Skip to main content

Genetic Targets in Pediatric Acute Lymphoblastic Leukemia

  • Chapter
  • First Online:
Impact of Genetic Targets on Cancer Therapy

Abstract

Acute leukemia represents 31% of all cancers diagnosed in children and 80% of it is of Lymphoblastic type. Multiple genetic lesions in the hematopoietic progenitor cells prior to or during differentiation to B and T cell lead to development of leukemia. There are several subtypes of Acute Leukemia based on chromosome number changes, the presence of certain translocations and gene mutations, each of which has different clinical, biological and prognostic features. High throughput genomic technologies like array-based comparative genomic hybridization (array-CGH) and single nucleotide polymorphism microarrays (SNP arrays), have given us insight through a very detailed look at the genetic changes of leukemia, specifically, ALL. Here, we discuss various genetic mutations identified in Acute Lymphoblastic Leukemia. We also explore various genetic targets and currently available as well as upcoming targeted therapies for ALL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pui CH, Robison LL, Look AT. Acute lymphoblastic leukaemia. Lancet. 2008;371(9617):1030–43. Epub 2008/03/25.

    Article  PubMed  CAS  Google Scholar 

  2. O’Leary M, Krailo M, Anderson JR, Reaman GH, Children’s Oncology G. Progress in childhood cancer: 50 years of research collaboration, a report from the Children’s oncology group. Semin Oncol. 2008;35(5):484–93. Epub 2008/10/22.

    Article  PubMed  Google Scholar 

  3. Wiemels JL, Cazzaniga G, Daniotti M, Eden OB, Addison GM, Masera G, et al. Prenatal origin of acute lymphoblastic leukaemia in children. Lancet. 1999;354(9189):1499–503. Epub 1999/11/07.

    Article  PubMed  CAS  Google Scholar 

  4. Armstrong SA, Look AT. Molecular genetics of acute lymphoblastic leukemia. J Clin Oncol. 2005;23(26):6306–15. Epub 2005/09/13.

    Article  PubMed  CAS  Google Scholar 

  5. Schultz KR, Pullen DJ, Sather HN, Shuster JJ, Devidas M, Borowitz MJ, et al. Risk- and response-based classification of childhood B-precursor acute lymphoblastic leukemia: a combined analysis of prognostic markers from the pediatric oncology group (POG) and Children’s cancer group (CCG). Blood. 2007;109(3):926–35. Epub 2006/09/28.

    Article  PubMed  CAS  Google Scholar 

  6. Borowitz MJ, Devidas M, Hunger SP, Bowman WP, Carroll AJ, Carroll WL, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: a Children’s oncology group study. Blood. 2008;111(12):5477–85. Epub 2008/04/05.

    Article  PubMed  CAS  Google Scholar 

  7. Weinstein IB, Joe AK. Mechanisms of disease: oncogene addictiona rationale for molecular targeting in cancer therapy. Nat Clin Pract Oncol. 2006;3(8):448–57. Epub 2006/08/09.

    Article  PubMed  CAS  Google Scholar 

  8. Pui CH, Carroll WL, Meshinchi S, Arceci RJ. Biology, risk stratification, and therapy of pediatric acute leukemias: an update. J Clin Oncol. 2011;29(5):551–65. Epub 2011/01/12.

    Article  PubMed  Google Scholar 

  9. Wiemels J. Perspectives on the causes of childhood leukemia. Chem Biol Interact. 2012;196(3):59–67. Epub 2012/02/14.

    Article  PubMed  CAS  Google Scholar 

  10. Mullighan CG. Genomic analysis of acute leukemia. Int J Lab Hematol. 2009;31(4):384–97. Epub 2009/06/03.

    Article  PubMed  CAS  Google Scholar 

  11. Mullighan CG, Downing JR. Genome-wide profiling of genetic alterations in acute lymphoblastic leukemia: recent insights and future directions. Leukemia. 2009;23(7):1209–18. Epub 2009/02/27.

    Article  PubMed  CAS  Google Scholar 

  12. Zelent A, Greaves M, Enver T. Role of the TEL-AML1 fusion gene in the molecular pathogenesis of childhood acute lymphoblastic leukaemia. Oncogene. 2004;23(24):4275–83. Epub 2004/05/25.

    Article  PubMed  CAS  Google Scholar 

  13. Ford AM, Bennett CA, Price CM, Bruin MC, Van Wering ER, Greaves M. Fetal origins of the TEL-AML1 fusion gene in identical twins with leukemia. Proc Natl Acad Sci USA. 1998;95(8):4584–8. Epub 1998/05/16.

    Article  PubMed  CAS  Google Scholar 

  14. Pine SR, Wiemels JL, Jayabose S, Sandoval C. TEL-AML1 fusion precedes differentiation to pre-B cells in childhood acute lymphoblastic leukemia. Leuk Res. 2003;27(2):155–64. Epub 2003/01/16.

    Article  PubMed  CAS  Google Scholar 

  15. Greaves MF, Wiemels J. Origins of chromosome translocations in childhood leukaemia. Nat Rev Cancer. 2003;3(9):639–49. Epub 2003/09/03.

    Article  PubMed  CAS  Google Scholar 

  16. Arico M, Schrappe M, Hunger SP, Carroll WL, Conter V, Galimberti S, et al. Clinical outcome of children with newly diagnosed philadelphia chromosome-positive acute lymphoblastic leukemia treated between 1995 and 2005. J Clin Oncol. 2010;28(31):4755–61. Epub 2010/09/30.

    Article  PubMed  Google Scholar 

  17. Teitell MA, Pandolfi PP. Molecular genetics of acute lymphoblastic leukemia. Annu Rev Pathol-Mech. 2009;4:175–98. Epub 2008/09/12.

    Article  CAS  Google Scholar 

  18. Clark SS, McLaughlin J, Crist WM, Champlin R, Witte ON. Unique forms of the abl tyrosine kinase distinguish Ph1-positive CML from Ph1-positive ALL. Science. 1987;235(4784):85–8. Epub 1987/01/02.

    Article  PubMed  CAS  Google Scholar 

  19. Ribeiro RC, Abromowitch M, Raimondi SC, Murphy SB, Behm F, Williams DL. Clinical and biologic hallmarks of the philadelphia chromosome in childhood acute lymphoblastic leukemia. Blood. 1987;70(4):948–53. Epub 1987/10/01.

    PubMed  CAS  Google Scholar 

  20. Kharas MG, Fruman DA. ABL oncogenes and phosphoinositide 3-kinase: mechanism of activation and downstream effectors. Cancer Res. 2005;65(6):2047–53. Epub 2005/03/23.

    Article  PubMed  CAS  Google Scholar 

  21. Salomoni P, Condorelli F, Sweeney SM, Calabretta B. Versatility of BCR/ABL-expressing leukemic cells in circumventing proapoptotic BAD effects. Blood. 2000;96(2):676–84. Epub 2000/07/11.

    PubMed  CAS  Google Scholar 

  22. O’Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F, et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2003;348(11):994–1004. Epub 2003/03/15.

    Article  PubMed  Google Scholar 

  23. Arico M, Valsecchi MG, Camitta B, Schrappe M, Chessells J, Baruchel A, et al. Outcome of treatment in children with philadelphia chromosome-positive acute lymphoblastic leukemia. N Engl J Med. 2000;342(14):998–1006. Epub 2000/04/06.

    Article  PubMed  CAS  Google Scholar 

  24. Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, Minden MD, et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet. 2002;30(1):41–7. Epub 2001/12/04.

    Article  PubMed  CAS  Google Scholar 

  25. Armstrong SA, Mabon ME, Silverman LB, Li A, Gribben JG, Fox EA, et al. FLT3 mutations in childhood acute lymphoblastic leukemia. Blood. 2004;103(9):3544–6. Epub 2003/12/13.

    Article  PubMed  CAS  Google Scholar 

  26. Brown KE, Guest SS, Smale ST, Hahm K, Merkenschlager M, Fisher AG. Association of transcriptionally silent genes with ikaros complexes at centromeric heterochromatin. Cell. 1997;91(6):845–54. Epub 1997/12/31.

    Article  PubMed  CAS  Google Scholar 

  27. Dovat S, Payne KJ. Tumor suppression in T cell leukemia—the role of ikaros. Leuk Res. 2010;34(4):416–7. Epub 2009/11/07.

    Article  PubMed  CAS  Google Scholar 

  28. Payne KJ, Dovat S. Ikaros and tumor suppression in acute lymphoblastic leukemia. Crit Rev Oncog. 2011;16(1–2):3–12. Epub 2011/12/14.

    Article  PubMed  Google Scholar 

  29. Dovat S, Song C, Payne KJ, Li Z. Ikaros, CK2 kinase, and the road to leukemia. Mol Cell Biochem. 2011;356(1–2):201–7. Epub 2011/07/14.

    Article  PubMed  CAS  Google Scholar 

  30. Song C, Li Z, Erbe AK, Savic A, Dovat S. Regulation of Ikaros function by casein kinase 2 and protein phosphatase 1. World J Biol Chem. 2011;2(6):126–31. Epub 2011/07/19.

    Article  PubMed  Google Scholar 

  31. Li Z, Song C, Ouyang H, Lai L, Payne KJ, Dovat S. Cell cycle-specific function of ikaros in human leukemia. Pediatr Blood Cancer. 2012;59(1):69–76.

    Article  PubMed  CAS  Google Scholar 

  32. Gurel Z, Ronni T, Ho S, Kuchar J, Payne KJ, Turk CW, et al. Recruitment of ikaros to pericentromeric heterochromatin is regulated by phosphorylation. J Biol Chem. 2008;283(13):8291–300. Epub 2008/01/29.

    Article  PubMed  CAS  Google Scholar 

  33. Popescu M, Gurel Z, Ronni T, Song C, Hung KY, Payne KJ, et al. Ikaros stability and pericentromeric localization are regulated by protein phosphatase 1. J Biol Chem. 2009;284(20):13869–80. Epub 2009/03/14.

    Article  PubMed  CAS  Google Scholar 

  34. Mullighan CG, Miller CB, Radtke I, Phillips LA, Dalton J, Ma J, et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of ikaros. Nature. 2008;453(7191):110–4. Epub 2008/04/15.

    Article  PubMed  Google Scholar 

  35. Mullighan CG, Su X, Zhang J, Radtke I, Phillips LA, Miller CB, et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med. 2009;360(5):470–80. Epub 2009/01/09.

    Article  PubMed  CAS  Google Scholar 

  36. Tonnelle C, Dijon M, Moreau T, Garulli C, Bardin F, Chabannon C. Stage specific over-expression of the dominant negative ikaros 6 reveals distinct role of ikaros throughout human B-cell differentiation. Mol Immunol. 2009;46(8–9):1736–43. Epub 2009/03/17.

    Article  PubMed  CAS  Google Scholar 

  37. Waanders E, van der Velden VH, van der Schoot CE, van Leeuwen FN, van Reijmersdal SV, de Haas V, et al. Integrated use of minimal residual disease classification and IKZF1 alteration status accurately predicts 79 % of relapses in pediatric acute lymphoblastic leukemia. Leukemia. 2011;25(2):254–8. Official Journal of the Leukemia Society of America, Leukemia Research Fund, UK. Epub 2010/11/26.

    Article  PubMed  CAS  Google Scholar 

  38. Den Boer ML, van Slegtenhorst M, De Menezes RX, Cheok MH, Buijs-Gladdines JG, Peters ST, et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol. 2009;10(2):125–34. Epub 2009/01/14.

    Article  Google Scholar 

  39. Hunger SP, Raetz EA, Loh ML, Mullighan CG. Improving outcomes for high-risk ALL: tr­anslating new discoveries into clinical care. Pediatr Blood Cancer. 2011;56(6):984–93. Epub 2011/03/04.

    Article  PubMed  Google Scholar 

  40. Mullighan CG, Collins-Underwood JR, Phillips LA, Loudin MG, Liu W, Zhang J, et al. Rearrangement of CRLF2 in B-progenitor- and down syndrome-associated acute lymphoblastic leukemia. Nat Genet. 2009;41(11):1243–6. Epub 2009/10/20.

    Article  PubMed  CAS  Google Scholar 

  41. Mullighan CG, Zhang J, Harvey RC, Collins-Underwood JR, Schulman BA, Phillips LA, et al. JAK mutations in high-risk childhood acute lymphoblastic leukemia. Proc Natl Acad Sci USA. 2009;106(23):9414–8. Epub 2009/05/28.

    Article  PubMed  CAS  Google Scholar 

  42. Russell LJ, Capasso M, Vater I, Akasaka T, Bernard OA, Calasanz MJ, et al. Deregulated expression of cytokine receptor gene, CRLF2, is involved in lymphoid transformation in B-cell precursor acute lymphoblastic leukemia. Blood. 2009;114(13):2688–98. Epub 2009/07/31.

    Article  PubMed  CAS  Google Scholar 

  43. Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, Dalton JD, et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature. 2007;446(7137):758–64. Epub 2007/03/09.

    Article  PubMed  CAS  Google Scholar 

  44. Bousquet M, Broccardo C, Quelen C, Meggetto F, Kuhlein E, Delsol G, et al. A novel PAX5-ELN fusion protein identified in B-cell acute lymphoblastic leukemia acts as a dominant negative on wild-type PAX5. Blood. 2007;109(8):3417–23. Epub 2006/12/21.

    Article  PubMed  CAS  Google Scholar 

  45. Cortes M, Wong E, Koipally J, Georgopoulos K. Control of lymphocyte development by the ikaros gene family. Curr Opin Immunol. 1999;11(2):167–71. Epub 1999/05/14.

    Article  PubMed  CAS  Google Scholar 

  46. Georgopoulos K. Haematopoietic cell-fate decisions, chromatin regulation and ikaros. Nat Rev Immunol. 2002;2(3):162–74. Epub 2002/03/27.

    Article  PubMed  CAS  Google Scholar 

  47. Aspland SE, Bendall HH, Murre C. The role of E2A-PBX1 in leukemogenesis. Oncogene. 2001;20(40):5708–17. Epub 2001/10/19.

    Article  PubMed  CAS  Google Scholar 

  48. Hunger SP, Li S, Fall MZ, Naumovski L, Cleary ML. The proto-oncogene HLF and the related basic leucine zipper protein TEF display highly similar DNA-binding and transcriptional regulatory properties. Blood. 1996;87(11):4607–17. Epub 1996/06/01.

    PubMed  CAS  Google Scholar 

  49. Dear TN, Colledge WH, Carlton MB, Lavenir I, Larson T, Smith AJ, et al. The Hox11 gene is essential for cell survival during spleen development. Development. 1995;121(9):2909–15. Epub 1995/09/01.

    PubMed  CAS  Google Scholar 

  50. Roberts CW, Shutter JR, Korsmeyer SJ. Hox11 controls the genesis of the spleen. Nature. 1994;368(6473):747–9. Epub 1994/04/21.

    Article  PubMed  CAS  Google Scholar 

  51. Hatano M, Roberts CW, Minden M, Crist WM, Korsmeyer SJ. Deregulation of a homeobox gene, HOX11, by the t(10;14) in T cell leukemia. Science. 1991;253(5015):79–82. Epub 1991/07/05.

    Article  PubMed  CAS  Google Scholar 

  52. Su XY, Della-Valle V, Andre-Schmutz I, Lemercier C, Radford-Weiss I, Ballerini P, et al. HOX11L2/TLX3 Is transcriptionally activated through T-cell regulatory elements downstream of BCL11B as a result of the t(5;14)(q35;q32). Blood. 2006;108(13):4198–201. Epub 2006/08/24.

    Article  PubMed  CAS  Google Scholar 

  53. Weng AP, Ferrando AA, Lee W, Morris JP, Silverman LB, Sanchez-Irizarry C, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004;306(5694):269–71. Epub 2004/10/09.

    Article  PubMed  CAS  Google Scholar 

  54. Palomero T, Lim WK, Odom DT, Sulis ML, Real PJ, Margolin A, et al. NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc Natl Acad Sci USA. 2006;103(48):18261–6. Epub 2006/11/23.

    Article  PubMed  CAS  Google Scholar 

  55. Milano J, McKay J, Dagenais C, Foster-Brown L, Pognan F, Gadient R, et al. Modulation of notch processing by gamma-secretase inhibitors causes intestinal goblet cell metaplasia and induction of genes known to specify gut secretory lineage differentiation. Toxicol Sci. 2004;82(1):341–58 An official Journal of the Society of Toxicology. Epub 2004/08/21.

    Article  PubMed  CAS  Google Scholar 

  56. Real PJ, Tosello V, Palomero T, Castillo M, Hernando E, de Stanchina E, et al. Gamma-secretase inhibitors reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia. Nat Med. 2009;15(1):50–8. Epub 2008/12/23.

    Article  PubMed  CAS  Google Scholar 

  57. Ciofani M, Zuniga-Pflucker JC. Notch promotes survival of pre-T cells at the beta-selection checkpoint by regulating cellular metabolism. Nat Immunol. 2005;6(9):881–8. Epub 2005/08/02.

    Article  PubMed  CAS  Google Scholar 

  58. O’Neil J, Grim J, Strack P, Rao S, Tibbitts D, Winter C, et al. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors. J Exp Med. 2007;204(8):1813–24. Epub 2007/07/25.

    Article  PubMed  Google Scholar 

  59. Thompson BJ, Buonamici S, Sulis ML, Palomero T, Vilimas T, Basso G, et al. The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia. J Exp Med. 2007;204(8):1825–35. Epub 2007/07/25.

    Article  PubMed  CAS  Google Scholar 

  60. Rubnitz JE, Pui CH. Recent advances in the treatment and understanding of childhood acute lymphoblastic leukaemia. Cancer Treat Rev. 2003;29(1):31–44. Epub 2003/03/14.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported in part by an R01 HL095120 grant, The Four Diamonds Fund of the Pennsylvania State University College of Medicine, John Wawrynovic Leukemia Research Scholar Endowment (SD), St.Baldrick’s foundation grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinisa Dovat M.D. Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gowda, C., Dovat, S. (2013). Genetic Targets in Pediatric Acute Lymphoblastic Leukemia. In: El-Deiry, W. (eds) Impact of Genetic Targets on Cancer Therapy. Advances in Experimental Medicine and Biology, vol 779. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6176-0_15

Download citation

Publish with us

Policies and ethics