The Role of miR-21, an Androgen-Regulated MicroRNA, in Prostate Cancer



MicroRNAs (miRNAs) are an established family of small non-protein coding RNAs which broadly regulate gene expression through posttranscriptional mechanisms. Differential miRNA gene expression is common in cancer and other disease states, and there is significant evidence that many miRNAs play a functional role in disease processes. miR-21, a miRNA which imparts cellular growth and survival properties, is commonly overexpressed in malignant and inflamed tissues, including prostate cancer. Its expression is directly induced by the activated androgen receptor (AR), and elevated miR-21 alone is sufficient to impart castration-resistant tumor growth. Therefore, the miR-21 gene is of particular interest in prostate cancer biology. This chapter focuses on the miR-21 gene, its expression and processing, and miR-21 regulated pathways in the prostate and other tissues. The association of miR-21 with clinical prostate cancer is also reviewed.


MicroRNAs miR-21 VMP1 Androgen receptor Prostate cancer 



We are grateful for support from the National Institutes of Health/National Cancer Institute 5R01CA143299, Ministerio de Ciencia e Innovación SAF2011-29730, and the Fundación Roviralta. We also thank Fatema Rafiqi for reviewing the chapter.


  1. 1.
    Guerra-Assuncao JA, Enright AJ (2012) Large-scale analysis of microRNA evolution. BMC Genomics 13(1):218PubMedCrossRefGoogle Scholar
  2. 2.
    Leung AK, Sharp PA (2010) MicroRNA functions in stress responses. Mol Cell 40(2):205–215PubMedCrossRefGoogle Scholar
  3. 3.
    Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854PubMedCrossRefGoogle Scholar
  4. 4.
    Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75(5):855–862PubMedCrossRefGoogle Scholar
  5. 5.
    Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772):901–906PubMedCrossRefGoogle Scholar
  6. 6.
    Slack FJ, Basson M, Liu Z, Ambros V, Horvitz HR, Ruvkun G (2000) The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol Cell 5(4):659–669PubMedCrossRefGoogle Scholar
  7. 7.
    Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294(5543):853–858PubMedCrossRefGoogle Scholar
  8. 8.
    Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294(5543):858–862PubMedCrossRefGoogle Scholar
  9. 9.
    Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294(5543):862–864PubMedCrossRefGoogle Scholar
  10. 10.
    Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH et al (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23(20):4051–4060PubMedCrossRefGoogle Scholar
  11. 11.
    Borchert GM, Lanier W, Davidson BL (2006) RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13(12):1097–1101PubMedCrossRefGoogle Scholar
  12. 12.
    Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK et al (2006) Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125(5):887–901PubMedCrossRefGoogle Scholar
  13. 13.
    Morlando M, Ballarino M, Gromak N, Pagano F, Bozzoni I, Proudfoot NJ (2008) Primary microRNA transcripts are processed co-transcriptionally. Nat Struct Mol Biol 15(9):902–909PubMedCrossRefGoogle Scholar
  14. 14.
    Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U (2004) Nuclear export of microRNA precursors. Science 303(5654):95–98PubMedCrossRefGoogle Scholar
  15. 15.
    Yi R, Qin Y, Macara IG, Cullen BR (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17(24):3011–3016PubMedCrossRefGoogle Scholar
  16. 16.
    Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293(5531):834–838PubMedCrossRefGoogle Scholar
  17. 17.
    Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K et al (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436(7051):740–744PubMedCrossRefGoogle Scholar
  18. 18.
    Carmell MA, Hannon GJ (2004) RNase III enzymes and the initiation of gene silencing. Nat Struct Mol Biol 11(3):214–218PubMedCrossRefGoogle Scholar
  19. 19.
    Filipowicz W (2005) RNAi: the nuts and bolts of the RISC machine. Cell 122(1):17–20PubMedCrossRefGoogle Scholar
  20. 20.
    Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ et al (2005) Combinatorial microRNA target predictions. Nat Genet 37(5):495–500PubMedCrossRefGoogle Scholar
  21. 21.
    Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20PubMedCrossRefGoogle Scholar
  22. 22.
    Rajewsky N (2006) MicroRNA target predictions in animals. Nat Genet 38 Suppl:S8–S13.Google Scholar
  23. 23.
    Fabian MR, Sonenberg N (2012) The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol 19(6):586–593PubMedCrossRefGoogle Scholar
  24. 24.
    Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99(24):15524–15529PubMedCrossRefGoogle Scholar
  25. 25.
    Small EM, Olson EN (2011) Pervasive roles of microRNAs in cardiovascular biology. Nature 469(7330):336–342PubMedCrossRefGoogle Scholar
  26. 26.
    Mendell JT, Olson EN (2012) MicroRNAs in stress signaling and human disease. Cell 148(6):1172–1187PubMedCrossRefGoogle Scholar
  27. 27.
    Medina PP, Nolde M, Slack FJ (2010) OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature 467(7311):86–90PubMedCrossRefGoogle Scholar
  28. 28.
    Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103(7):2257–2261PubMedCrossRefGoogle Scholar
  29. 29.
    Isaacs JT, Isaacs WB (2004) Androgen receptor outwits prostate cancer drugs. Nat Med 10(1):26–27PubMedCrossRefGoogle Scholar
  30. 30.
    Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R et al (2004) Molecular determinants of resistance to antiandrogen therapy. Nat Med 10(1):33–39PubMedCrossRefGoogle Scholar
  31. 31.
    Liu W, Laitinen S, Khan S, Vihinen M, Kowalski J, Yu G et al (2009) Copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer. Nat Med 15(5):559–565PubMedCrossRefGoogle Scholar
  32. 32.
    Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS et al (2010) Integrative genomic profiling of human prostate cancer. Cancer Cell 18(1):11–22PubMedCrossRefGoogle Scholar
  33. 33.
    Dehm SM, Schmidt LJ, Heemers HV, Vessella RL, Tindall DJ (2008) Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Cancer Res 68(13):5469–5477PubMedCrossRefGoogle Scholar
  34. 34.
    Hu R, Dunn TA, Wei S, Isharwal S, Veltri RW, Humphreys E et al (2009) Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res 69(1):16–22PubMedCrossRefGoogle Scholar
  35. 35.
    Ribas J, Ni X, Haffner M, Wentzel EA, Salmasi AH, Chowdhury WH et al (2009) miR-21: an androgen receptor-regulated microRNA that promotes hormone-dependent and hormone-independent prostate cancer growth. Cancer Res 69(18):7165–7169PubMedCrossRefGoogle Scholar
  36. 36.
    Fujita S, Ito T, Mizutani T, Minoguchi S, Yamamichi N, Sakurai K et al (2008) miR-21 Gene expression triggered by AP-1 is sustained through a double-negative feedback mechanism. J Mol Biol 378(3):492–504PubMedCrossRefGoogle Scholar
  37. 37.
    Waltering KK, Porkka KP, Jalava SE, Urbanucci A, Kohonen PJ, Latonen LM et al (2011) Androgen regulation of micro-RNAs in prostate cancer. Prostate 71(6):604–614PubMedCrossRefGoogle Scholar
  38. 38.
    Jalava SE, Urbanucci A, Latonen L, Waltering KK, Sahu B, Janne OA et al (2012) Androgen-regulated miR-32 targets BTG2 and is overexpressed in castration-resistant prostate cancer. Oncogene 31(41):4460–4471PubMedCrossRefGoogle Scholar
  39. 39.
    Shi XB, Xue L, Yang J, Ma AH, Zhao J, Xu M et al (2007) An androgen-regulated miRNA suppresses Bak1 expression and induces androgen-independent growth of prostate cancer cells. Proc Natl Acad Sci USA 104(50):19983–19988PubMedCrossRefGoogle Scholar
  40. 40.
    Ambs S, Prueitt RL, Yi M, Hudson RS, Howe TM, Petrocca F et al (2008) Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. Cancer Res 68(15):6162–6170PubMedCrossRefGoogle Scholar
  41. 41.
    Ostling P, Leivonen SK, Aakula A, Kohonen P, Makela R, Hagman Z et al (2011) Systematic analysis of microRNAs targeting the androgen receptor in prostate cancer cells. Cancer Res 71(5):1956–1967PubMedCrossRefGoogle Scholar
  42. 42.
    Kasahara K, Taguchi T, Yamasaki I, Kamada M, Yuri K, Shuin T (2002) Detection of genetic alterations in advanced prostate cancer by comparative genomic hybridization. Cancer Genet Cytogenet 137(1):59–63PubMedCrossRefGoogle Scholar
  43. 43.
    Haverty PM, Fridlyand J, Li L, Getz G, Beroukhim R, Lohr S et al (2008) High-resolution genomic and expression analyses of copy number alterations in breast tumors. Genes Chromosomes Cancer 47(6):530–542PubMedCrossRefGoogle Scholar
  44. 44.
    Loffler D, Brocke-Heidrich K, Pfeifer G, Stocsits C, Hackermuller J, Kretzschmar AK et al (2007) Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. Blood 110(4):1330–1333PubMedCrossRefGoogle Scholar
  45. 45.
    Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P et al (2007) MicroRNA signatures in human ovarian cancer. Cancer Res 67(18):8699–8707PubMedCrossRefGoogle Scholar
  46. 46.
    Bhat-Nakshatri P, Wang G, Collins NR, Thomson MJ, Geistlinger TR, Carroll JS et al (2009) Estradiol-regulated microRNAs control estradiol response in breast cancer cells. Nucleic Acids Res 37(14):4850–4861PubMedCrossRefGoogle Scholar
  47. 47.
    Tanaka M, Ozaki S, Osakada F, Mori K, Okubo M, Nakao K (19989) Cloning of follistatin-related protein as a novel autoantigen in systemic rheumatic diseases. Int Immunol 10(9):1305–1314CrossRefGoogle Scholar
  48. 48.
    Pfeffer S, Zavolan M, Grasser FA, Chien M, Russo JJ, Ju J et al (2004) Identification of virus-encoded microRNAs. Science 304(5671):734–736PubMedCrossRefGoogle Scholar
  49. 49.
    Cai X, Hagedorn CH, Cullen BR (2004) Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10(12):1957–1966PubMedCrossRefGoogle Scholar
  50. 50.
    Ribas J, Ni X, Castanares M, Liu MM, Esopi D, Yegnasubramanian S et al (2012) A novel source for miR-21 expression through the alternative polyadenylation of VMP1 gene transcripts. Nucleic Acids Res 40(14):6821–6833PubMedCrossRefGoogle Scholar
  51. 51.
    Niwa M, Rose SD, Berget SM (1990) In vitro polyadenylation is stimulated by the presence of an upstream intron. Genes Dev 4(9):1552–1559PubMedCrossRefGoogle Scholar
  52. 52.
    Lou H, Gagel RF, Berget SM (1996) An intron enhancer recognized by splicing factors activates polyadenylation. Genes Dev 10(2):208–219PubMedCrossRefGoogle Scholar
  53. 53.
    Dusetti NJ, Jiang Y, Vaccaro MI, Tomasini R (2002) Azizi Samir A, Calvo EL, et al. Cloning and expression of the rat vacuole membrane protein 1 (VMP1), a new gene activated in ­pancreas with acute pancreatitis, which promotes vacuole formation. Biochem Biophys Res Commun 290(2):641–649PubMedCrossRefGoogle Scholar
  54. 54.
    Grasso D, Ropolo A, Lo Re A, Boggio V, Molejon MI, Iovanna JL et al (2011) Zymophagy, a novel selective autophagy pathway mediated by VMP1-USP9x-p62, prevents pancreatic cell death. J Biol Chem 286(10):8308–8324PubMedCrossRefGoogle Scholar
  55. 55.
    Grasso D, Sacchetti ML, Bruno L (2009) Lo Re A, Iovanna JL, Gonzalez CD, et al. Autophagy and VMP1 expression are early cellular events in experimental diabetes. Pancreatology 9(1–2):81–88PubMedCrossRefGoogle Scholar
  56. 56.
    Itakura E, Mizushima N (2010) Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 6(6):764–776PubMedCrossRefGoogle Scholar
  57. 57.
    Ropolo A, Grasso D, Pardo R, Sacchetti ML, Archange C, Lo Re A et al (2007) The pancreatitis-induced vacuole membrane protein 1 triggers autophagy in mammalian cells. J Biol Chem 282(51):37124–37133PubMedCrossRefGoogle Scholar
  58. 58.
    Tian Y, Li Z, Hu W, Ren H, Tian E, Zhao Y et al (2010) C. elegans screen identifies autophagy genes specific to multicellular organisms. Cell 141(6):1042–1055PubMedCrossRefGoogle Scholar
  59. 59.
    Vaccaro MI, Ropolo A, Grasso D, Iovanna JL (2008) A novel mammalian trans-membrane protein reveals an alternative initiation pathway for autophagy. Autophagy 4(3):388–390PubMedGoogle Scholar
  60. 60.
    Lo Re AE, Fernandez-Barrena MG, Almada LL, Mills L, Elsawa SF, Lund G et al (2012) A novel AKT1-GLI3-VMP1 pathway mediates KRAS-induced autophagy in cancer cells. J Biol Chem 287(30):25325–25334PubMedCrossRefGoogle Scholar
  61. 61.
    Ribas J, Lupold SE (2010) The transcriptional regulation of miR-21, its multiple transcripts, and their implication in prostate cancer. Cell Cycle 9(5):923–929PubMedCrossRefGoogle Scholar
  62. 62.
    Zhang HL, Yang LF, Zhu Y, Yao XD, Zhang SL, Dai B et al (2011) Serum miRNA-21: elevated levels in patients with metastatic hormone-refractory prostate cancer and potential predictive factor for the efficacy of docetaxel-based chemotherapy. Prostate 71(3):326–331PubMedCrossRefGoogle Scholar
  63. 63.
    Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TL, Visakorpi T (2007) MicroRNA expression profiling in prostate cancer. Cancer Res 67(13):6130–6135PubMedCrossRefGoogle Scholar
  64. 64.
    Yaman Agaoglu F, Kovancilar M, Dizdar Y, Darendeliler E, Holdenrieder S, Dalay N et al (2011) Investigation of miR-21, miR-141, and miR-221 in blood circulation of patients with prostate cancer. Tumour Biol 32(3):583–588PubMedCrossRefGoogle Scholar
  65. 65.
    Hulf T, Sibbritt T, Wiklund ED, Bert S, Strbenac D, Statham AL et al (2011) Discovery pipeline for epigenetically deregulated miRNAs in cancer: integration of primary miRNA transcription. BMC Genomics 12:54PubMedCrossRefGoogle Scholar
  66. 66.
    Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N et al (2004) The Microprocessor complex mediates the genesis of microRNAs. Nature 432(7014):235–240PubMedCrossRefGoogle Scholar
  67. 67.
    Fuller-Pace FV, Moore HC (2011) RNA helicases p68 and p72: multifunctional proteins with important implications for cancer development. Future Oncol 7(2):239–251PubMedCrossRefGoogle Scholar
  68. 68.
    Fukuda T, Yamagata K, Fujiyama S, Matsumoto T, Koshida I, Yoshimura K et al (2007) DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs. Nat Cell Biol 9(5):604–611PubMedCrossRefGoogle Scholar
  69. 69.
    Yamagata K, Fujiyama S, Ito S, Ueda T, Murata T, Naitou M et al (2009) Maturation of microRNA is hormonally regulated by a nuclear receptor. Mol Cell 36(2):340–347PubMedCrossRefGoogle Scholar
  70. 70.
    Corsten MF, Miranda R, Kasmieh R, Krichevsky AM, Weissleder R, Shah K (2007) MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res 67(19):8994–9000PubMedCrossRefGoogle Scholar
  71. 71.
    Davis BN, Hilyard AC, Lagna G, Hata A (2008) SMAD proteins control DROSHA-mediated microRNA maturation. Nature 454(7200):56–61PubMedCrossRefGoogle Scholar
  72. 72.
    Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S et al (2008) MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27(15):2128–2136PubMedCrossRefGoogle Scholar
  73. 73.
    Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH (2008) Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem 283(2):1026–1033PubMedCrossRefGoogle Scholar
  74. 74.
    Zhu S, Wu H, Wu F, Nie D, Sheng S, Mo YY (2008) MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 18(3):350–359PubMedCrossRefGoogle Scholar
  75. 75.
    Shi GH, Ye DW, Yao XD, Zhang SL, Dai B, Zhang HL et al (2010) Involvement of microRNA-21 in mediating chemo-resistance to docetaxel in androgen-independent prostate cancer PC3 cells. Acta Pharmacol Sin 31(7):867–873PubMedCrossRefGoogle Scholar
  76. 76.
    Yao Q, Xu H, Zhang QQ, Zhou H, Qu LH (2009) MicroRNA-21 promotes cell proliferation and down-regulates the expression of programmed cell death 4 (PDCD4) in HeLa cervical carcinoma cells. Biochem Biophys Res Commun 388(3):539–542PubMedCrossRefGoogle Scholar
  77. 77.
    Hu H, Li Y, Gu J, Zhu X, Dong D, Yao J et al (2010) Antisense oligonucleotide against miR-21 inhibits migration and induces apoptosis in leukemic K562 cells. Leuk Lymphoma 51(4):694–701PubMedCrossRefGoogle Scholar
  78. 78.
    Chen Y, Liu W, Chao T, Zhang Y, Yan X, Gong Y et al (2008) MicroRNA-21 down-regulates the expression of tumor suppressor PDCD4 in human glioblastoma cell T98G. Cancer Lett 272(2):197–205PubMedCrossRefGoogle Scholar
  79. 79.
    Sheedy FJ, Palsson-McDermott E, Hennessy EJ, Martin C, O’Leary JJ, Ruan Q et al (2010) Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol 11(2):141–147PubMedCrossRefGoogle Scholar
  80. 80.
    Selaru FM, Olaru AV, Kan T, David S, Cheng Y, Mori Y et al (2009) MicroRNA-21 is overexpressed in human cholangiocarcinoma and regulates programmed cell death 4 and tissue inhibitor of metalloproteinase 3. Hepatology 49(5):1595–1601PubMedCrossRefGoogle Scholar
  81. 81.
    Cheng Y, Liu X, Zhang S, Lin Y, Yang J, Zhang C (2009) MicroRNA-21 protects against the H(2)O(2)-induced injury on cardiac myocytes via its target gene PDCD4. J Mol Cell Cardiol 47(1):5–14PubMedCrossRefGoogle Scholar
  82. 82.
    Lin Y, Liu X, Cheng Y, Yang J, Huo Y, Zhang C (2009) Involvements of microRNAs in hydrogen peroxide-mediated gene regulation and cellular injury response in vascular smooth muscle cells. J Biol Chem 284(12):7903–7913PubMedCrossRefGoogle Scholar
  83. 83.
    Lankat-Buttgereit B, Goke R (2009) The tumour suppressor Pdcd4: recent advances in the elucidation of function and regulation. Biol Cell 101(6):309–317PubMedCrossRefGoogle Scholar
  84. 84.
    Shibahara K, Asano M, Ishida Y, Aoki T, Koike T, Honjo T (1995) Isolation of a novel mouse gene MA-3 that is induced upon programmed cell death. Gene 166(2):297–301PubMedCrossRefGoogle Scholar
  85. 85.
    Yang HS, Jansen AP, Nair R, Shibahara K, Verma AK, Cmarik JL et al (2001) A novel transformation suppressor, Pdcd4, inhibits AP-1 transactivation but not NF-kappaB or ODC transactivation. Oncogene 20(6):669–676PubMedCrossRefGoogle Scholar
  86. 86.
    Leupold JH, Yang HS, Colburn NH, Asangani I, Post S, Allgayer H (2007) Tumor suppressor Pdcd4 inhibits invasion/intravasation and regulates urokinase receptor (u-PAR) gene expression via Sp-transcription factors. Oncogene 26(31):4550–4562PubMedCrossRefGoogle Scholar
  87. 87.
    Goke R, Barth P, Schmidt A, Samans B, Lankat-Buttgereit B (2004) Programmed cell death protein 4 suppresses CDK1/cdc2 via induction of p21(Waf1/Cip1). Am J Physiol Cell Physiol 287(6):C1541–C1546PubMedCrossRefGoogle Scholar
  88. 88.
    Goke A, Goke R, Knolle A, Trusheim H, Schmidt H, Wilmen A et al (2002) DUG is a novel homologue of translation initiation factor 4G that binds eIF4A. Biochem Biophys Res Commun 297(1):78–82PubMedCrossRefGoogle Scholar
  89. 89.
    Yang HS, Cho MH, Zakowicz H, Hegamyer G, Sonenberg N, Colburn NH (2004) A novel function of the MA-3 domains in transformation and translation suppressor Pdcd4 is essential for its binding to eukaryotic translation initiation factor 4A. Mol Cell Biol 24(9):3894–3906PubMedCrossRefGoogle Scholar
  90. 90.
    Yang Y, Chaerkady R, Beer MA, Mendell JT, Pandey A (2009) Identification of miR-21 targets in breast cancer cells using a quantitative proteomic approach. Proteomics 9(5):1374–1384PubMedCrossRefGoogle Scholar
  91. 91.
    Hatley ME, Patrick DM, Garcia MR, Richardson JA, Bassel-Duby R, van Rooij E et al (2010) Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-21. Cancer Cell 18(3):282–293PubMedCrossRefGoogle Scholar
  92. 92.
    Yu Y, Kanwar SS, Patel BB, Oh PS, Nautiyal J, Sarkar FH et al (2012) MicroRNA-21 induces stemness by downregulating transforming growth factor beta receptor 2 (TGFbetaR2) in colon cancer cells. Carcinogenesis 33(1):68–76PubMedCrossRefGoogle Scholar
  93. 93.
    Ma X, Kumar M, Choudhury SN (2011) Becker Buscaglia LE, Barker JR, Kanakamedala K, et al. Loss of the miR-21 allele elevates the expression of its target genes and reduces tumorigenesis. Proc Natl Acad Sci USA 108(25):10144–10149PubMedCrossRefGoogle Scholar
  94. 94.
    Polytarchou C, Iliopoulos D, Hatziapostolou M, Kottakis F, Maroulakou I, Struhl K et al (2011) Akt2 regulates all Akt isoforms and promotes resistance to hypoxia through induction of miR-21 upon oxygen deprivation. Cancer Res 71(13):4720–4731PubMedCrossRefGoogle Scholar
  95. 95.
    Liu M, Tang Q, Qiu M, Lang N, Li M, Zheng Y et al (2011) miR-21 targets the tumor suppressor RhoB and regulates proliferation, invasion and apoptosis in colorectal cancer cells. FEBS Lett 585(19):2998–3005PubMedCrossRefGoogle Scholar
  96. 96.
    Sabatel C, Malvaux L, Bovy N, Deroanne C, Lambert V, Gonzalez ML et al (2011) MicroRNA-21 exhibits antiangiogenic function by targeting RhoB expression in endothelial cells. PLoS One 6(2):e16979PubMedCrossRefGoogle Scholar
  97. 97.
    Zhang A, Liu Y, Shen Y, Xu Y, Li X (2011) miR-21 modulates cell apoptosis by targeting multiple genes in renal cell carcinoma. Urology 78(2):474.e13–19Google Scholar
  98. 98.
    Terao M, Fratelli M, Kurosaki M, Zanetti A, Guarnaccia V, Paroni G et al (2011) Induction of miR-21 by retinoic acid in estrogen receptor-positive breast carcinoma cells: biological correlates and molecular targets. J Biol Chem 286(5):4027–4042PubMedCrossRefGoogle Scholar
  99. 99.
    Li T, Li D, Sha J, Sun P, Huang Y (2009) MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochem Biophys Res Commun 383(3):280–285PubMedCrossRefGoogle Scholar
  100. 100.
    Zibert JR, Lovendorf MB, Litman T, Olsen J, Kaczkowski B, Skov L (2010) MicroRNAs and potential target interactions in psoriasis. J Dermatol Sci 58(3):177–185PubMedCrossRefGoogle Scholar
  101. 101.
    Valeri N, Gasparini P, Braconi C, Paone A, Lovat F, Fabbri M et al (2010) MicroRNA-21 induces resistance to 5-fluorouracil by down-regulating human DNA MutS homolog 2 (hMSH2). Proc Natl Acad Sci USA 107(49):21098–21103PubMedCrossRefGoogle Scholar
  102. 102.
    Bhandari A, Gordon W, Dizon D, Hopkin AS, Gordon E, Yu Z, et al (2012) The Grainyhead transcription factor Grhl3/Get1 suppresses miR-21 expression and tumorigenesis in skin: modulation of the miR-21 target MSH2 by RNA-binding protein DND1. Oncogene 1–11Google Scholar
  103. 103.
    Sarkar J, Gou D, Turaka P, Viktorova E, Ramchandran R, Raj JU (2010) MicroRNA-21 plays a role in hypoxia-mediated pulmonary artery smooth muscle cell proliferation and migration. Am J Physiol Lung Cell Mol Physiol 299(6):L861–L871PubMedCrossRefGoogle Scholar
  104. 104.
    Liu PT, Wheelwright M, Teles R, Komisopoulou E, Edfeldt K, Ferguson B et al (2012) MicroRNA-21 targets the vitamin D-dependent antimicrobial pathway in leprosy. Nat Med 18(2):267–273PubMedCrossRefGoogle Scholar
  105. 105.
    Zhu S, Si ML, Wu H, Mo YY (2007) MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem 282(19):14328–14336PubMedCrossRefGoogle Scholar
  106. 106.
    Xiong Q, Zhong Q, Zhang J, Yang M, Li C, Zheng P et al (2012) Identification of novel miR-21 target proteins in multiple myeloma cells by quantitative proteomics. J Proteome Res 11(4):2078–2090PubMedCrossRefGoogle Scholar
  107. 107.
    Blower PE, Chung JH, Verducci JS, Lin S, Park JK, Dai Z et al (2008) MicroRNAs modulate the chemosensitivity of tumor cells. Mol Cancer Ther 7(1):1–9PubMedCrossRefGoogle Scholar
  108. 108.
    Moschos SA, Williams AE, Perry MM, Birrell MA, Belvisi MG, Lindsay MA (2007) Expression profiling in vivo demonstrates rapid changes in lung microRNA levels following lipopolysaccharide-induced inflammation but not in the anti-inflammatory action of glucocorticoids. BMC Genomics 8:240PubMedCrossRefGoogle Scholar
  109. 109.
    Chau BN, Xin C, Hartner J, Ren S, Castano AP, Linn G et al (2012) MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci Transl Med 4(121):121ra18Google Scholar
  110. 110.
    Lu TX, Munitz A, Rothenberg ME (2009) MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J Immunol 182(8):4994–5002PubMedCrossRefGoogle Scholar
  111. 111.
    Roggli E, Britan A, Gattesco S, Lin-Marq N, Abderrahmani A, Meda P et al (2010) Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells. Diabetes 59(4):978–986PubMedCrossRefGoogle Scholar
  112. 112.
    Iliopoulos D, Jaeger SA, Hirsch HA, Bulyk ML, Struhl K (20107) STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell 39(4):493–506CrossRefGoogle Scholar
  113. 113.
    Lu TX, Hartner J, Lim EJ, Fabry V, Mingler MK, Cole ET et al (2011) MicroRNA-21 limits in vivo immune response-mediated activation of the IL-12/IFN-gamma pathway, Th1 polarization, and the severity of delayed-type hypersensitivity. J Immunol 187(6):3362–3373PubMedCrossRefGoogle Scholar
  114. 114.
    Hilliard A, Hilliard B, Zheng SJ, Sun H, Miwa T, Song W et al (2006) Translational regulation of autoimmune inflammation and lymphoma genesis by programmed cell death 4. J Immunol 177(11):8095–8102PubMedGoogle Scholar
  115. 115.
    Li T, Li RS, Li YH, Zhong S, Chen YY, Zhang CM et al (2012) MiR-21 as an independent biochemical recurrence predictor and potential therapeutic target for prostate cancer. J Urol 187(4):1466–1472PubMedCrossRefGoogle Scholar
  116. 116.
    Catalona WJ, Smith DS, Ratliff TL, Basler JW (1993) Detection of organ-confined prostate cancer is increased through prostate-specific antigen-based screening. JAMA 270(8):948–954PubMedCrossRefGoogle Scholar
  117. 117.
    Hoedemaeker RF, Rietbergen JB, Kranse R, Schroder FH, van der Kwast TH (2000) Histopathological prostate cancer characteristics at radical prostatectomy after population based screening. J Urol 164(2):411–415PubMedCrossRefGoogle Scholar
  118. 118.
    Hugosson J, Carlsson S, Aus G, Bergdahl S, Khatami A, Lodding P et al (2010) Mortality results from the Goteborg randomised population-based prostate-cancer screening trial. Lancet Oncol 11(8):725–732PubMedCrossRefGoogle Scholar
  119. 119.
    Schroder FH, Hugosson J, Roobol MJ, Tammela TL, Ciatto S, Nelen V et al (2009) Screening and prostate-cancer mortality in a randomized European study. N Engl J Med 360(13):1320–1328PubMedCrossRefGoogle Scholar
  120. 120.
    Bill-Axelson A, Holmberg L, Ruutu M, Garmo H, Stark JR, Busch C et al (2011) Radical prostatectomy versus watchful waiting in early prostate cancer. N Engl J Med 364(18):1708–1717PubMedCrossRefGoogle Scholar
  121. 121.
    Andriole GL, Crawford ED, Grubb RL 3rd, Buys SS, Chia D, Church TR et al (2009) Mortality results from a randomized prostate-cancer screening trial. N Engl J Med 360(13):1310–1319PubMedCrossRefGoogle Scholar
  122. 122.
    Carter HB (2011) Management of low (favourable)-risk prostate cancer. BJU Int 108(11):1684–1695PubMedCrossRefGoogle Scholar
  123. 123.
    Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62(1):10–29PubMedCrossRefGoogle Scholar
  124. 124.
    Miah S, Catto JW (2012) MicroRNA in prostate cancer: an opportunity to individualize patient care. J Urol 187(4):1155–1156PubMedCrossRefGoogle Scholar
  125. 125.
    Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659PubMedCrossRefGoogle Scholar
  126. 126.
    Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13(4):423–433PubMedCrossRefGoogle Scholar
  127. 127.
    Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF et al (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA 108(12):5003–5008PubMedCrossRefGoogle Scholar
  128. 128.
    Sieuwerts AM, Mostert B (2011) Bolt-de Vries J, Peeters D, de Jongh FE, Stouthard JM, et al. mRNA and microRNA expression profiles in circulating tumor cells and primary tumors of metastatic breast cancer patients. Clin Cancer Res 17(11):3600–3618PubMedCrossRefGoogle Scholar
  129. 129.
    Shen J, Hruby GW, McKiernan JM, Gurvich I, Lipsky MJ, Benson MC et al (2012) Dysregulation of circulating microRNAs and prediction of aggressive prostate cancer. Prostate 72(13):1469–1477PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  1. 1.Pharmacology Unit, Department of Experimental Medicine, School of MedicineUniversity of LleidaLleidaSpain
  2. 2.James Buchanan Brady Urological InstituteJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations