Skip to main content

Mechanisms of ARE-Independent Gene Activation by the Androgen Receptor in Prostate Cancer Cells: Potential Targets for Better Intervention Strategies

  • Chapter
  • First Online:

Abstract

Molecular mechanisms that redirect androgen or AR action to primarily support growth in prostate cancer (PC) cells are not adequately understood. In PC cells in which AR supports robust cell growth in the absence of hormone, AR is localized in the nucleus independent of hormone; still, in these cells androgen is required for activation of its classical target genes that involves AR binding to canonical or noncanonical androgen response elements (AREs). However, following either hormone-dependent or -independent nuclear translocation, AR activates a distinct set of critical growth genes in a ligand-insensitive manner through putative tethered associations of AR with chromatin. Consistent with these observations, splice variants of AR that lack the ligand binding domain support PC growth by activating a transcriptional program distinct from that induced by androgen plus full length AR. Indeed, several studies suggest that specific AR tethering proteins help to redirect AR toward targeting gene sets appropriate to the physiological context. These proteins may also simultaneously suppress the activation of other genes by AR. This review describes how transcriptional signaling by AR is directed by other chromatin bound transcription factors, comprising the AR “tetherome,” that could work either in concert with AREs or completely independent of them. The potential utility of specific tether-dependent growth signaling mechanisms of AR as tumor-selective drug targets in both early stage and advanced prostate cancer is discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Linja MJ et al (2001) Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res 61(9):3550–3555

    PubMed  CAS  Google Scholar 

  2. Zegarra-Moro OL et al (2002) Disruption of androgen receptor function inhibits proliferation of androgen-refractory prostate cancer cells. Cancer Res 62(4):1008–1013

    PubMed  CAS  Google Scholar 

  3. Li TH et al (2007) A promoting role of androgen receptor in androgen-sensitive and -insensitive prostate cancer cells. Nucleic Acids Res 35(8):2767–2776

    Article  PubMed  CAS  Google Scholar 

  4. Snoek R et al (2009) In vivo knockdown of the androgen receptor results in growth inhibition and regression of well-established, castration-resistant prostate tumors. Clin Cancer Res 15(1):39–47

    Article  PubMed  CAS  Google Scholar 

  5. Massard C, Fizazi K (2011) Targeting continued androgen receptor signaling in prostate cancer. Clin Cancer Res 17(12):3876–3883

    Article  PubMed  CAS  Google Scholar 

  6. Ryan CJ, Tindall DJ (2011) Androgen receptor rediscovered: the new biology and targeting the androgen receptor therapeutically. J Clin Oncol 29(27):3651–3658

    Article  PubMed  CAS  Google Scholar 

  7. Cai C et al (2011) Intratumoral de novo steroid synthesis activates androgen receptor in castration-resistant prostate cancer and is upregulated by treatment with CYP17A1 inhibitors. Cancer Res 71(20):6503–6513

    Article  PubMed  CAS  Google Scholar 

  8. Chang KH et al (2011) Dihydrotestosterone synthesis bypasses testosterone to drive castration-resistant prostate cancer. Proc Natl Acad Sci USA 108(33):13728–13733

    Article  PubMed  CAS  Google Scholar 

  9. Guo Z et al (2009) A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res 69(6):2305–2313

    Article  PubMed  CAS  Google Scholar 

  10. Hu R et al (2009) Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res 69(1):16–22

    Article  PubMed  CAS  Google Scholar 

  11. Lamont KR, Tindall DJ (2011) Minireview: alternative activation pathways for the androgen receptor in prostate cancer. Mol Endocrinol 25(6):897–907

    Article  PubMed  CAS  Google Scholar 

  12. Chen CD et al (2004) Molecular determinants of resistance to antiandrogen therapy. Nat Med 10(1):33–39

    Article  PubMed  Google Scholar 

  13. Gonit M et al (2011) Hormone depletion-insensitivity of prostate cancer cells is supported by the AR without binding to classical response elements. Mol Endocrinol 25(4):621–634

    Article  PubMed  CAS  Google Scholar 

  14. Zhang J et al (2010) C/EBPalpha redirects androgen receptor signaling through a unique bimodal interaction. Oncogene 29(5):723–738

    Article  PubMed  CAS  Google Scholar 

  15. Beato M, Herrlich P, Schutz G (1995) Steroid hormone receptors: many actors in search of a plot. Cell 83(6):851–857

    Article  PubMed  CAS  Google Scholar 

  16. Glass CK, Rosenfeld MG (2000) The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 14(2):121–141

    PubMed  CAS  Google Scholar 

  17. McKenna NJ, O’Malley BW (2002) Combinatorial control of gene expression by nuclear receptors and coregulators. Cell 108(4):465–474

    Article  PubMed  CAS  Google Scholar 

  18. Pratt WB, Toft DO (1997) Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev 18(3):306–360

    Article  PubMed  CAS  Google Scholar 

  19. Shaffer PL et al (2004) Structural basis of androgen receptor binding to selective androgen response elements. Proc Natl Acad Sci USA 101(14):4758–4763

    Article  PubMed  CAS  Google Scholar 

  20. Gioeli D et al (2011) Compensatory pathways induced by MEK inhibition are effective drug targets for combination therapy against castration-resistant prostate cancer. Mol Cancer Ther 10(9):1581–1590

    Article  PubMed  CAS  Google Scholar 

  21. Chen S et al (2006) Androgen receptor phosphorylation and stabilization in prostate cancer by cyclin-dependent kinase 1. Proc Natl Acad Sci USA 103(43):15969–15974

    Article  PubMed  CAS  Google Scholar 

  22. Verrijdt G et al (2006) The androgen receptor DNA-binding domain determines androgen selectivity of transcriptional response. Biochem Soc Trans 34(Pt 6):1089–1094

    PubMed  CAS  Google Scholar 

  23. Wang Q et al (2007) A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. Mol Cell 27(3):380–392

    Article  PubMed  Google Scholar 

  24. Bolton EC et al (2007) Cell- and gene-specific regulation of primary target genes by the androgen receptor. Genes Dev 21(16):2005–2017

    Article  PubMed  CAS  Google Scholar 

  25. Veldscholte J et al (1990) A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens. Biochem Biophys Res Commun 173(2):534–540

    Article  PubMed  CAS  Google Scholar 

  26. Culig Z et al (1993) Mutant androgen receptor detected in an advanced-stage prostatic carcinoma is activated by adrenal androgens and progesterone. Mol Endocrinol 7(12):1541–1550

    Article  PubMed  CAS  Google Scholar 

  27. Taplin ME et al (1995) Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N Engl J Med 332(21):1393–1398

    Article  PubMed  CAS  Google Scholar 

  28. Miyamoto H, Messing EM, Chang C (2004) Androgen deprivation therapy for prostate cancer: current status and future prospects. Prostate 61(4):332–353

    Article  PubMed  CAS  Google Scholar 

  29. Edwards J, Bartlett JM (2005) The androgen receptor and signal-transduction pathways in hormone-refractory prostate cancer. Part 1: Modifications to the androgen receptor. BJU Int 95(9):1320–1326

    Article  PubMed  CAS  Google Scholar 

  30. Grossmann ME, Huang H, Tindall DJ (2001) Androgen receptor signaling in androgen-refractory prostate cancer. J Natl Cancer Inst 93(22):1687–1697

    Article  PubMed  CAS  Google Scholar 

  31. Heinlein CA, Chang C (2004) Androgen receptor in prostate cancer. Endocr Rev 25(2):276–308

    Article  PubMed  CAS  Google Scholar 

  32. Cleutjens KB et al (1997) An androgen response element in a far upstream enhancer region is essential for high, androgen-regulated activity of the prostate-specific antigen promoter. Mol Endocrinol 11(2):148–161

    Article  PubMed  CAS  Google Scholar 

  33. Kim J, Coetzee GA (2004) Prostate specific antigen gene regulation by androgen receptor. J Cell Biochem 93(2):233–241

    Article  PubMed  CAS  Google Scholar 

  34. Dehm SM, Tindall DJ (2006) Ligand-independent androgen receptor activity is activation function-2-independent and resistant to antiandrogens in androgen refractory prostate cancer cells. J Biol Chem 281(38):27882–27893

    Article  PubMed  CAS  Google Scholar 

  35. Jia L, Coetzee GA (2005) Androgen receptor-dependent PSA expression in androgen-independent prostate cancer cells does not involve androgen receptor occupancy of the PSA locus. Cancer Res 65(17):8003–8008

    PubMed  CAS  Google Scholar 

  36. Wang Q et al (2009) Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell 138(2):245–256

    Article  PubMed  CAS  Google Scholar 

  37. Patki M, et al. (2013) Elk1 directs a critical component of growth signaling by the androgen receptor in prostate cancer cells. J Biol Chem (in revision)

    Google Scholar 

  38. Hayward SW, Cunha GR (2000) The prostate: development and physiology. Radiol Clin North Am 38(1):1–14

    Article  PubMed  CAS  Google Scholar 

  39. Norris JD et al (2009) The homeodomain protein HOXB13 regulates the cellular response to androgens. Mol Cell 36(3):405–416

    Article  PubMed  CAS  Google Scholar 

  40. Zhang J et al (2008) Expression and sub-cellular localization of the CCAAT/enhancer binding protein alpha in relation to postnatal development and malignancy of the prostate. Prostate 68(11):1206–1214

    Article  PubMed  Google Scholar 

  41. Sivakumaran S et al (2010) Androgen activation of the folate receptor alpha gene through partial tethering of the androgen receptor by C/EBPalpha. J Steroid Biochem Mol Biol 122(5):333–340

    Article  PubMed  CAS  Google Scholar 

  42. Haile S, Sadar MD (2011) Androgen receptor and its splice variants in prostate cancer. Cell Mol Life Sci 68(24):3971–3981

    Article  PubMed  CAS  Google Scholar 

  43. Andersen RJ et al (2010) Regression of castrate-recurrent prostate cancer by a small-molecule inhibitor of the amino-terminus domain of the androgen receptor. Cancer Cell 17(6):535–546

    Article  PubMed  CAS  Google Scholar 

  44. Sadar MD (2011) Small molecule inhibitors targeting the “achilles’ heel” of androgen receptor activity. Cancer Res 71(4):1208–1213

    Article  PubMed  CAS  Google Scholar 

  45. Sadar MD (2011) Advances in small molecule inhibitors of androgen receptor for the treatment of advanced prostate cancer. World J Urol 30:311–318

    Article  PubMed  Google Scholar 

  46. Hu R et al (2012) Distinct transcriptional programs mediated by the ligand-dependent full-length androgen receptor and its splice variants in castration-resistant prostate cancer. Cancer Res 72(14):3457–3462

    Article  PubMed  CAS  Google Scholar 

  47. Mukhopadhyay NK et al (2006) Unraveling androgen receptor interactomes by an array-based method: discovery of proto-oncoprotein c-Rel as a negative regulator of androgen receptor. Exp Cell Res 312(19):3782–3795

    Article  PubMed  CAS  Google Scholar 

  48. Massie CE et al (2007) New androgen receptor genomic targets show an interaction with the ETS1 transcription factor. EMBO Rep 8(9):871–878

    Article  PubMed  CAS  Google Scholar 

  49. Urbanucci A et al (2012) Overexpression of androgen receptor enhances the binding of the receptor to the chromatin in prostate cancer. Oncogene 31(17):2153–2163

    Article  PubMed  CAS  Google Scholar 

  50. Sahu B et al (2011) Dual role of FoxA1 in androgen receptor binding to chromatin, androgen signalling and prostate cancer. EMBO J 30(19):3962–3976

    Article  PubMed  CAS  Google Scholar 

  51. Gerhardt J et al (2012) FOXA1 promotes tumor progression in prostate cancer and represents a novel hallmark of castration-resistant prostate cancer. Am J Pathol 180(2):848–861

    Article  PubMed  CAS  Google Scholar 

  52. Yordy JS, Muise-Helmericks RC (2000) Signal transduction and the Ets family of transcription factors. Oncogene 19(55):6503–6513

    Article  PubMed  CAS  Google Scholar 

  53. Cesari F et al (2004) Elk-1 knock-out mice engineered by Flp recombinase-mediated cassette exchange. Genesis 38(2):87–92

    Article  PubMed  CAS  Google Scholar 

  54. Hollenhorst PC et al (2007) Genome-wide analyses reveal properties of redundant and specific promoter occupancy within the ETS gene family. Genes Dev 21(15):1882–1894

    Article  PubMed  CAS  Google Scholar 

  55. Wei GH et al (2010) Genome-wide analysis of ETS-family DNA-binding in vitro and in vivo. EMBO J 29(13):2147–2160

    Article  PubMed  CAS  Google Scholar 

  56. Ramji DP, Foka P (2002) CCAAT/enhancer-binding proteins: structure, function and regulation. Biochem J 365(Pt 3):561–575

    PubMed  CAS  Google Scholar 

  57. Umek RM, Friedman AD, McKnight SL (1991) CCAAT-enhancer binding protein: a component of a differentiation switch. Science 251(4991):288–292

    Article  PubMed  CAS  Google Scholar 

  58. Hendricks-Taylor LR, Darlington GJ (1995) Inhibition of cell proliferation by C/EBP alpha occurs in many cell types, does not require the presence of p53 or Rb, and is not affected by large T-antigen. Nucleic Acids Res 23(22):4726–4733

    Article  PubMed  CAS  Google Scholar 

  59. Watkins PJ et al (1996) Impaired proliferation and tumorigenicity induced by CCAAT/enhancer-binding protein. Cancer Res 56(5):1063–1067

    PubMed  CAS  Google Scholar 

  60. Harris TE et al (2001) CCAAT/enhancer-binding protein-alpha cooperates with p21 to inhibit cyclin-dependent kinase-2 activity and induces growth arrest independent of DNA binding. J Biol Chem 276(31):29200–29209

    Article  PubMed  CAS  Google Scholar 

  61. Timchenko NA et al (1996) CCAAT/enhancer-binding protein alpha (C/EBP alpha) inhibits cell proliferation through the p21 (WAF-1/CIP-1/SDI-1) protein. Genes Dev 10(7):804–815

    Article  PubMed  CAS  Google Scholar 

  62. Timchenko NA et al (1997) CCAAT/enhancer binding protein alpha regulates p21 protein and hepatocyte proliferation in newborn mice. Mol Cell Biol 17(12):7353–7361

    PubMed  CAS  Google Scholar 

  63. Timchenko NA, Wilde M, Darlington GJ (1999) C/EBPalpha regulates formation of S-phase-specific E2F-p107 complexes in livers of newborn mice. Mol Cell Biol 19(4):2936–2945

    PubMed  CAS  Google Scholar 

  64. Timchenko NA et al (1999) E2F/p107 and E2F/p130 complexes are regulated by C/EBPalpha in 3T3-L1 adipocytes. Nucleic Acids Res 27(17):3621–3630

    Article  PubMed  CAS  Google Scholar 

  65. Porse BT et al (2001) E2F repression by C/EBPalpha is required for adipogenesis and granulopoiesis in vivo. Cell 107(2):247–258

    Article  PubMed  CAS  Google Scholar 

  66. Wang H et al (2001) C/EBPalpha arrests cell proliferation through direct inhibition of Cdk2 and Cdk4. Mol Cell 8(4):817–828

    Article  PubMed  CAS  Google Scholar 

  67. Wang H et al (2002) C/EBPalpha triggers proteasome-dependent degradation of cdk4 during growth arrest. EMBO J 21(5):930–941

    Article  PubMed  CAS  Google Scholar 

  68. Muller C et al (2004) The CCAAT enhancer-binding protein alpha (C/EBPalpha) requires a SWI/SNF complex for proliferation arrest. J Biol Chem 279(8):7353–7358

    Article  PubMed  Google Scholar 

  69. Wang GL et al (2004) Liver tumors escape negative control of proliferation via PI3K/Akt-mediated block of C/EBP alpha growth inhibitory activity. Genes Dev 18(8):912–925

    Article  PubMed  CAS  Google Scholar 

  70. Wang GL, Timchenko NA (2005) Dephosphorylated C/EBPalpha accelerates cell proliferation through sequestering retinoblastoma protein. Mol Cell Biol 25(4):1325–1338

    Article  PubMed  CAS  Google Scholar 

  71. Chattopadhyay S et al (2006) The CCAAT enhancer-binding protein-alpha negatively regulates the transactivation of androgen receptor in prostate cancer cells. Mol Endocrinol 20(5):984–995

    Article  PubMed  CAS  Google Scholar 

  72. Yu YP et al (2004) Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy. J Clin Oncol 22(14):2790–2799

    Article  PubMed  CAS  Google Scholar 

  73. Podlasek CA, Clemens JQ, Bushman W (1999) Hoxa-13 gene mutation results in abnormal seminal vesicle and prostate development. J Urol 161(5):1655–1661

    Article  PubMed  CAS  Google Scholar 

  74. Huang L et al (2007) Posterior Hox gene expression and differential androgen regulation in the developing and adult rat prostate lobes. Endocrinology 148(3):1235–1245

    Article  PubMed  CAS  Google Scholar 

  75. Kim YR et al (2010) HOXB13 promotes androgen independent growth of LNCaP prostate cancer cells by the activation of E2F signaling. Mol Cancer 9:124

    Article  PubMed  Google Scholar 

  76. Jung C et al (2004) HOXB13 induces growth suppression of prostate cancer cells as a repressor of hormone-activated androgen receptor signaling. Cancer Res 64(24):9185–9192

    Article  PubMed  CAS  Google Scholar 

  77. Tomlins SA et al (2005) Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310(5748):644–648

    Article  PubMed  CAS  Google Scholar 

  78. Tomlins SA et al (2006) TMPRSS2:ETV4 gene fusions define a third molecular subtype of prostate cancer. Cancer Res 66(7):3396–3400

    Article  PubMed  CAS  Google Scholar 

  79. Helgeson BE et al (2008) Characterization of TMPRSS2:ETV5 and SLC45A3:ETV5 gene fusions in prostate cancer. Cancer Res 68(1):73–80

    Article  PubMed  CAS  Google Scholar 

  80. Yu J et al (2010) An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell 17(5):443–454

    Article  PubMed  CAS  Google Scholar 

  81. Shin S et al (2009) Induction of prostatic intraepithelial neoplasia and modulation of androgen receptor by ETS variant 1/ETS-related protein 81. Cancer Res 69(20):8102–8110

    Article  PubMed  CAS  Google Scholar 

  82. Lu S, Jenster G, Epner DE (2000) Androgen induction of cyclin-dependent kinase inhibitor p21 gene: role of androgen receptor and transcription factor Sp1 complex. Mol Endocrinol 14(5):753–760

    Article  PubMed  CAS  Google Scholar 

  83. Slagsvold T et al (2001) DNA binding-independent transcriptional activation by the androgen receptor through triggering of coactivators. J Biol Chem 276(33):31030–31036

    Article  PubMed  CAS  Google Scholar 

  84. Larsson R et al (2011) Clinical trial update and novel therapeutic approaches for metastatic prostate cancer. Curr Med Chem 18(29):4440–4453

    Article  PubMed  CAS  Google Scholar 

  85. Dunn MW, Kazer MW (2011) Prostate cancer overview. Semin Oncol Nurs 27(4):241–250

    Article  PubMed  Google Scholar 

  86. Myklak K, Wilson S (2011) An update on the changing indications for androgen deprivation therapy for prostate cancer. Prostate Cancer 2011:419174

    Article  PubMed  Google Scholar 

  87. Holzbeierlein JM, McLaughlin MD, Thrasher JB (2004) Complications of androgen deprivation therapy for prostate cancer. Curr Opin Urol 14(3):177–183

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manohar Ratnam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ratnam, M., Patki, M., Gonit, M., Trumbly, R. (2013). Mechanisms of ARE-Independent Gene Activation by the Androgen Receptor in Prostate Cancer Cells: Potential Targets for Better Intervention Strategies. In: Wang, Z. (eds) Androgen-Responsive Genes in Prostate Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6182-1_6

Download citation

Publish with us

Policies and ethics