neurons and mouse hypothalamus. J Biol Chem 272(19):12620–12625PubMedCrossRefGoogle Scholar
  78. 78.
    Wolfe A, Ng Y, Divall SA, Singh SP, Radovick S (2008) Development of an immortalised, post-pubertal gonadotrophin-releasing hormone neuronal cell line. J Neuroendocrinol 20(9):1029–1037PubMedCrossRefGoogle Scholar
  79. 79.
    Salvi R, Castillo E, Voirol MJ, Glauser M, Rey JP, Gaillard RC et al (2006) Gonadotropin-releasing hormone-expressing neurons immortalized conditionally are activated by insulin: implication of the mitogen-activated protein kinase pathway. Endocrinology 147(2):816–826PubMedCrossRefGoogle Scholar
  80. 80.
    Quaynor S, Hu L, Leung PK, Feng H, Mores N, Krsmanovic LZ et al (2007) Expression of a functional GPR54-Kisspeptin autoregulatory system in hypothalamic GnRH neurons. Mol Endocrinol 21(12):3062–3070PubMedCrossRefGoogle Scholar
  81. 81.
    Tonsfeldt KJ, Goodall CP, Latham KL, Chappell PE (2011) Oestrogen induces rhythmic expression of the kisspeptin-1 receptor GPR54 in hypothalamic gonadotrophin-releasing hormone-secreting GT1-7 cells. J Neuroendocrinol 23(9):823–830PubMedCrossRefGoogle Scholar
  82. 82.
    Novaira HJ, Ng Y, Wolfe A, Radovick S (2009) Kisspeptin increases GnRH mRNA ­expression and secretion in GnRH secreting neuronal cell lines. Mol Cell Endocrinol 311(1–2):126–134PubMedCrossRefGoogle Scholar
  83. 83.
    Jacobi JS, Martin C, Nava G, Jeziorski MC, Clapp C, Martinez de la Escalera G (2007) 17-Beta-estradiol directly regulates the expression of adrenergic receptors and kisspeptin/GPR54 system in GT1-7 GnRH neurons. Neuroendocrinology 86(4):260–269PubMedCrossRefGoogle Scholar
  84. 84.
    Martinez de la Escalera G, Choi AL, Weiner RI (1992) Generation and synchronization of gonadotropin-releasing hormone (GnRH) pulses: intrinsic properties of the GT1-1 GnRH neuronal cell line. Proc Natl Acad Sci U S A 89(5):1852–1855PubMedCrossRefGoogle Scholar
  85. 85.
    Krsmanovic LZ, Stojilkovic SS, Merelli F, Dufour SM, Virmani MA, Catt KJ (1992) Calcium signaling and episodic secretion of gonadotropin-releasing hormone in hypothalamic ­neurons. Proc Natl Acad Sci U S A 89(18):8462–8466PubMedCrossRefGoogle Scholar
  86. 86.
    Mueller JK, Dietzel A, Lomniczi A, Loche A, Tefs K, Kiess W et al (2011) Transcriptional regulation of the human KiSS1 gene. Mol Cell Endocrinol 342(1–2):8–19PubMedCrossRefGoogle Scholar
  87. 87.
    Ozcan M, Alcin E, Ayar A, Yilmaz B, Sandal S, Kelestimur H (2011) Kisspeptin-10 elicits triphasic cytosolic calcium responses in immortalized GT1-7 GnRH neurones. Neurosci Lett 492(1):55–58PubMedCrossRefGoogle Scholar
  88. 88.
    Li D, Mitchell D, Luo J, Yi Z, Cho SG, Guo J et al (2007) Estrogen regulates KiSS1 gene expression through estrogen receptor alpha and SP protein complexes. Endocrinology 148(10):4821–4828PubMedCrossRefGoogle Scholar
  89. 89.
    Mastronardi C, Smiley GG, Raber J, Kusakabe T, Kawaguchi A, Matagne V et al (2006) Deletion of the Ttf1 gene in differentiated neurons disrupts female reproduction without impairing basal ganglia function. J Neurosci 26(51):13167–13179PubMedCrossRefGoogle Scholar
  90. 90.
    Belsham DD, Cai F, Cui H, Smukler SR, Salapatek AM, Shkreta L (2004) Generation of a phenotypic array of hypothalamic neuronal cell models to study complex neuroendocrine disorders. Endocrinology 145(1):393–400PubMedCrossRefGoogle Scholar
  91. 91.
    Gingerich S, Wang X, Lee PK, Dhillon SS, Chalmers JA, Koletar MM et al (2009) The generation of an array of clonal, immortalized cell models from the rat hypothalamus: analysis of melatonin effects on kisspeptin and gonadotropin-inhibitory hormone neurons. Neuroscience 162(4):1134–1140PubMedCrossRefGoogle Scholar
  92. 92.
    Mayer CM, Fick LJ, Gingerich S, Belsham DD (2009) Hypothalamic cell lines to investigate neuroendocrine control mechanisms. Front Neuroendocrinol 30(3):405–423PubMedCrossRefGoogle Scholar
  93. 93.
    Goodman RL, Lehman MN, Smith JT, Coolen LM, de Oliveira CV, Jafarzadehshirazi MR et al (2007) Kisspeptin neurons in the arcuate nucleus of the ewe express both dynorphin A and neurokinin B. Endocrinology 148(12):5752–5760PubMedCrossRefGoogle Scholar
  94. 94.
    Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V et al (2011) A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474(7351):337–342PubMedCrossRefGoogle Scholar
  95. 95.
    Ringwald M, Iyer V, Mason JC, Stone KR, Tadepally HD, Kadin JA et al (2011) The IKMC web portal: a central point of entry to data and resources from the International Knockout Mouse Consortium. Nucleic Acids Res 39(Database issue):D849–D855PubMedCrossRefGoogle Scholar
  96. 96.
    Testa G, Schaft J, van der Hoeven F, Glaser S, Anastassiadis K, Zhang Y et al (2004) A ­reliable lacZ expression reporter cassette for multipurpose, knockout-first alleles. Genesis 38(3):151–158PubMedCrossRefGoogle Scholar
  97. 97.
    DeFalco J, Tomishima M, Liu H, Zhao C, Cai X, Marth JD et al (2001) Virus-assisted ­mapping of neural inputs to a feeding center in the hypothalamus. Science 291(5513):2608–2613PubMedCrossRefGoogle Scholar
  98. 98.
    Curtis AE, Murphy KG, Chaudhri OB, Ramachandran R, Young AM, Waxman J et al (2010) Kisspeptin is released from human prostate cancer cell lines but plasma kisspeptin is not elevated in patients with prostate cancer. Oncol Rep 23(6):1729–1734PubMedGoogle Scholar
  99. 99.
    Hauge-Evans AC, Richardson CC, Milne HM, Christie MR, Persaud SJ, Jones PM (2006) A role for kisspeptin in islet function. Diabetologia 49(9):2131–2135PubMedCrossRefGoogle Scholar
  100. 100.
    Mitchell DC, Abdelrahim M, Weng J, Stafford LJ, Safe S, Bar-Eli M et al (2006) Regulation of KiSS-1 metastasis suppressor gene expression in breast cancer cells by direct interaction of transcription factors activator protein-2alpha and specificity protein-1. J Biol Chem 281(1):51–58PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  1. 1.Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
  2. 2.Takeda CambridgeCambridgeUK
  3. 3.Department of Opthalmology, Cornea DivisionUniversity of CaliforniaLos AngelesUSA

Personalised recommendations