Beyond the GnRH Axis: Kisspeptin Regulation of the Oxytocin System in Pregnancy and Lactation

  • Victoria ScottEmail author
  • Colin H. Brown
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 784)


Circulating oxytocin is critical for normal birth and lactation. Oxytocin is synthesised by hypothalamic supraoptic and paraventricular neurons and is released from the posterior pituitary gland into the circulation. Oxytocin secretion depends on action potentials initiated at the cell body, and we have shown that intravenous (IV) administration of kisspeptin-10 transiently increases the firing rate of supraoptic nucleus oxytocin neurons in anaesthetised, non-pregnant, pregnant and lactating rats. This peripheral effect is likely via vagal afferent input, because disruption of vagal afferents prevented the excitation. In our initial studies, intracerebroventricular (icv) administration of kisspeptin-10 did not alter the firing rate of oxytocin neurons in non-pregnant rats. Remarkably, we have now gathered unpublished observations showing that icv kisspeptin-10 transiently excites oxytocin neurons in late pregnancy and during lactation, suggesting that a central kisspeptin excitation of oxytocin neurons emerges at the end of pregnancy, when increased oxytocin secretion is required for delivery of the fetus and for milk let-down after delivery.


Firing Rate GnRH Neuron Posterior Pituitary Gland Magnocellular Neuron Milk Ejection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Funded by a New Zealand Health Research Council Project Grant (VS and CHB) and a University of Otago Health Sciences Fellowship (VS). We also thank Dr Rebecca Campbell for constructive criticism of an earlier version of the manuscript.


  1. 1.
    Kotani M, Detheux M, Vandenbogaerde A, Communi D, Vanderwinden JM, Le Poul E, Brezillon S, Tyldesley R, Suarez-Huerta N, Vandeput F, Blanpain C, Schiffmann SN, Vassart G, Parmentier M (2001) The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem 276:34631–34636PubMedCrossRefGoogle Scholar
  2. 2.
    Scott V, Brown CH (2011) Kisspeptin activation of supraoptic nucleus neurons in vivo. Endocrinology 152:3862–3870PubMedCrossRefGoogle Scholar
  3. 3.
    Neumann ID (2008) Brain oxytocin: a key regulator of emotional and social behaviours in both females and males. J Neuroendocrinol 20:858–865PubMedCrossRefGoogle Scholar
  4. 4.
    Russell JA, Leng G, Douglas AJ (2003) The magnocellular oxytocin system, the fount of maternity: adaptations in pregnancy. Front Neuroendocrinol 24:27–61PubMedCrossRefGoogle Scholar
  5. 5.
    Mitchell BF, Fang X, Wong S (1998) Oxytocin: a paracrine hormone in the regulation of ­parturition? Rev Reprod 3:113–122PubMedCrossRefGoogle Scholar
  6. 6.
    Otsuki Y, Yamaji K, Fujita M, Takagi T, Tanizawa O (1983) Serial plasma oxytocin levels ­during pregnancy and labor. Acta Obstet Gynecol Scand 62:15–18PubMedCrossRefGoogle Scholar
  7. 7.
    de Geest K, Thiery M, Piron-Possuyt G, Vanden Driessche R (1985) Plasma oxytocin in human pregnancy and parturition. J Perinat Med 13:3–13PubMedCrossRefGoogle Scholar
  8. 8.
    Kimura T, Takemura M, Nomura S, Nobunaga T, Kubota Y, Inoue T, Hashimoto K, Kumazawa I, Ito Y, Ohashi K, Koyama M, Azuma C, Kitamura Y, Saji F (1996) Expression of oxytocin receptor in human pregnant myometrium. Endocrinology 137:780–785PubMedCrossRefGoogle Scholar
  9. 9.
    Renthal NE, Chen CC, Williams KC, Gerard RD, Prange-Kiel J, Mendelson CR (2010) miR-­200 family and targets, ZEB1 and ZEB2, modulate uterine quiescence and contractility during pregnancy and labor. Proc Natl Acad Sci U S A 107:20828–20833PubMedCrossRefGoogle Scholar
  10. 10.
    Ferguson JKW (1941) A study of the motility of the intact uterus at term. Surg Gynecol Obstet 73:7Google Scholar
  11. 11.
    Nishimori K, Young LJ, Guo Q, Wang Z, Insel TR, Matzuk MM (1996) Oxytocin is required for nursing but is not essential for parturition or reproductive behavior. Proc Natl Acad Sci U S A 93:11699–11704PubMedCrossRefGoogle Scholar
  12. 12.
    Roizen J, Luedke CE, Herzog ED, Muglia LJ (2007) Oxytocin in the circadian timing of birth. PLoS One 2:e922PubMedCrossRefGoogle Scholar
  13. 13.
    Antonijevic IA, Douglas AJ, Dye S, Bicknell RJ, Leng G, Russell JA (1995) Oxytocin antagonists delay the initiation of parturition and prolong its active phase in rats. J Endocrinol 145:97–103PubMedCrossRefGoogle Scholar
  14. 14.
    Neumann I, Douglas AJ, Pittman QJ, Russell JA, Landgraf R (1996) Oxytocin released within the supraoptic nucleus of the rat brain by positive feedback action is involved in parturition-­related events. J Neuroendocrinol 8:227–233PubMedCrossRefGoogle Scholar
  15. 15.
    Kendrick KM (2000) Oxytocin, motherhood and bonding. Exp Physiol 85 Spec No:111S–124SGoogle Scholar
  16. 16.
    Lincoln DW, Paisley AC (1982) Neuroendocrine control of milk ejection. J Reprod Fertil 65:571–586PubMedCrossRefGoogle Scholar
  17. 17.
    Brownstein MJ, Russell JT, Gainer H (1980) Synthesis, transport, and release of posterior pituitary hormones. Science 207:373–378PubMedCrossRefGoogle Scholar
  18. 18.
    Hatton GI, Yang QZ, Smithson KG (1988) Synaptic inputs and electrical coupling among magnocellular neuroendocrine cells. Brain Res Bull 20:751–755PubMedCrossRefGoogle Scholar
  19. 19.
    Bourque CW (1990) Intraterminal recordings from the rat neurohypophysis in vitro. J Physiol 421:247–262PubMedGoogle Scholar
  20. 20.
    Marrero HG, Lemos JR (2010) Ionic conditions modulate stimulus-induced capacitance changes in isolated neurohypophysial terminals of the rat. J Physiol 588:287–300PubMedCrossRefGoogle Scholar
  21. 21.
    Lemos JR, Wang G (2000) Excitatory versus inhibitory modulation by ATP of neurohypophysial terminal activity in the rat. Exp Physiol 85 Spec No:67S–74SGoogle Scholar
  22. 22.
    Ortiz-Miranda S, Dayanithi G, Custer E, Treistman SN, Lemos JR (2005) Micro-opioid receptor preferentially inhibits oxytocin release from neurohypophysial terminals by blocking R-type Ca2+ channels. J Neuroendocrinol 17:583–590PubMedCrossRefGoogle Scholar
  23. 23.
    Brown CH, Bourque CW (2006) Mechanisms of rhythmogenesis: insights from hypothalamic vasopressin neurons. Trends Neurosci 29:108–115PubMedCrossRefGoogle Scholar
  24. 24.
    Bicknell RJ (1988) Optimizing release from peptide hormone secretory nerve terminals. J Exp Biol 139:51–65PubMedGoogle Scholar
  25. 25.
    Dutton A, Dyball RE (1979) Phasic firing enhances vasopressin release from the rat neurohypophysis. J Physiol 290:433–440PubMedGoogle Scholar
  26. 26.
    Bicknell RJ, Brown D, Chapman C, Hancock PD, Leng G (1984) Reversible fatigue of stimulus-­secretion coupling in the rat neurohypophysis. J Physiol 348:601–613PubMedGoogle Scholar
  27. 27.
    Leng G, Brown D (1997) The origins and significance of pulsatility in hormone secretion from the pituitary. J Neuroendocrinol 9:493–513PubMedGoogle Scholar
  28. 28.
    Leng G, Brown CH, Russell JA (1999) Physiological pathways regulating the activity of ­magnocellular neurosecretory cells. Prog Neurobiol 57:625–655PubMedCrossRefGoogle Scholar
  29. 29.
    Lincoln DW, Wakerley JB (1975) Neurosecretory activation in the rat: correlation of the ­suckling stimulus with the pulsatile release of oxytocin. J Physiol 245:42P–43PPubMedGoogle Scholar
  30. 30.
    Belin V, Moos F (1986) Paired recordings from supraoptic and paraventricular oxytocin cells in suckled rats: recruitment and synchronization. J Physiol 377:369–390PubMedGoogle Scholar
  31. 31.
    Wakerley JB, Lincoln DW (1973) Proceedings: unit activity in the supra-optic nucleus during reflex milk ejection. J Endocrinol 59:xlvi–xlviiGoogle Scholar
  32. 32.
    Lincoln DW, Wakerley JB (1974) Electrophysiological evidence for the activation of supraoptic neurones during the release of oxytocin. J Physiol 242:533–554PubMedGoogle Scholar
  33. 33.
    Ingram CD, Wakerley JB (1993) Post-partum increase in oxytocin-induced excitation of neurones in the bed nuclei of the stria terminalis in vitro. Brain Res 602:325–330PubMedCrossRefGoogle Scholar
  34. 34.
    Dyball RE, Leng G (1986) Regulation of the milk ejection reflex in the rat. J Physiol 380:239–256PubMedGoogle Scholar
  35. 35.
    Summerlee AJ (1981) Extracellular recordings from oxytocin neurones during the expulsive phase of birth in unanaesthetized rats. J Physiol 321:1–9PubMedGoogle Scholar
  36. 36.
    Summerlee AJ, Lincoln DW (1981) Electrophysiological recordings from oxytocinergic neurones during suckling in the unanaesthetized lactating rat. J Endocrinol 90:255–265PubMedCrossRefGoogle Scholar
  37. 37.
    Brown D, Fontanaud P, Moos FC (2000) The variability of basal action potential firing is positively correlated with bursting in hypothalamic oxytocin neurones. J Neuroendocrinol 12:506–520PubMedCrossRefGoogle Scholar
  38. 38.
    Moos F, Poulain DA, Rodriguez F, Guerne Y, Vincent JD, Richard P (1989) Release of oxytocin within the supraoptic nucleus during the milk ejection reflex in rats. Exp Brain Res 76:593–602PubMedCrossRefGoogle Scholar
  39. 39.
    Moos F, Richard P (1988) Characteristics of early- and late-recruited oxytocin bursting cells at the beginning of suckling in rats. J Physiol 399:1–12PubMedGoogle Scholar
  40. 40.
    Moos F, Richard P (1989) Paraventricular and supraoptic bursting oxytocin cells in rat are locally regulated by oxytocin and functionally related. J Physiol 408:1–18PubMedGoogle Scholar
  41. 41.
    Ludwig M, Leng G (2006) Dendritic peptide release and peptide-dependent behaviours. Nat Rev Neurosci 7:126–136PubMedCrossRefGoogle Scholar
  42. 42.
    Ludwig M, Sabatier N, Bull PM, Landgraf R, Dayanithi G, Leng G (2002) Intracellular calcium stores regulate activity-dependent neuropeptide release from dendrites. Nature 418:85–89PubMedCrossRefGoogle Scholar
  43. 43.
    Russell JA, Leng G (2000) Veni, vidi, vici: the neurohypophysis in the twentieth century. Exp Physiol 85 Spec No:1S–6SGoogle Scholar
  44. 44.
    Kalia M, Sullivan JM (1982) Brainstem projections of sensory and motor components of the vagus nerve in the rat. J Comp Neurol 211:248–265PubMedCrossRefGoogle Scholar
  45. 45.
    Weiss ML, Hatton GI (1990) Collateral input to the paraventricular and supraoptic nuclei in rat. II. Afferents from the ventral lateral medulla and nucleus tractus solitarius. Brain Res Bull 25:561–567PubMedCrossRefGoogle Scholar
  46. 46.
    Ueta Y, Kannan H, Yamashita H (1991) Gastric afferents to the paraventricular nucleus in the rat. Exp Brain Res 84:487–494PubMedCrossRefGoogle Scholar
  47. 47.
    Verbalis JG, McCann MJ, McHale CM, Stricker EM (1986) Oxytocin secretion in response to cholecystokinin and food: differentiation of nausea from satiety. Science 232:1417–1419PubMedCrossRefGoogle Scholar
  48. 48.
    Day TA, Sibbald JR (1988) Direct catecholaminergic projection from nucleus tractus solitarii to supraoptic nucleus. Brain Res 454:387–392PubMedCrossRefGoogle Scholar
  49. 49.
    Day TA, Sibbald JR (1988) Solitary nucleus excitation of supraoptic vasopressin cells via adrenergic afferents. Am J Physiol 254:R711–R716PubMedGoogle Scholar
  50. 50.
    Meddle SL, Leng G, Selvarajah JR, Bicknell RJ, Russell JA (2000) Direct pathways to the supraoptic nucleus from the brainstem and the main olfactory bulb are activated at parturition in the rat. Neuroscience 101:1013–1021PubMedCrossRefGoogle Scholar
  51. 51.
    Herbison AE, Voisin DL, Douglas AJ, Chapman C (1997) Profile of monoamine and excitatory amino acid release in rat supraoptic nucleus over parturition. Endocrinology 138:33–40PubMedCrossRefGoogle Scholar
  52. 52.
    Renaud LP, Tang M, McCann MJ, Stricker EM, Verbalis JG (1987) Cholecystokinin and gastric distension activate oxytocinergic cells in rat hypothalamus. Am J Physiol 253:R661–R665PubMedGoogle Scholar
  53. 53.
    Moriarty P, Dimaline R, Thompson DG, Dockray GJ (1997) Characterization of cholecystokinin A and cholecystokinin B receptors expressed by vagal afferent neurons. Neuroscience 79:905–913PubMedCrossRefGoogle Scholar
  54. 54.
    Velmurugan S, Brunton PJ, Leng G, Russell JA (2010) Circulating secretin activates supraoptic nucleus oxytocin and vasopressin neurons via noradrenergic pathways in the rat. Endocrinology 151:2681–2688PubMedCrossRefGoogle Scholar
  55. 55.
    Russell JA, Blackburn RE, Leng G (1988) The role of the AV3V region in the control of ­magnocellular oxytocin neurons. Brain Res Bull 20:803–810PubMedCrossRefGoogle Scholar
  56. 56.
    Clarkson J, Han SK, Liu X, Lee K, Herbison AE (2010) Neurobiological mechanisms ­underlying kisspeptin activation of gonadotropin-releasing hormone (GnRH) neurons at puberty. Mol Cell Endocrinol 324:45–50PubMedCrossRefGoogle Scholar
  57. 57.
    Dhillo WS, Murphy KG, Bloom SR (2007) The neuroendocrine physiology of kisspeptin in the human. Rev Endocr Metab Disord 8:41–46PubMedCrossRefGoogle Scholar
  58. 58.
    Brown RE, Imran SA, Ur E, Wilkinson M (2008) KiSS-1 mRNA in adipose tissue is regulated by sex hormones and food intake. Mol Cell Endocrinol 281:64–72PubMedCrossRefGoogle Scholar
  59. 59.
    Horikoshi Y, Matsumoto H, Takatsu Y, Ohtaki T, Kitada C, Usuki S, Fujino M (2003) Dramatic elevation of plasma metastin concentrations in human pregnancy: metastin as a novel placenta-­derived hormone in humans. J Clin Endocrinol Metab 88:914–919PubMedCrossRefGoogle Scholar
  60. 60.
    Bilban M, Ghaffari-Tabrizi N, Hintermann E, Bauer S, Molzer S, Zoratti C, Malli R, Sharabi A, Hiden U, Graier W, Knofler M, Andreae F, Wagner O, Quaranta V, Desoye G (2004) Kisspeptin-10, a KiSS-1/metastin-derived decapeptide, is a physiological invasion inhibitor of primary human trophoblasts. J Cell Sci 117:1319–1328PubMedCrossRefGoogle Scholar
  61. 61.
    Muir AI, Chamberlain L, Elshourbagy NA, Michalovich D, Moore DJ, Calamari A, Szekeres PG, Sarau HM, Chambers JK, Murdock P, Steplewski K, Shabon U, Miller JE, Middleton SE, Darker JG, Larminie CG, Wilson S, Bergsma DJ, Emson P, Faull R, Philpott KL, Harrison DC (2001) AXOR12, a novel human G protein-coupled receptor, activated by the peptide KiSS-1. J Biol Chem 276:28969–28975PubMedCrossRefGoogle Scholar
  62. 62.
    Ohtaki T, Shintani Y, Honda S, Matsumoto H, Hori A, Kanehashi K, Terao Y, Kumano S, Takatsu Y, Masuda Y, Ishibashi Y, Watanabe T, Asada M, Yamada T, Suenaga M, Kitada C, Usuki S, Kurokawa T, Onda H, Nishimura O, Fujino M (2001) Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature 411:613–617PubMedCrossRefGoogle Scholar
  63. 63.
    Holzer P (1991) Capsaicin as a tool for studying sensory neuron functions. Adv Exp Med Biol 298:3–16PubMedGoogle Scholar
  64. 64.
    Patterson LM, Zheng H, Ward SM, Berthoud HR (2003) Vanilloid receptor (VR1) expression in vagal afferent neurons innervating the gastrointestinal tract. Cell Tissue Res 311:277–287PubMedGoogle Scholar
  65. 65.
    Han SK, Gottsch ML, Lee KJ, Popa SM, Smith JT, Jakawich SK, Clifton DK, Steiner RA, Herbison AE (2005) Activation of gonadotropin-releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty. J Neurosci 25:11349–11356PubMedCrossRefGoogle Scholar
  66. 66.
    Liu X, Lee K, Herbison AE (2008) Kisspeptin excites gonadotropin-releasing hormone neurons through a phospholipase C/calcium-dependent pathway regulating multiple ion channels. Endocrinology 149:4605–4614PubMedCrossRefGoogle Scholar
  67. 67.
    Fu LY, van den Pol AN (2010) Kisspeptin directly excites anorexigenic proopiomelanocortin neurons but inhibits orexigenic neuropeptide Y cells by an indirect synaptic mechanism. J Neurosci 30:10205–10219PubMedCrossRefGoogle Scholar
  68. 68.
    Arai AC, Xia YF, Suzuki E, Kessler M, Civelli O, Nothacker HP (2005) Cancer metastasis-­suppressing peptide metastin upregulates excitatory synaptic transmission in hippocampal dentate granule cells. J Neurophysiol 94:3648–3652PubMedCrossRefGoogle Scholar
  69. 69.
    Roa J, Vigo E, Castellano JM, Navarro VM, Fernandez-Fernandez R, Casanueva FF, Dieguez C, Aguilar E, Pinilla L, Tena-Sempere M (2006) Hypothalamic expression of KiSS-1 system and gonadotropin-releasing effects of kisspeptin in different reproductive states of the female rat. Endocrinology 147:2864–2878PubMedCrossRefGoogle Scholar
  70. 70.
    Desroziers E, Mikkelsen J, Simonneaux V, Keller M, Tillet Y, Caraty A, Franceschini I (2010) Mapping of kisspeptin fibres in the brain of the pro-oestrous rat. J Neuroendocrinol 22:1101–1112PubMedCrossRefGoogle Scholar
  71. 71.
    Herbison AE, de Tassigny X, Doran J, Colledge WH (2010) Distribution and postnatal development of Gpr54 gene expression in mouse brain and gonadotropin-releasing hormone neurons. Endocrinology 151:312–321PubMedCrossRefGoogle Scholar
  72. 72.
    Reynolds RM, Logie JJ, Roseweir AK, McKnight AJ, Millar RP (2009) A role for kisspeptins in pregnancy: facts and speculations. Reproduction 138:1–7PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  1. 1.Centre for Neuroendocrinology and Department of PhysiologyUniversity of OtagoDunedinNew Zealand

Personalised recommendations