Skip to main content

Androgen-Responsive Gene Expression in Prostate Cancer Progression

  • Chapter
  • First Online:
Book cover Androgen-Responsive Genes in Prostate Cancer

Abstract

Benign and cancerous prostate tissue is dependent upon androgens. Androgen ablation causes prostate tissue to undergo apoptosis which thereby provides the rationale of castration as a systemic therapy for advanced prostate cancer. The full-length androgen receptor is a ligand-activated transcription factor that regulates the expression of genes required for growth, function, and survival of prostate cells in response to androgen. Androgen binds to the androgen receptor which then translocates to the nucleus to bind to androgen response elements on target genes termed “androgen-responsive genes” (ARGs) to regulate their transcription and levels of expression. Identification and characterization of ARGs may provide an understanding of androgen receptor signaling, resistance mechanisms to current hormonal therapies, and reveal biomarkers for patient selection and sequential application of current and new therapies targeting the androgen axis. This review addresses differential expression of ARGs following androgen ablation treatment during progression of advanced prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clegg N, Nelson PS (2009) Androgen-regulated genes in the prostate. In: Tindall D, Mohler J (eds) Book androgen-regulated genes in the prostate. Springer Science, New York, NY

    Google Scholar 

  2. Varambally S, Yu J, Laxman B et al (2005) Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. Cancer Cell 8:393–406

    Article  PubMed  CAS  Google Scholar 

  3. Sadar MD, Hussain M, Bruchovsky N (1999) Prostate cancer: molecular biology of early progression to androgen independence. Endocr Relat Cancer 6:487–502

    Article  PubMed  CAS  Google Scholar 

  4. Dutt SS, Gao AC (2009) Molecular mechanisms of castration-resistant prostate cancer progression. Future Oncol 5:1403–1413

    Article  PubMed  CAS  Google Scholar 

  5. Hotte SJ, Saad F (2010) Current management of castrate-resistant prostate cancer. Curr Oncol 17(Suppl 2):S72–S79

    PubMed  Google Scholar 

  6. Lonergan PE, Tindall DJ (2011) Androgen receptor signaling in prostate cancer development and progression. J Carcinog 10:20

    Article  PubMed  CAS  Google Scholar 

  7. Amaral TM, Macedo D, Fernandes I et al (2012) Castration-resistant prostate cancer: ­mechanisms, targets, and treatment Prostate. Cancer 2012:327253

    Google Scholar 

  8. Sadar MD (2012) Advances in small molecule inhibitors of androgen receptor for the treatment of advanced prostate cancer. World J Urol 30:311–318

    Article  PubMed  CAS  Google Scholar 

  9. Dehm SM, Tindall DJ (2006) Molecular regulation of androgen action in prostate cancer. J Cell Biochem 99:333–344

    Article  PubMed  CAS  Google Scholar 

  10. Jiang M, Ma Y, Chen C et al (2009) Androgen-responsive gene database: integrated knowledge on androgen-responsive genes. Mol Endocrinol 23:1927–1933

    Article  PubMed  CAS  Google Scholar 

  11. Luke MC, Coffey DS (1994) Human androgen receptor binding to the androgen response element of prostate specific antigen. J Androl 15:41–51

    PubMed  CAS  Google Scholar 

  12. Cleutjens KB, van Eekelen CC, van der Korput HA et al (1996) Two androgen response regions cooperate in steroid hormone regulated activity of the prostate-specific antigen promoter. J Biol Chem 271:6379–6388

    Article  PubMed  CAS  Google Scholar 

  13. Cleutjens KB, van der Korput HA, van Eekelen CC et al (1997) An androgen response element in a far upstream enhancer region is essential for high, androgen-regulated activity of the prostate-specific antigen promoter. Mol Endocrinol 11:148–161

    Article  PubMed  CAS  Google Scholar 

  14. Zhang J, Zhang S, Murtha PE et al (1997) Identification of two novel cis-elements in the promoter of the prostate-specific antigen gene that are required to enhance androgen receptor-mediated transactivation. Nucleic Acids Res 25:3143–3150

    Article  PubMed  CAS  Google Scholar 

  15. Weir EG, Partin AW, Epstein JI (2000) Correlation of serum prostate specific antigen and quantitative immunohistochemistry. J Urol 163:1739–1742

    Article  PubMed  CAS  Google Scholar 

  16. Chandran UR, Ma C, Dhir R et al (2007) Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process. BMC Cancer 7:64

    Article  PubMed  Google Scholar 

  17. Mostaghel EA, Page ST, Lin DW et al (2007) Intraprostatic androgens and androgen-regulated gene expression persist after testosterone suppression: therapeutic implications for castration-resistant prostate cancer. Cancer Res 67:5033–5041

    Article  PubMed  CAS  Google Scholar 

  18. Gronberg H (2003) Prostate cancer epidemiology. Lancet 361:859–864

    Article  PubMed  Google Scholar 

  19. Feldman BJ, Feldman D (2001) The development of androgen-independent prostate cancer. Nat Rev Cancer 1:34–45

    Article  PubMed  CAS  Google Scholar 

  20. Petrylak DP, Tangen CM, Hussain MH et al (2004) Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med 351:1513–1520

    Article  PubMed  CAS  Google Scholar 

  21. Tannock IF, de Wit R, Berry WR et al (2004) Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 351:1502–1512

    Article  PubMed  CAS  Google Scholar 

  22. Berthold DR, Pond GR, de Wit R et al (2008) Survival and PSA response of patients in the TAX 327 study who crossed over to receive docetaxel after mitoxantrone or vice versa. Ann Oncol 19:1749–1753

    Article  PubMed  CAS  Google Scholar 

  23. Higano CS, Schellhammer PF, Small EJ et al (2009) Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer 115:3670–3679

    Article  PubMed  CAS  Google Scholar 

  24. Kantoff PW, Higano CS, Shore ND et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363:411–422

    Article  PubMed  CAS  Google Scholar 

  25. Horoszewicz JS, Leong SS, Kawinski E et al (1983) LNCaP model of human prostatic carcinoma. Cancer Res 43:1809–1818

    PubMed  CAS  Google Scholar 

  26. Taplin ME, Bubley GJ, Ko YJ et al (1999) Selection for androgen receptor mutations in prostate cancers treated with androgen antagonist. Cancer Res 59:2511–2515

    PubMed  CAS  Google Scholar 

  27. Chang CY, Walther PJ, McDonnell DP (2001) Glucocorticoids manifest androgenic activity in a cell line derived from a metastatic prostate cancer. Cancer Res 61:8712–8717

    PubMed  CAS  Google Scholar 

  28. Krishnan AV, Zhao XY, Swami S et al (2002) A glucocorticoid-responsive mutant androgen receptor exhibits unique ligand specificity: therapeutic implications for androgen-independent prostate cancer. Endocrinology 143:1889–1900

    Article  PubMed  CAS  Google Scholar 

  29. Steketee K, Timmerman L, Ziel-van der Made AC et al (2002) Broadened ligand responsiveness of androgen receptor mutants obtained by random amino acid substitution of H874 and mutation hot spot T877 in prostate cancer. Int J Cancer 100:309–317

    Article  PubMed  CAS  Google Scholar 

  30. Sun C, Shi Y, Xu LL et al (2006) Androgen receptor mutation (T877A) promotes prostate cancer cell growth and cell survival. Oncogene 25:3905–3913

    Article  PubMed  CAS  Google Scholar 

  31. Schuurmans AL, Bolt J, Voorhorst MM et al (1988) Regulation of growth and epidermal growth factor receptor levels of LNCaP prostate tumor cells by different steroids. Int J Cancer 42:917–922

    Article  PubMed  CAS  Google Scholar 

  32. Sonnenschein C, Olea N, Pasanen ME et al (1989) Negative controls of cell proliferation: human prostate cancer cells and androgens. Cancer Res 49:3474–3481

    PubMed  CAS  Google Scholar 

  33. de Launoit Y, Veilleux R, Dufour M et al (1991) Characteristics of the biphasic action of androgens and of the potent antiproliferative effects of the new pure antiestrogen EM-139 on cell cycle kinetic parameters in LNCaP human prostatic cancer cells. Cancer Res 51:5165–5170

    PubMed  Google Scholar 

  34. Langeler EG, van Uffelen CJ, Blankenstein MA et al (1993) Effect of culture conditions on androgen sensitivity of the human prostatic cancer cell line LNCaP. Prostate 23:213–223

    Article  PubMed  CAS  Google Scholar 

  35. Navone NM, Olive M, Ozen M et al (1997) Establishment of two human prostate cancer cell lines derived from a single bone metastasis. Clin Cancer Res 3:2493–2500

    PubMed  CAS  Google Scholar 

  36. Culig Z, Hoffmann J, Erdel M et al (1999) Switch from antagonist to agonist of the androgen receptor bicalutamide is associated with prostate tumour progression in a new model system. Br J Cancer 81:242–251

    Article  PubMed  CAS  Google Scholar 

  37. Velasco AM, Gillis KA, Li Y et al (2004) Identification and validation of novel androgen-regulated genes in prostate cancer. Endocrinology 145:3913–3924

    Article  PubMed  CAS  Google Scholar 

  38. Shappell SB, Thomas GV, Roberts RL et al (2004) Prostate pathology of genetically engineered mice: definitions and classification. The consensus report from the Bar Harbor meeting of the Mouse Models of Human Cancer Consortium Prostate Pathology Committee. Cancer Res 64:2270–2305

    Article  PubMed  CAS  Google Scholar 

  39. Dunn TA, Fedor HL, De Marzo AM et al (2012) Molecular profiling of indolent human prostate cancer: tackling technical challenges to achieve high-fidelity genome-wide data. Asian J Androl 14:385–392

    Article  PubMed  CAS  Google Scholar 

  40. Lau WK, Blute ML, Bostwick DG et al (2001) Prognostic factors for survival of patients with pathological Gleason score 7 prostate cancer: differences in outcome between primary Gleason grades 3 and 4. J Urol 166:1692–1697

    Article  PubMed  CAS  Google Scholar 

  41. Stark JR, Perner S, Stampfer MJ et al (2009) Gleason score and lethal prostate cancer: does 3 + 4 = 4 + 3? J Clin Oncol 27:3459–3464

    Article  PubMed  Google Scholar 

  42. Wright JL, Salinas CA, Lin DW et al (2009) Prostate cancer specific mortality and Gleason 7 disease differences in prostate cancer outcomes between cases with Gleason 4 + 3 and Gleason 3 + 4 tumors in a population based cohort. J Urol 182:2702–2707

    Article  PubMed  Google Scholar 

  43. Bolton EC, So AY, Chaivorapol C et al (2007) Cell- and gene-specific regulation of primary target genes by the androgen receptor. Genes Dev 21:2005–2017

    Article  PubMed  CAS  Google Scholar 

  44. Wang G, Jones SJ, Marra MA et al (2006) Identification of genes targeted by the androgen and PKA signaling pathways in prostate cancer cells. Oncogene 25:7311–7323

    Article  PubMed  CAS  Google Scholar 

  45. Romanuik TL, Wang G, Holt RA et al (2009) Identification of novel androgen-responsive genes by sequencing of LongSAGE libraries. BMC Genomics 10:476

    Article  PubMed  Google Scholar 

  46. Romanuik TL, Ueda T, Le N et al (2009) Novel biomarkers for prostate cancer including noncoding transcripts. Am J Pathol 175:2264–2276

    Article  PubMed  CAS  Google Scholar 

  47. Wang G, Haile S, Comuzzi B et al (2009) Osteoblast-derived factors induce an expression signature that identifies prostate cancer metastasis and hormonal progression. Cancer Res 69:3433–3442

    Article  PubMed  CAS  Google Scholar 

  48. Blaszczyk N, Masri BA, Mawji NR et al (2004) Osteoblast-derived factors induce androgen-independent proliferation and expression of prostate-specific antigen in human prostate cancer cells. Clin Cancer Res 10:1860–1869

    Article  PubMed  CAS  Google Scholar 

  49. Ueda T, Mawji NR, Bruchovsky N et al (2002) Ligand-independent activation of the androgen receptor by interleukin-6 and the role of steroid receptor coactivator-1 in prostate cancer cells. J Biol Chem 277:38087–38094

    Article  PubMed  CAS  Google Scholar 

  50. Wang Q, Li W, Zhang Y et al (2009) Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell 138:245–256

    Article  PubMed  CAS  Google Scholar 

  51. Hornberg E, Ylitalo EB, Crnalic S et al (2011) Expression of androgen receptor splice variants in prostate cancer bone metastases is associated with castration-resistance and short survival. PLoS One 6:e19059

    Article  PubMed  Google Scholar 

  52. Gregory CW, Hamil KG, Kim D et al (1998) Androgen receptor expression in androgen-independent prostate cancer is associated with increased expression of androgen-regulated genes. Cancer Res 58:5718–5724

    PubMed  CAS  Google Scholar 

  53. Amler LC, Agus DB, LeDuc C et al (2000) Dysregulated expression of androgen-responsive and nonresponsive genes in the androgen-independent prostate cancer xenograft model CWR22-R1. Cancer Res 60:6134–6141

    PubMed  CAS  Google Scholar 

  54. Romanuik TL, Wang G, Morozova O et al (2010) LNCaP Atlas: gene expression associated with in vivo progression to castration-recurrent prostate cancer. BMC Med Genomics 3:43

    Article  PubMed  Google Scholar 

  55. Wang G, Wang J, Sadar MD (2008) Crosstalk between the androgen receptor and beta-catenin in castrate-resistant prostate cancer. Cancer Res 68:9918–9927

    Article  PubMed  CAS  Google Scholar 

  56. Lapointe J, Li C, Higgins JP et al (2004) Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci USA 101:811–816

    Article  PubMed  CAS  Google Scholar 

  57. Yu PK, Cheung T, Butson MJ (2004) Prostate dosimetry in an anthropomorphic phantom. Australas Phys Eng Sci Med 27:60–62

    Article  PubMed  CAS  Google Scholar 

  58. Chandran UR, Dhir R, Ma C et al (2005) Differences in gene expression in prostate cancer, normal appearing prostate tissue adjacent to cancer and prostate tissue from cancer free organ donors. BMC Cancer 5:45

    Article  PubMed  Google Scholar 

  59. Lapointe J, Li C, Giacomini CP et al (2007) Genomic profiling reveals alternative genetic pathways of prostate tumorigenesis. Cancer Res 67:8504–8510

    Article  PubMed  CAS  Google Scholar 

  60. Holzbeierlein J, Lal P, LaTulippe E et al (2004) Gene expression analysis of human prostate carcinoma during hormonal therapy identifies androgen-responsive genes and mechanisms of therapy resistance. Am J Pathol 164:217–227

    Article  PubMed  CAS  Google Scholar 

  61. Best CJ, Gillespie JW, Yi Y et al (2005) Molecular alterations in primary prostate cancer after androgen ablation therapy. Clin Cancer Res 11:6823–6834

    Article  PubMed  CAS  Google Scholar 

  62. Stanbrough M, Bubley GJ, Ross K et al (2006) Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res 66:2815–2825

    Article  PubMed  CAS  Google Scholar 

  63. Tamura K, Furihata M, Tsunoda T et al (2007) Molecular features of hormone-refractory prostate cancer cells by genome-wide gene expression profiles. Cancer Res 67:5117–5125

    Article  PubMed  CAS  Google Scholar 

  64. Stein BS, Vangore S, Petersen RO (1984) Immunoperoxidase localization of prostatic antigens. Comparison of primary and metastatic sites. Urology 24:146–152

    Article  PubMed  CAS  Google Scholar 

  65. Zhou M, Chinnaiyan AM, Kleer CG et al (2002) Alpha-Methylacyl-CoA racemase: a novel tumor marker over-expressed in several human cancers and their precursor lesions. Am J Surg Pathol 26:926–931

    Article  PubMed  Google Scholar 

  66. Shah RB, Mehra R, Chinnaiyan AM et al (2004) Androgen-independent prostate cancer is a heterogeneous group of diseases: lessons from a rapid autopsy program. Cancer Res 64:9209–9216

    Article  PubMed  CAS  Google Scholar 

  67. Ho LL, Kench JG, Handelsman DJ et al (2008) Androgen regulation of multidrug resistance-associated protein 4 (MRP4/ABCC4) in prostate cancer. Prostate 68:1421–1429

    Article  PubMed  CAS  Google Scholar 

  68. Qian X, Li C, Pang B et al (2012) Spondin-2 (SPON2), a More Prostate-Cancer-Specific Diagnostic Biomarker. PLoS One 7:e37225

    Article  PubMed  CAS  Google Scholar 

  69. Paoloni-Giacobino A, Chen H, Peitsch MC et al (1997) Cloning of the TMPRSS2 gene, which encodes a novel serine protease with transmembrane, LDLRA, and SRCR domains and maps to 21q22.3. Genomics 44:309–320

    Article  PubMed  CAS  Google Scholar 

  70. Tomlins SA, Rhodes DR, Perner S et al (2005) Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310:644–648

    Article  PubMed  CAS  Google Scholar 

  71. Yu J, Mani RS, Cao Q et al (2010) An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell 17:443–454

    Article  PubMed  CAS  Google Scholar 

  72. Inoue T, Ogawa O (2011) Role of signaling transduction pathways in development of castration-resistant prostate cancer. Prostate Cancer 2011:647987

    Article  PubMed  Google Scholar 

  73. Cai C, Wang H, Xu Y et al (2009) Reactivation of androgen receptor-regulated TMPRSS2:ERG gene expression in castration-resistant prostate cancer. Cancer Res 69:6027–6032

    Article  PubMed  CAS  Google Scholar 

  74. Lehmusvaara S, Erkkila T, Urbanucci A et al (2012) Chemical castration and anti-androgens induce differential gene expression in prostate cancer. J Pathol 227(3):336–345

    Article  PubMed  CAS  Google Scholar 

  75. Fuzio P, Lucarelli G, Perlino E et al (2009) Androgen deprivation therapy regulation of beta1C integrin expression in prostate cancer. Oncol Rep 22:327–335

    PubMed  CAS  Google Scholar 

  76. Koksal IT, Sanlioglu AD, Kutlu O et al (2010) Effects of androgen ablation therapy in TRAIL death ligand and its receptors expression in advanced prostate cancer. Urol Int 84:445–451

    Article  PubMed  CAS  Google Scholar 

  77. Bhandari MS, Crook J, Hussain M (2005) Should intermittent androgen deprivation be used in routine clinical practice? J Clin Oncol 23:8212–8218

    Article  PubMed  Google Scholar 

  78. Abrahamsson PA (2010) Potential benefits of intermittent androgen suppression therapy in the treatment of prostate cancer: a systematic review of the literature. Eur Urol 57:49–59

    Article  PubMed  CAS  Google Scholar 

  79. Srivastava M, Gibson KR, Pollard HB et al (1994) Human cytochrome b561: a revised hypothesis for conformation in membranes which reconciles sequence and functional information. Biochem J 303(Pt 3):915–921

    PubMed  CAS  Google Scholar 

  80. Fujikane T, Nishikawa N, Toyota M et al (2010) Genomic screening for genes upregulated by demethylation revealed novel targets of epigenetic silencing in breast cancer. Breast Cancer Res Treat 122:699–710

    Article  PubMed  Google Scholar 

  81. Jing C, El-Ghany MA, Beesley C et al (2002) Tazarotene-induced gene 1 (TIG1) expression in prostate carcinomas and its relationship to tumorigenicity. J Natl Cancer Inst 94:482–490

    Article  PubMed  CAS  Google Scholar 

  82. Sahab ZJ, Hall MD, Me Sung Y et al (2011) Tumor suppressor RARRES1 interacts with cytoplasmic carboxypeptidase AGBL2 to regulate the alpha-tubulin tyrosination cycle. Cancer Res 71:1219–1228

    Article  PubMed  CAS  Google Scholar 

  83. Chen CD, Welsbie DS, Tran C et al (2004) Molecular determinants of resistance to antiandrogen therapy. Nat Med 10:33–39

    Article  PubMed  Google Scholar 

  84. Sun S, Sprenger CC, Vessella RL et al (2010) Castration resistance in human prostate cancer is conferred by a frequently occurring androgen receptor splice variant. J Clin Invest 120:2715–2730

    Article  PubMed  CAS  Google Scholar 

  85. Hu R, Lu C, Mostaghel EA et al (2012) Distinct transcriptional programs mediated by the ligand-dependent full-length androgen receptor and its splice variants in castration-resistant prostate cancer. Cancer Res 72(14):3457–3462

    Article  PubMed  CAS  Google Scholar 

  86. Taylor BS, Schultz N, Hieronymus H et al (2010) Integrative genomic profiling of human prostate cancer. Cancer Cell 18:11–22

    Article  PubMed  CAS  Google Scholar 

  87. Mostaghel EA, Montgomery B, Nelson PS (2009) Castration-resistant prostate cancer: targeting androgen metabolic pathways in recurrent disease. Urol Oncol 27:251–257

    Article  PubMed  CAS  Google Scholar 

  88. Massie CE, Lynch A, Ramos-Montoya A et al (2011) The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO J 30:2719–2733

    Article  PubMed  CAS  Google Scholar 

  89. Montgomery RB, Mostaghel EA, Vessella R et al (2008) Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res 68:4447–4454

    Article  PubMed  CAS  Google Scholar 

  90. Pfeiffer MJ, Smit FP, Sedelaar JP et al (2011) Steroidogenic enzymes and stem cell markers are upregulated during androgen deprivation in prostate cancer. Mol Med 17:657–664

    Article  PubMed  CAS  Google Scholar 

  91. de Bono JS, Logothetis CJ, Molina A et al (2011) Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med 364:1995–2005

    Article  PubMed  Google Scholar 

  92. Mostaghel EA, Nelson PS (2008) Intracrine androgen metabolism in prostate cancer progression: mechanisms of castration resistance and therapeutic implications. Best Pract Res Clin Endocrinol Metab 22:243–258

    Article  PubMed  CAS  Google Scholar 

  93. Lee YC, Cheng CJ, Huang M et al (2010) Androgen depletion up-regulates cadherin-11 expression in prostate cancer. J Pathol 221:68–76

    Article  PubMed  CAS  Google Scholar 

  94. Fornaro M, Plescia J, Chheang S et al (2003) Fibronectin protects prostate cancer cells from tumor necrosis factor-alpha-induced apoptosis via the AKT/survivin pathway. J Biol Chem 278:50402–50411

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianne D. Sadar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tien, A.H., Sadar, M.D. (2013). Androgen-Responsive Gene Expression in Prostate Cancer Progression. In: Wang, Z. (eds) Androgen-Responsive Genes in Prostate Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6182-1_9

Download citation

Publish with us

Policies and ethics