Skip to main content

Androgen-Dependent Oncogenic Activation of ETS Transcription Factors by Recurrent Gene Fusions in Prostate Cancer: Biological and Clinical Implications

  • Chapter
  • First Online:
Androgen-Responsive Genes in Prostate Cancer

Abstract

Half of all prostate cancers in the Western countries harbor gene fusions that involve regulatory sequences of the androgen receptor (AR)-responsive genes (predominantlyTMPRSS2) and protein coding sequences of nuclear transcription factors of the ETS gene family (predominantlyERG). This leads to unscheduled androgen-dependent expression of ETS-related transcription factors in tumor cell-specific manner. Extensive evaluations ofERGalterations at genome, transcript, and protein levels demonstrate unprecedented specificity of ERG for detecting prostate tumor cells. Assessment ofERGalterations in combination with other common prostate cancer gene alterations (AMACR,PCA3,p63) has potential in improving CaP diagnosis. Utility of ERG in assessing the clinical behavior of prostate cancer is uncertain. Strong correlation ofERGexpression with known androgen-responsive genes in prostate tumors has potential in developing gene panels inclusive of ERG for monitoring androgen receptor functional status in the disease continuum. Studies focusing on oncogenic functions ofERGpoint to its involvement in: abrogating differentiation; facilitating cell invasion and epithelial to mesenchymal transition; and disrupting epigenetic, inflammatory, and DNA damage control mechanisms. Therapeutic targeting ofERGor ERG interacting proteins, such as PARP hold promise in developing new strategies for the treatment of prostate cancer. In summary multipronged evaluations of theERGin CaP continue to reflect the critical role of this prevalent oncogenic activation in a CaP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62:10–29

    Article  PubMed  Google Scholar 

  2. De Marzo AM, Platz EA, Sutcliffe S, Xu J, Gronberg H et al (2007) Inflammation in prostate carcinogenesis. Nat Rev Cancer 7:256–269

    Article  PubMed  CAS  Google Scholar 

  3. Richter E, Srivastava S, Dobi A (2007) Androgen receptor and prostate cancer. Prostate Cancer Prostatic Dis 10:114–118

    Article  PubMed  CAS  Google Scholar 

  4. Sartor AO, Hricak H, Wheeler TM, Coleman J, Penson DF et al (2008) Evaluating localized prostate cancer and identifying candidates for focal therapy. Urology 72:S12–S24

    Article  PubMed  Google Scholar 

  5. Kumar-Sinha C, Tomlins SA, Chinnaiyan AM (2008) Recurrent gene fusions in prostate cancer. Nat Rev Cancer 8:497–511

    Article  PubMed  CAS  Google Scholar 

  6. Yu J, Mani RS, Cao Q, Brenner CJ, Cao X et al (2010) An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell 17:443–454

    Article  PubMed  CAS  Google Scholar 

  7. Knudsen BS, Vasioukhin V (2010) Mechanisms of prostate cancer initiation and progression. Adv Cancer Res 109:1–50

    Article  PubMed  CAS  Google Scholar 

  8. Carver BS, Chapinski C, Wongvipat J, Hieronymus H, Chen Y et al (2011) Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell 19:575–586

    Article  PubMed  CAS  Google Scholar 

  9. Sreenath TL, Dobi A, Petrovics G, Srivastava S (2011) Oncogenic activation of ERG: A predominant mechanism in prostate cancer. J Carcinog 10:37

    Article  PubMed  CAS  Google Scholar 

  10. Rosen P, Sesterhenn IA, Brassell SA, McLeod DG, Srivastava S, Dobi A (2012) Clinical potential of the ERG oncoprotein in prostate cancer. Nat Rev Urol 9:131–137

    Article  PubMed  CAS  Google Scholar 

  11. De Marzo AM, Nelson WG, Bieberich CJ, Yegnasubramanian S (2010) Prostate cancer: new answers prompt new questions regarding cell of origin. Nat Rev Urol 7:650–652

    Article  PubMed  Google Scholar 

  12. Shen MM, Abate-Shen C (2010) Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev 24:1967–2000

    Article  PubMed  CAS  Google Scholar 

  13. Barbieri CE, Baca SC, Lawrence MS, Demichelis F, Blattner M et al (2012) Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet 44:685–689

    Article  PubMed  CAS  Google Scholar 

  14. Koh CM, Bieberich CJ, Dang CV, Nelson WG, Yegnasubramanian S, De Marzo AM (2010) MYC and prostate cancer. Genes Cancer 1:617–628

    Article  PubMed  CAS  Google Scholar 

  15. Sarker D, Reid AH, Yap TA, de Bono JS (2009) Targeting the PI3K/AKT pathway for the treatment of prostate cancer. Clin Cancer Res 15:4799–4805, An official journal of the American Association for Cancer Research

    Article  PubMed  CAS  Google Scholar 

  16. Ryan CJ, Tindall DJ (2011) Androgen receptor rediscovered: the new biology and targeting the androgen receptor therapeutically. J Clin Oncol 29:3651–3658, Official journal of the American Society of Clinical Oncology

    Article  PubMed  CAS  Google Scholar 

  17. Nadiminty N, Gao AC (2012) Mechanisms of persistent activation of the androgen receptor in CRPC: recent advances and future perspectives. World J Urol 30:287–295

    Article  PubMed  CAS  Google Scholar 

  18. Hollenhorst PC, McIntosh LP, Graves BJ (2011) Genomic and biochemical insights into the specificity of ETS transcription factors. Annu Rev Biochem 80:437–471

    Article  PubMed  CAS  Google Scholar 

  19. Rubin MA (2012) ETS rearrangements in prostate cancer. Asian J Androl 14:393–399

    Article  PubMed  CAS  Google Scholar 

  20. Day JR, Jost M, Reynolds MA, Groskopf J, Rittenhouse H (2011) PCA3: from basic molecular science to the clinical lab. Cancer Lett 301:1–6

    Article  PubMed  CAS  Google Scholar 

  21. Ernst T, Hergenhahn M, Kenzelmann M, Cohen CD, Bonrouhi M et al (2002) Decrease and gain of gene expression are equally discriminatory markers for prostate carcinoma: a gene expression analysis on total and microdissected prostate tissue. Am J Pathol 160:2169–2180

    Article  PubMed  CAS  Google Scholar 

  22. Vanaja DK, Cheville JC, Iturria SJ, Young CY (2003) Transcriptional silencing of zinc finger protein 185 identified by expression profiling is associated with prostate cancer progression. Cancer Res 63:3877–3882

    PubMed  CAS  Google Scholar 

  23. Petrovics G, Liu A, Shaheduzzaman S, Furusato B, Sun C et al (2005) Frequent overexpression of ETS-related gene-1 (ERG1) in prostate cancer transcriptome. Oncogene 24:3847–3852

    Article  PubMed  CAS  Google Scholar 

  24. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R et al (2005) Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310:644–648

    Article  PubMed  CAS  Google Scholar 

  25. Rubin MA, Maher CA, Chinnaiyan AM (2011) Common gene rearrangements in prostate cancer. J Clin Oncol 29:3659–3668, Official journal of the American Society of Clinical Oncology

    Article  PubMed  CAS  Google Scholar 

  26. Svensson MA, LaFargue CJ, MacDonald TY, Pflueger D, Kitabayashi N et al (2011) Testing mutual exclusivity of ETS rearranged prostate cancer. Lab Investig 91:404–412, A journal of technical methods and pathology

    Article  PubMed  CAS  Google Scholar 

  27. Wang Q, Li W, Liu XS, Carroll JS, Janne OA et al (2007) A hierarchical network of ­transcription factors governs androgen receptor-dependent prostate cancer growth. Mol Cell 27:380–392

    Article  PubMed  CAS  Google Scholar 

  28. Palanisamy N, Ateeq B, Kalyana-Sundaram S, Pflueger D, Ramnarayanan K et al (2010) Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma. Nat Med 16:793–798

    Article  PubMed  CAS  Google Scholar 

  29. Wang J, Cai Y, Yu W, Ren C, Spencer DM, Ittmann M (2008) Pleiotropic biological activities of alternatively spliced TMPRSS2/ERG fusion gene transcripts. Cancer Res 68:8516–8524

    Article  PubMed  CAS  Google Scholar 

  30. Clark JP, Munson KW, Gu JW, Lamparska-Kupsik K, Chan KG et al (2008) Performance of a single assay for both type III and type VI TMPRSS2:ERG fusions in noninvasive prediction of prostate biopsy outcome. Clin Chem 54:2007–2017

    Article  PubMed  CAS  Google Scholar 

  31. Hu Y, Dobi A, Sreenath T, Cook C, Tadase AY et al (2008) Delineation of TMPRSS2-ERG splice variants in prostate cancer. Clin Cancer Res 14:4719–4725, An official journal of the American Association for Cancer Research

    Article  PubMed  CAS  Google Scholar 

  32. Nam RK, Sugar L, Yang W, Srivastava S, Klotz LH et al (2007) Expression of the TMPRSS2:ERG fusion gene predicts cancer recurrence after surgery for localised prostate cancer. Br J Cancer 97:1690–1695

    Article  PubMed  CAS  Google Scholar 

  33. Gopalan A, Leversha MA, Satagopan JM, Zhou Q, Al-Ahmadie HA et al (2009) TMPRSS2-ERG gene fusion is not associated with outcome in patients treated by prostatectomy. Cancer Res 69:1400–1406

    Article  PubMed  CAS  Google Scholar 

  34. St John J, Powell K, Conley-LaComb MK, Chinni SR (2012) TMPRSS2-ERG fusion gene expression in prostate tumor cells and its clinical and biological significance in prostate cancer progression. J Cancer Sci Ther 4:94–101

    Google Scholar 

  35. Mehra R, Han B, Tomlins SA, Wang L, Menon A et al (2007) Heterogeneity of TMPRSS2 gene rearrangements in multifocal prostate adenocarcinoma: molecular evidence for an independent group of diseases. Cancer Res 67:7991–7995

    Article  PubMed  CAS  Google Scholar 

  36. Barry M, Perner S, Demichelis F, Rubin MA (2007) TMPRSS2-ERG fusion heterogeneity in multifocal prostate cancer: clinical and biologic implications. Urology 70:630–633

    Article  PubMed  Google Scholar 

  37. Clark J, Attard G, Jhavar S, Flohr P, Reid A et al (2008) Complex patterns of ETS gene alteration arise during cancer development in the human prostate. Oncogene 27:1993–2003

    Article  PubMed  CAS  Google Scholar 

  38. Furusato B, Gao CL, Ravindranath L, Chen Y, Cullen J et al (2008) Mapping of TMPRSS2-ERG fusions in the context of multi-focal prostate cancer. Mod Pathol 21:67–75, An official journal of the United States and Canadian Academy of Pathology, Inc

    Article  PubMed  CAS  Google Scholar 

  39. Mosquera JM, Mehra R, Regan MM, Perner S, Genega EM et al (2009) Prevalence of TMPRSS2-ERG fusion prostate cancer among men undergoing prostate biopsy in the United States. Clin Cancer Res 15:4706–4711, An official journal of the American Association for Cancer Research

    Article  PubMed  CAS  Google Scholar 

  40. Perner S, Svensson MA, Hossain RR, Day JR, Groskopf J et al (2010) ERG rearrangement metastasis patterns in locally advanced prostate cancer. Urology 75:762–767

    Article  PubMed  Google Scholar 

  41. King JC, Xu J, Wongvipat J, Hieronymus H, Carver BS et al (2009) Cooperativity of TMPRSS2-ERG with PI3-kinase pathway activation in prostate oncogenesis. Nat Genet 41:524–526

    Article  PubMed  CAS  Google Scholar 

  42. Mani RS, Iyer MK, Cao Q, Brenner JC, Wang L et al (2011) TMPRSS2-ERG-mediated feed-forward regulation of wild-type ERG in human prostate cancers. Cancer Res 71:5387–5392

    Article  PubMed  CAS  Google Scholar 

  43. Mani RS, Tomlins SA, Callahan K, Ghosh A, Nyati MK et al (2009) Induced chromosomal proximity and gene fusions in prostate cancer. Science 326:1230

    Article  PubMed  CAS  Google Scholar 

  44. Lin C, Yang L, Tanasa B, Hutt K, Ju BG et al (2009) Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell 139:1069–1083

    Article  PubMed  CAS  Google Scholar 

  45. Haffner MC, Aryee MJ, Toubaji A, Esopi DM, Albadine R et al (2010) Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nat Genet 42:668–675

    Article  PubMed  CAS  Google Scholar 

  46. Rice KR, Chen Y, Ali A, Whitman EJ, Blase A et al (2010) Evaluation of the ETS-related gene mRNA in urine for the detection of prostate cancer. Clin Cancer Res 16:1572–1576, An official journal of the American Association for Cancer Research

    Article  PubMed  CAS  Google Scholar 

  47. Magi-Galluzzi C, Tsusuki T, Elson P, Simmerman K, LaFargue C et al (2011) TMPRSS2-ERG gene fusion prevalence and class are significantly different in prostate cancer of Caucasian, African-American and Japanese patients. Prostate 71:489–497

    Article  PubMed  CAS  Google Scholar 

  48. Rosen P, Pfister D, Young D, Petrovics G, Chen Y et al (2012) Differences in frequency of ERG oncoprotein expression between index tumors of Caucasian and African American Patients With Prostate Cancer. Urology 80:749–753

    Article  PubMed  Google Scholar 

  49. Oikawa T, Yamada T (2003) Molecular biology of the Ets family of transcription factors. Gene 303:11–34

    Article  PubMed  CAS  Google Scholar 

  50. Ichikawa H, Shimizu K, Hayashi Y, Ohki M (1994) An RNA-binding protein gene, TLS/FUS, is fused to ERG in human myeloid leukemia with t(16;21) chromosomal translocation. Cancer Res 54:2865–2868

    PubMed  CAS  Google Scholar 

  51. Marcucci G, Maharry K, Whitman SP, Vukosavljevic T, Paschka P et al (2007) High expression levels of the ETS-related gene, ERG, predict adverse outcome and improve molecular risk-based classification of cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B Study. J Clin Oncol 25:3337–3343, Official journal of the American Society of Clinical Oncology

    Article  PubMed  CAS  Google Scholar 

  52. Sorensen PH, Chen CS, Smith FO, Arthur DC, Domer PH et al (1994) Molecular rearrangements of the MLL gene are present in most cases of infant acute myeloid leukemia and are strongly correlated with monocytic or myelomonocytic phenotypes. J Clin Invest 93:429–437

    Article  PubMed  CAS  Google Scholar 

  53. Marcucci G, Baldus CD, Ruppert AS, Radmacher MD, Mrozek K et al (2005) Overexpression of the ETS-related gene, ERG, predicts a worse outcome in acute myeloid leukemia with normal karyotype: a Cancer and Leukemia Group B study. J Clin Oncol 23:9234–9242, Official journal of the American Society of Clinical Oncology

    Article  PubMed  CAS  Google Scholar 

  54. Iljin K, Wolf M, Edgren H, Gupta S, Kilpinen S et al (2006) TMPRSS2 fusions with oncogenic ETS factors in prostate cancer involve unbalanced genomic rearrangements and are associated with HDAC1 and epigenetic reprogramming. Cancer Res 66:10242–10246

    Article  PubMed  CAS  Google Scholar 

  55. Nelson WG, De Marzo AM, Yegnasubramanian S (2009) Epigenetic alterations in human prostate cancers. Endocrinology 150:3991–4002

    Article  PubMed  CAS  Google Scholar 

  56. Kunderfranco P, Mello-Grand M, Cangemi R, Pellini S, Mensah A et al (2010) ETS transcription factors control transcription of EZH2 and epigenetic silencing of the tumor suppressor gene Nkx3.1 in prostate cancer. PLoS One 5:e10547

    Article  PubMed  CAS  Google Scholar 

  57. Abbas A, Gupta S (2008) The role of histone deacetylases in prostate cancer. Epigenetics 3:300–309, Official journal of the DNA Methylation Society

    Article  PubMed  Google Scholar 

  58. Gupta S, Iljin K, Sara H, Mpindi JP, Mirtti T et al (2010) FZD4 as a mediator of ERG oncogene-induced WNT signaling and epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Res 70:6735–6745

    Article  PubMed  CAS  Google Scholar 

  59. Fortson WS, Kayarthodi S, Fujimura Y, Xu H, Matthews R et al (2011) Histone deacetylase inhibitors, valproic acid and trichostatin-A induce apoptosis and affect acetylation status of p53 in ERG-positive prostate cancer cells. Int J Oncol 39:111–119

    PubMed  CAS  Google Scholar 

  60. Buttice G, Duterque-Coquillaud M, Basuyaux JP, Carrere S, Kurkinen M, Stehelin D (1996) Erg, an Ets-family member, differentially regulates human collagenase1 (MMP1) and stromelysin1 (MMP3) gene expression by physically interacting with the Fos/Jun complex. Oncogene 13:2297–2306

    PubMed  CAS  Google Scholar 

  61. Tomlins SA, Laxman B, Varambally S, Cao X, Yu J et al (2008) Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia 10:177–188

    Article  PubMed  CAS  Google Scholar 

  62. Klezovitch O, Risk M, Coleman I, Lucas JM, Null M et al (2008) A causal role for ERG in neoplastic transformation of prostate epithelium. Proc Natl Acad Sci USA 105:2105–2110

    Article  PubMed  Google Scholar 

  63. Carver BS, Tran J, Gopalan A, Chen Z, Shaikh S et al (2009) Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nat Genet 41:619–624

    Article  PubMed  CAS  Google Scholar 

  64. Cai J, Kandagatla P, Singareddy R, Kropinski A, Sheng S et al (2010) Androgens induce functional CXCR4 through ERG factor expression in TMPRSS2-ERG fusion-positive prostate cancer cells. Transl Oncol 3:195–203

    PubMed  Google Scholar 

  65. Flajollet S, Tian TV, Flourens A, Tomavo N, Villers A et al (2011) Abnormal expression of the ERG transcription factor in prostate cancer cells activates osteopontin. Mol Cancer Res 9:914–924

    Article  PubMed  CAS  Google Scholar 

  66. Thalmann GN, Sikes RA, Devoll RE, Kiefer JA, Markwalder R et al (1999) Osteopontin: possible role in prostate cancer progression. Clin Cancer Res 5:2271–2277, An official journal of the American Association for Cancer Research

    PubMed  CAS  Google Scholar 

  67. Zong Y, Xin L, Goldstein AS, Lawson DA, Teitell MA, Witte ON (2009) ETS family transcription factors collaborate with alternative signaling pathways to induce carcinoma from adult murine prostate cells. Proc Natl Acad Sci USA 106:12465–12470

    Article  PubMed  CAS  Google Scholar 

  68. Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890

    Article  PubMed  CAS  Google Scholar 

  69. Leshem O, Madar S, Kogan-Sakin I, Kamer I, Goldstein I et al (2011) TMPRSS2/ERG promotes epithelial to mesenchymal transition through the ZEB1/ZEB2 axis in a prostate cancer model. PLoS One 6:e21650

    Article  PubMed  CAS  Google Scholar 

  70. Mochmann LH, Bock J, Ortiz-Tanchez J, Schlee C, Bohne A et al (2011) Genome-wide screen reveals WNT11, a non-canonical WNT gene, as a direct target of ETS transcription factor ERG. Oncogene 30:2044–2056

    Article  PubMed  CAS  Google Scholar 

  71. Uysal-Onganer P, Kawano Y, Caro M, Walker MM, Diez S et al (2010) Wnt-11 promotes neuroendocrine-like differentiation, survival and migration of prostate cancer cells. Mol Cancer 9:55

    Article  PubMed  CAS  Google Scholar 

  72. Drake JM, Strohbehn G, Bair TB, Moreland JG, Henry MD (2009) ZEB1 enhances transendothelial migration and represses the epithelial phenotype of prostate cancer cells. Mol Biol Cell 20:2207–2217

    Article  PubMed  CAS  Google Scholar 

  73. Martin SK, Kyprianou N (2011) Gene fusions find an ERG-way to tumor inflammation. Cancer Biol Ther 11:418–420

    Article  PubMed  CAS  Google Scholar 

  74. Wang J, Cai Y, Shao LJ, Siddiqui J, Palanisamy N et al (2011) Activation of NF-{kappa}B by TMPRSS2/ERG Fusion Isoforms through Toll-Like Receptor-4. Cancer Res 71:1325–1333

    Article  PubMed  CAS  Google Scholar 

  75. Mohamed AA, Tan SH, Sun C, Shaheduzzaman S, Hu Y et al (2011) ERG oncogene modulates prostaglandin signaling in prostate cancer cells. Cancer Biol Ther 11:410–417

    Article  PubMed  CAS  Google Scholar 

  76. Brenner JC, Ateeq B, Li Y, Yocum AK, Cao Q et al (2011) Mechanistic rationale for inhibition of poly(ADP-ribose) polymerase in ETS gene fusion-positive prostate cancer. Cancer Cell 19:664–678

    Article  PubMed  CAS  Google Scholar 

  77. Goldstein AS, Huang J, Guo C, Garraway IP, Witte ON (2010) Identification of a cell of origin for human prostate cancer. Science 329:568–571

    Article  PubMed  CAS  Google Scholar 

  78. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y et al (2010) Integrative genomic profiling of human prostate cancer. Cancer Cell 18:11–22

    Article  PubMed  CAS  Google Scholar 

  79. Berger MF, Lawrence MS, Demichelis F, Drier Y, Cibulskis K et al (2011) The genomic complexity of primary human prostate cancer. Nature 470:214–220

    Article  PubMed  CAS  Google Scholar 

  80. Rickman DS, Chen YB, Banerjee S, Pan Y, Yu J et al (2010) ERG cooperates with androgen receptor in regulating trefoil factor 3 in prostate cancer disease progression. Neoplasia 12:1031–1040

    PubMed  CAS  Google Scholar 

  81. Chng KR, Chang CW, Tan SK, Yang C, Hong SZ et al (2012) A transcriptional repressor co-regulatory network governing androgen response in prostate cancers. EMBO J 31:2810–2823

    Article  PubMed  CAS  Google Scholar 

  82. Masuda K, Werner T, Maheshwari S, Frisch M, Oh S et al (2005) Androgen receptor binding sites identified by a GREF_GATA model. J Mol Biol 353:763–771

    Article  PubMed  CAS  Google Scholar 

  83. Shin S, Kim TD, Jin F, van Deursen JM, Dehm SM et al (2009) Induction of prostatic intraepithelial neoplasia and modulation of androgen receptor by ETS variant 1/ETS-related protein 81. Cancer Res 69:8102–8110

    Article  PubMed  CAS  Google Scholar 

  84. Wei GH, Badis G, Berger MF, Kivioja T, Palin K et al (2010) Genome-wide analysis of ETS-family DNA-binding in vitro and in vivo. EMBO J 29:2147–2160

    Article  PubMed  CAS  Google Scholar 

  85. Hollenhorst PC, Ferris MW, Hull MA, Chae H, Kim S, Graves BJ (2011) Oncogenic ETS proteins mimic activated RAS/MAPK signaling in prostate cells. Genes Dev 25:2147–2157

    Article  PubMed  CAS  Google Scholar 

  86. Shaikhibrahim Z, Wernert N (2012) ETS transcription factors and prostate cancer: the role of the family prototype ETS-1 (review). Int J Oncol 40:1748–1754

    PubMed  CAS  Google Scholar 

  87. Dayyani F, Gallick GE, Logothetis CJ, Corn PG (2011) Novel therapies for metastatic castrate-resistant prostate cancer. J Natl Cancer Inst 103:1665–1675

    Article  PubMed  CAS  Google Scholar 

  88. Azzouni F, Godoy A, Li Y, Mohler J (2012) The 5 alpha-reductase isozyme family: a review of basic biology and their role in human diseases. Adv Urol 2012:530121

    PubMed  Google Scholar 

  89. Kohli M, Qin R, Jimenez R, Dehm SM (2012) Biomarker-based targeting of the androgen–androgen receptor axis in advanced prostate cancer. Adv Urol 2012:781459

    PubMed  Google Scholar 

  90. Sun C, Shi Y, Xu LL, Nageswararao C, Davis LD et al (2006) Androgen receptor mutation (T877A) promotes prostate cancer cell growth and cell survival. Oncogene 25:3905–3913

    Article  PubMed  CAS  Google Scholar 

  91. Alimirah F, Panchanathan R, Chen J, Zhang X, Ho SM, Choubey D (2007) Expression of androgen receptor is negatively regulated by p53. Neoplasia 9:1152–1159

    Article  PubMed  CAS  Google Scholar 

  92. Guseva NV, Rokhlin OW, Glover RA, Cohen MB (2012) P53 and the proteasome regulate androgen receptor activity. Cancer Biol Ther 13:553–558

    Article  PubMed  CAS  Google Scholar 

  93. Montgomery RB, Mostaghel EA, Vessella R, Hess DL, Kalhorn TF et al (2008) Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res 68:4447–4454

    Article  PubMed  CAS  Google Scholar 

  94. Romics I, Banfi G, Szekely E, Krenacs T, Szende B (2008) Expression of p21(waf1/cip1), p27 (kip1), p63 and androgen receptor in low and high Gleason score prostate cancer. Pathol Oncol Res 14:307–311

    Article  PubMed  Google Scholar 

  95. Qiu YQ, Leuschner I, Braun PM (2008) Androgen receptor expression in clinically localized prostate cancer: immunohistochemistry study and literature review. Asian J Androl 10:855–863

    Article  PubMed  Google Scholar 

  96. Wako K, Kawasaki T, Yamana K, Suzuki K, Jiang S et al (2008) Expression of androgen receptor through androgen-converting enzymes is associated with biological aggressiveness in prostate cancer. J Clin Pathol 61:448–454

    Article  PubMed  CAS  Google Scholar 

  97. Szabo J, Bartok K, Krenacs T, Szepesvary Z, Szende B (2009) GnRH receptor and androgen receptor status and outcome of advanced prostate carcinomas. Anticancer Res 29:681–684

    PubMed  Google Scholar 

  98. Donovan MJ, Osman I, Khan FM, Vengrenyuk Y, Capodieci P et al (2010) Androgen receptor expression is associated with prostate cancer-specific survival in castrate patients with metastatic disease. BJU Int 105:462–467

    Article  PubMed  CAS  Google Scholar 

  99. Xu LL, Srikantan V, Sesterhenn IA, Augustus M, Dean R et al (2000) Expression profile of an androgen regulated prostate specific homeobox gene NKX3.1 in primary prostate cancer. J Urol 163:972–979

    Article  PubMed  CAS  Google Scholar 

  100. Segawa T, Nau ME, Xu LL, Chilukuri RN, Makarem M et al (2002) Androgen-induced expression of endoplasmic reticulum (ER) stress response genes in prostate cancer cells. Oncogene 21:8749–8758

    Article  PubMed  CAS  Google Scholar 

  101. Velasco AM, Gillis KA, Li Y, Brown EL, Sadler TM et al (2004) Identification and validation of novel androgen-regulated genes in prostate cancer. Endocrinology 145:3913–3924

    Article  PubMed  CAS  Google Scholar 

  102. Dehm SM, Tindall DJ (2006) Molecular regulation of androgen action in prostate cancer. J Cell Biochem 99:333–344

    Article  PubMed  CAS  Google Scholar 

  103. Heemers HV, Tindall DJ (2007) Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. Endocr Rev 28:778–808

    Article  PubMed  CAS  Google Scholar 

  104. Li H, Xu LL, Masuda K, Raymundo E, McLeod DG et al (2008) A feedback loop between the androgen receptor and a NEDD4-binding protein, PMEPA1, in prostate cancer cells. J Biol Chem 283:28988–28995

    Article  PubMed  CAS  Google Scholar 

  105. Wang Q, Li W, Zhang Y, Yuan X, Xu K et al (2009) Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell 138:245–256

    Article  PubMed  CAS  Google Scholar 

  106. Mostaghel EA, Geng L, Holcomb I, Coleman IM, Lucas J et al (2010) Variability in the androgen response of prostate epithelium to 5alpha-reductase inhibition: implications for prostate cancer chemoprevention. Cancer Res 70:1286–1295

    Article  PubMed  CAS  Google Scholar 

  107. Varambally S, Yu J, Laxman B, Rhodes DR, Mehra R et al (2005) Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. Cancer Cell 8:393–406

    Article  PubMed  CAS  Google Scholar 

  108. Hermans KG, van Marion R, van Dekken H, Jenster G, van Weerden WM, Trapman J (2006) TMPRSS2:ERG fusion by translocation or interstitial deletion is highly relevant in androgen-dependent prostate cancer, but is bypassed in late-stage androgen receptor-negative prostate cancer. Cancer Res 66:10658–10663

    Article  PubMed  CAS  Google Scholar 

  109. Tomlins SA, Mehra R, Rhodes DR, Cao X, Wang L et al (2007) Integrative molecular concept modeling of prostate cancer progression. Nat Genet 39:41–51

    Article  PubMed  CAS  Google Scholar 

  110. Sterbis JR, Gao C, Furusato B, Chen Y, Shaheduzzaman S et al (2008) Higher expression of the androgen-regulated gene PSA/HK3 mRNA in prostate cancer tissues predicts biochemical recurrence-free survival. Clinical Cancer Res 14:758–763, An official journal of the American Association for Cancer Research

    Article  CAS  Google Scholar 

  111. Mendiratta P, Mostaghel E, Guinney J, Tewari AK, Porrello A et al (2009) Genomic strategy for targeting therapy in castration-resistant prostate cancer. J Clin Oncol 27:2022–2029, Official journal of the American Society of Clinical Oncology

    Article  PubMed  CAS  Google Scholar 

  112. Foley R, Hollywood D, Lawler M (2004) Molecular pathology of prostate cancer: the key to identifying new biomarkers of disease. Endocr Relat Cancer 11:477–488

    Article  PubMed  CAS  Google Scholar 

  113. Dobi A, Furusato B, Shaheduzzaman S, Chen Y, Vahey M et al (2010) ERG expression levels in prostate tumors reflect functional status of the androgen receptor (AR) as a consequence of fusion of ERG with AR regulated gene promoters. Open Cancer J 3:101–108

    CAS  Google Scholar 

  114. Perner S, Demichelis F, Beroukhim R, Schmidt FH, Mosquera JM et al (2006) TMPRSS2:ERG fusion-associated deletions provide insight into the heterogeneity of prostate cancer. Cancer Res 66:8337–8341

    Article  PubMed  CAS  Google Scholar 

  115. Wang J, Cai Y, Ren C, Ittmann M (2006) Expression of variant TMPRSS2/ERG fusion messenger RNAs is associated with aggressive prostate cancer. Cancer Res 66:8347–8351

    Article  PubMed  CAS  Google Scholar 

  116. Demichelis F, Fall K, Perner S, Andren O, Schmidt F et al (2007) TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort. Oncogene 26:4596–4599

    Article  PubMed  CAS  Google Scholar 

  117. Rajput AB, Miller MA, De Luca A, Boyd N, Leung S et al (2007) Frequency of the TMPRSS2:ERG gene fusion is increased in moderate to poorly differentiated prostate cancers. J Clin Pathol 60:1238–1243

    Article  PubMed  CAS  Google Scholar 

  118. Rowley JD (2009) Chromosomes in leukemia and beyond: from irrelevant to central players. Annu Rev Genomics Hum Genet 10:1–18

    Article  PubMed  CAS  Google Scholar 

  119. Netto GJ, Epstein JI (2010) Theranostic and prognostic biomarkers: genomic applications in urological malignancies. Pathology 42:384–394

    Article  PubMed  Google Scholar 

  120. Netto GJ (2011) Molecular diagnostics in urologic malignancies: a work in progress. Arch Pathol Lab Med 135:610–621

    PubMed  CAS  Google Scholar 

  121. Attard G, de Bono JS, Clark J, Cooper CS (2010) Studies of TMPRSS2-ERG gene fusions in diagnostic trans-rectal prostate biopsies. Clin Cancer Res 16:1340, author reply 40

    Article  PubMed  CAS  Google Scholar 

  122. Yaskiv O, Zhang X, Simmerman K, Daly T, He H et al (2011) The utility of ERG/P63 double immunohistochemical staining in the diagnosis of limited cancer in prostate needle biopsies. Am J Surg Pathol 35:1062–1068

    Article  PubMed  Google Scholar 

  123. Leman ES, Getzenberg RH (2009) Biomarkers for prostate cancer. J Cell Biochem 108:3–9

    Article  PubMed  CAS  Google Scholar 

  124. Gao X, Li LY, Zhou FJ, Xie KJ, Shao CK et al (2012) ERG rearrangement for predicting subsequent cancer diagnosis in high-grade prostatic intraepithelial neoplasia and lymph node metastasis. Clin Cancer Res 18:4163–4172, An official journal of the American Association for Cancer Research

    Article  PubMed  CAS  Google Scholar 

  125. Clark JP, Cooper CS (2009) ETS gene fusions in prostate cancer. Nat Rev Urol 6:429–439

    Article  PubMed  CAS  Google Scholar 

  126. Winnes M, Lissbrant E, Damber JE, Stenman G (2007) Molecular genetic analyses of the TMPRSS2-ERG and TMPRSS2-ETV1 gene fusions in 50 cases of prostate cancer. Oncol Rep 17:1033–1036

    PubMed  CAS  Google Scholar 

  127. Saramaki OR, Harjula AE, Martikainen PM, Vessella RL, Tammela TL, Visakorpi T (2008) TMPRSS2:ERG fusion identifies a subgroup of prostate cancers with a favorable prognosis. Clin Cancer Res 14:3395–3400, An official journal of the American Association for Cancer Research

    Article  PubMed  Google Scholar 

  128. Minner S, Enodien M, Sirma H, Luebke AM, Krohn A et al (2011) ERG status is unrelated to PSA recurrence in radically operated prostate cancer in the absence of antihormonal therapy. Clin Cancer Res 17:5878–5888, An official journal of the American Association for Cancer Research

    Article  PubMed  CAS  Google Scholar 

  129. Tan S-H, Ruiz C, Braun M, Scheble V, Zellweger T et al (2012) TMPRSS2-ERG translocation during prostate cancer progression. J Urol 187(Suppl):e129

    Article  Google Scholar 

  130. Boormans JL, Porkka K, Visakorpi T, Trapman J (2011) Confirmation of the association of TMPRSS2(exon 0):ERG expression and a favorable prognosis of primary prostate cancer. Eur Urol 60:183–184

    Article  PubMed  Google Scholar 

  131. Furusato B, Tan SH, Young D, Dobi A, Sun C et al (2010) ERG oncoprotein expression in prostate cancer: clonal progression of ERG-positive tumor cells and potential for ERG-based stratification. Prostate Cancer Prostatic Dis 13:228–237

    Article  PubMed  CAS  Google Scholar 

  132. Squire JA (2009) TMPRSS2-ERG and PTEN loss in prostate cancer. Nat Genet 41:509–510

    Article  PubMed  CAS  Google Scholar 

  133. Laxman B, Morris DS, Yu J, Siddiqui J, Cao J et al (2008) A first-generation multiplex biomarker analysis of urine for the early detection of prostate cancer. Cancer Res 68:645–649

    Article  PubMed  CAS  Google Scholar 

  134. Tomlins SA, Aubin SM, Siddiqui J, Lonigro RJ, Sefton-Miller L et al (2011) Urine TMPRSS2:ERG fusion transcript stratifies prostate cancer risk in men with elevated serum PSA. Sci Transl Med 3:94ra72

    Article  PubMed  CAS  Google Scholar 

  135. van Gils MP, Hessels D, Peelen WP, Vergunst H, Mulders PF, Schalken JA (2009) Preliminary evaluation of the effect of dutasteride on PCA3 in post-DRE urine sediments: a randomized, open-label, parallel-group pilot study. Prostate 69:1624–1634

    Article  PubMed  CAS  Google Scholar 

  136. Hessels D, van Gils MP, van Hooij O, Jannink SA, Witjes JA et al (2010) Predictive value of PCA3 in urinary sediments in determining clinico-pathological characteristics of prostate cancer. Prostate 70:10–16

    Article  PubMed  CAS  Google Scholar 

  137. Lee GL, Dobi A, Srivastava S (2011) Prostate cancer: diagnostic performance of the PCA3 urine test. Nat Rev Urol 8:123–124

    Article  PubMed  Google Scholar 

  138. Park K, Tomlins SA, Mudaliar KM, Chiu YL, Esgueva R et al (2010) Antibody-based detection of ERG rearrangement-positive prostate cancer. Neoplasia 12:590–598

    PubMed  CAS  Google Scholar 

  139. Falzarano SM, Zhou M, Carver P, Tsuzuki T, Simmerman K et al (2011) ERG gene rearrangement status in prostate cancer detected by immunohistochemistry. Virchows Arch 459:441–447

    Article  PubMed  CAS  Google Scholar 

  140. McLeod DG, Dobi A (2011) Re: antibody-based detection of ERG rearrangement-positive prostate cancer. Eur Urol 60:1123

    Article  PubMed  Google Scholar 

  141. Lee G, Russell D, Parker P, Sesterhenn IA, Cullen J et al (2011) Improved detection of prostate cancer by the combined application of ERG and AMACR immunohistochemical stainings in prostate biopsy specimens. Urology 78:S328–S329

    Article  Google Scholar 

  142. Tomlins SA, Palanisamy N, Siddiqui J, Chinnaiyan AM, Kunju LP (2012) Antibody-based detection of ERG rearrangements in prostate core biopsies, including diagnostically challenging cases: ERG staining in prostate core biopsies. Arch Pathol Lab Med 136:935–946

    Article  PubMed  Google Scholar 

  143. He H, Magi-Galluzzi C, Li J, Carver P, Falzarano S et al (2011) The diagnostic utility of novel immunohistochemical marker ERG in the workup of prostate biopsies with “atypical glands suspicious for cancer”. Am J Surg Pathol 35:608–614

    Article  PubMed  Google Scholar 

  144. Mohamed AA, Tan SH, Mikhalkevich N, Ponniah S, Vasioukhin V et al (2010) Ets family protein, erg expression in developing and adult mouse tissues by a highly specific monoclonal antibody. J Cancer 1:197–208

    Article  PubMed  CAS  Google Scholar 

  145. Miettinen M, Wang ZF, Paetau A, Tan SH, Dobi A et al (2011) ERG transcription factor as an immunohistochemical marker for vascular endothelial tumors and prostatic carcinoma. Am J Surg Pathol 35:432–441

    Article  PubMed  Google Scholar 

  146. Sun C, Dobi A, Mohamed A, Li H, Thangapazham RL et al (2008) TMPRSS2-ERG fusion, a common genomic alteration in prostate cancer activates C-MYC and abrogates prostate epithelial differentiation. Oncogene 27:5348–5353

    Article  PubMed  CAS  Google Scholar 

  147. Erkizan HV, Kong Y, Merchant M, Schlottmann S, Barber-Rotenberg JS et al (2009) A small molecule blocking oncogenic protein EWS-FLI1 interaction with RNA helicase A inhibits growth of Ewing’s sarcoma. Nat Med 15:750–756

    Article  PubMed  CAS  Google Scholar 

  148. Rahim S, Beauchamp EM, Kong Y, Brown ML, Toretsky JA, Uren A (2011) YK-4-279 inhibits ERG and ETV1 mediated prostate cancer cell invasion. PLoS One 6:e19343

    Article  PubMed  CAS  Google Scholar 

  149. Khan N, Jeffers M, Kumar S, Hackett C, Boldog F et al (2008) Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochem J 409:581–589

    Article  PubMed  CAS  Google Scholar 

  150. Rouleau M, Patel A, Hendzel MJ, Kaufmann SH, Poirier GG (2010) PARP inhibition: PARP1 and beyond. Nat Rev Cancer 10:293–301

    Article  PubMed  CAS  Google Scholar 

  151. Leung M, Rosen D, Fields S, Cesano A, Budman DR (2011) Poly(ADP-ribose) polymerase-1 inhibition: preclinical and clinical development of synthetic lethality. Mol Med 17:854–862

    Article  PubMed  CAS  Google Scholar 

  152. Sandhu SK, Yap TA, de Bono JS (2011) The emerging role of poly(ADP-Ribose) polymerase inhibitors in cancer treatment. Curr Drug Targets 12:2034–2044

    Article  PubMed  CAS  Google Scholar 

  153. Mostaghel EA, Montgomery B, Nelson PS (2009) Castration-resistant prostate cancer: targeting androgen metabolic pathways in recurrent disease. Urol Oncol 27:251–257

    Article  PubMed  CAS  Google Scholar 

  154. Priolo C, Oh WK, Loda M (2009) Novel therapeutic strategies in prostate cancer: establishing a stratification system for patient selection in targeted trials. IDrugs 12:165–168

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiv Srivastava PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dobi, A., Sreenath, T., Srivastava, S. (2013). Androgen-Dependent Oncogenic Activation of ETS Transcription Factors by Recurrent Gene Fusions in Prostate Cancer: Biological and Clinical Implications. In: Wang, Z. (eds) Androgen-Responsive Genes in Prostate Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6182-1_19

Download citation

Publish with us

Policies and ethics