Skip to main content

Molecular and Genetic Markers of Follicular-Cell Thyroid Cancer: Etiology and Diagnostic and Therapeutic Opportunities

  • Chapter
  • First Online:
Impact of Genetic Targets on Cancer Therapy

Abstract

Thyroid cancer has an increasing incidence in the US population and worldwide, with 95% of the cancers being of follicular cell origin—papillary, follicular, or anaplastic thyroid carcinomas. Both follicular and papillary thyroid cancers portend good survival rates, with estimated 5-year survival amongst differentiated thyroid cancer approaching 97%. On the other hand, the median survival for a patient with anaplastic thyroid carcinoma is measured in months. Despite the optimistic survival rates for papillary and follicular thyroid carcinoma, a subset of this population demonstrates resistance to radioactive iodine, and a proclivity for more aggressive tumors with higher rates of recurrence and metastasis.

As there is an increased understanding of the molecular etiology of thyroid cancer, there is also a new interest in alternative treatment methods for those nonresponsive to typical treatment. Multiple signaling pathways have been identified, including the mitogen activated protein kinase pathway, as crucial to thyroid tumor formation and progression. Additionally, particular oncogenes have been identified as prevalent in anaplastic thyroid carcinoma and thought to be involved in the transformation from differentiated to anaplastic histology.

We review the current literature and evidence describing the molecular and genetic etiology of non-medullary (follicular cell derived) thyroid carcinomas including papillary, follicular, and anaplastic thyroid carcinoma. Additionally, we evaluate the current literature on emerging and established therapies of molecular and genetic targets in these cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.

    Article  PubMed  Google Scholar 

  2. Cancer Facts & Figures. 2011. Atlanta: American Cancer Society. Available from: http://www.cancer.org/Research/CancerFactsFigures/CancerFactsFigures/cancer-facts-figures-2011.

  3. Nucera C, Lawler J, Hodin R, Parangi S. The BRAFV600E mutation: what is it really orchestrating in thyroid cancer? Oncotarget. 2010;1(8):751–6.

    PubMed  Google Scholar 

  4. Sherman SI. Thyroid carcinoma. Lancet. 2003;361(9356):501–11.

    Article  PubMed  Google Scholar 

  5. Choi JS, Kim J, Kwak JY, Kim MJ, Chang HS, Kim EK. Preoperative staging of papillary thyroid carcinoma: comparison of ultrasound imaging and CT. AJR Am J Roentgenol. 2009;193(3):871–8.

    Article  PubMed  Google Scholar 

  6. Stulak JM, Grant CS, Farley DR, Thompson GB, van Heerden JA, Hay ID, et al. Value of preoperative ultrasonography in the surgical management of initial and reoperative papillary thyroid cancer. Arch Surg. 2006;141(5):489–94. discussion 94–6.

    Article  PubMed  Google Scholar 

  7. Bilimoria KY, Bentrem DJ, Ko CY, Stewart AK, Winchester DP, Talamonti MS, et al. Extent of surgery affects survival for papillary thyroid cancer. Ann Surg. 2007;246(3):375–81. discussion 81–4.

    Article  PubMed  Google Scholar 

  8. LiVolsi VA. Papillary thyroid carcinoma: an update. Mod Pathol. 2011;24(Suppl 2):S1–9.

    Article  PubMed  CAS  Google Scholar 

  9. Puxeddu E, Durante C, Avenia N, Filetti S, Russo D. Clinical implications of BRAF mutation in thyroid carcinoma. Trends Endocrinol Metab. 2008;19(4):138–45.

    Article  PubMed  CAS  Google Scholar 

  10. Xing M. BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr Rev. 2007;28(7):742–62.

    Article  PubMed  CAS  Google Scholar 

  11. Bhaijee F, Nikiforov YE. Molecular analysis of thyroid tumors. Endocr Pathol. 2011;22(3):126–33.

    Article  PubMed  CAS  Google Scholar 

  12. Carpi A, Mechanick JI, Saussez S, Nicolini A. Thyroid tumor marker genomics and proteomics: diagnostic and clinical implications. J Cell Physiol. 2010;224(3):612–9.

    Article  PubMed  CAS  Google Scholar 

  13. Xing M. Recent advances in molecular biology of thyroid cancer and their clinical implications. Otolaryngol Clin North Am. 2008;41(6):1135–46.

    Article  PubMed  Google Scholar 

  14. Riesco-Eizaguirre G, Rodriguez I, De la Vieja A, Costamagna E, Carrasco N, Nistal M, et al. The BRAFV600E oncogene induces transforming growth factor beta secretion leading to sodium iodide symporter repression and increased malignancy in thyroid cancer. Cancer Res. 2009;69(21):8317–25.

    Article  PubMed  CAS  Google Scholar 

  15. Durand S, Ferraro-Peyret C, Joufre M, Chave A, Borson-Chazot F, Selmi-Ruby S, et al. Molecular characteristics of papillary thyroid carcinomas without BRAF mutation or RET/PTC rearrangement: relationship with clinico-pathological features. Endocr Relat Cancer. 2009;16(2):467–81.

    Article  PubMed  CAS  Google Scholar 

  16. Oler G, Camacho CP, Hojaij FC, Michaluart Jr P, Riggins GJ, Cerutti JM. Gene expression profiling of papillary thyroid carcinoma identifies transcripts correlated with BRAF mutational status and lymph node metastasis. Clin Cancer Res. 2008;14(15):4735–42.

    Article  PubMed  CAS  Google Scholar 

  17. Watanabe R, Hayashi Y, Sassa M, Kikumori T, Imai T, Kiuchi T, et al. Possible involvement of BRAFV600E in altered gene expression in papillary thyroid cancer. Endocr J. 2009;56(3):407–14.

    Article  PubMed  CAS  Google Scholar 

  18. Guan H, Ji M, Bao R, Yu H, Wang Y, Hou P, et al. Association of high iodine intake with the T1799A BRAF mutation in papillary thyroid cancer. J Clin Endocrinol Metabol. 2009;94(5):1612–7.

    Article  CAS  Google Scholar 

  19. Zou M, Baitei EY, Alzahrani AS, Al-Mohanna F, Farid NR, Meyer B, et al. Oncogenic activation of MAP kinase by BRAF pseudogene in thyroid tumors. Neoplasia. 2009;11(1):57–65.

    PubMed  CAS  Google Scholar 

  20. Nikiforov YE. RET/PTC rearrangement in thyroid tumors. Endocr Pathol. 2002;13(1):3–16.

    Article  PubMed  CAS  Google Scholar 

  21. Nikiforova MN, Nikiforov YE. Molecular genetics of thyroid cancer: implications for diagnosis, treatment and prognosis. Expert Rev Mol Diagn. 2008;8(1):83–95.

    Article  PubMed  CAS  Google Scholar 

  22. Gandhi M, Dillon LW, Pramanik S, Nikiforov YE, Wang YH. DNA breaks at fragile sites generate oncogenic RET/PTC rearrangements in human thyroid cells. Oncogene. 2010;29(15):2272–80.

    Article  PubMed  CAS  Google Scholar 

  23. Henderson YC, Shellenberger TD, Williams MD, El-Naggar AK, Fredrick MJ, Cieply KM, et al. High rate of BRAF and RET/PTC dual mutations associated with recurrent papillary thyroid carcinoma. Clin Cancer Res. 2009;15(2):485–91.

    Article  PubMed  CAS  Google Scholar 

  24. Rivera M, Ricarte-Filho J, Knauf J, Shaha A, Tuttle M, Fagin JA, et al. Molecular genotyping of papillary thyroid carcinoma follicular variant according to its histological subtypes (encapsulated vs infiltrative) reveals distinct BRAF and RAS mutation patterns. Mod Pathol. 2010;23(9):1191–200.

    Article  PubMed  CAS  Google Scholar 

  25. Nikiforov YE. Molecular diagnostics of thyroid tumors. Arch Pathol Lab Med. 2011;135(5):569–77.

    PubMed  CAS  Google Scholar 

  26. Greco A, Miranda C, Pierotti MA. Rearrangements of NTRK1 gene in papillary thyroid carcinoma. Mol Cell Endocrinol. 2010;321(1):44–9.

    Article  PubMed  CAS  Google Scholar 

  27. Russell JP, Powell DJ, Cunnane M, Greco A, Portella G, Santoro M, et al. The TRK-T1 fusion protein induces neoplastic transformation of thyroid epithelium. Oncogene. 2000;19(50):5729–35.

    Article  PubMed  CAS  Google Scholar 

  28. Bongarzone I, Fugazzola L, Vigneri P, Mariani L, Mondellini P, Pacini F, et al. Age-related activation of the tyrosine kinase receptor protooncogenes RET and NTRK1 in papillary thyroid carcinoma. J Clin Endocrinol Metab. 1996;81(5):2006–9.

    Article  PubMed  CAS  Google Scholar 

  29. Porto T, Coelho I, Boavida J, Pereira C, Nunes JM, Mendonca D, et al. Association of HLA DQ4-DR8 haplotype with papillary thyroid carcinomas. Clin Endocrinol (Oxf). 2006;64(2):179–83.

    Article  Google Scholar 

  30. Haghpanah V, Khalooghi K, Adabi K, Amiri P, Tavangar SM, Amirzargar A, et al. Associations between HLA-C alleles and papillary thyroid carcinoma. Cancer Biomark. 2009;5(1):19–22.

    PubMed  CAS  Google Scholar 

  31. Amoli MM, Yazdani N, Amiri P, Sayahzadeh F, Haghpanah V, Tavangar SM, et al. HLA-DR association in papillary thyroid carcinoma. Dis Markers. 2010;28(1):49–53.

    PubMed  CAS  Google Scholar 

  32. Jo YS, Lee JC, Li S, Choi YS, Bai YS, Kim YJ, et al. Significance of the expression of major histocompatibility complex class II antigen, HLA-DR and -DQ, with recurrence of papillary thyroid cancer. Int J Cancer. 2008;122(4):785–90.

    Article  PubMed  CAS  Google Scholar 

  33. Zitzelsberger H, Thomas G, Unger K. Chromosomal aberrations in thyroid follicular-cell neoplasia: in the search of novel oncogenes and tumour suppressor genes. Mol Cell Endocrinol. 2010;321(1):57–66.

    Article  PubMed  CAS  Google Scholar 

  34. Caria P, Vanni R. Cytogenetic and molecular events in adenoma and well-differentiated thyroid follicular-cell neoplasia. Cancer Genet Cytogenet. 2010;203(1):21–9.

    Article  PubMed  CAS  Google Scholar 

  35. Kroll TG, Sarraf P, Pecciarini L, Chen CJ, Mueller E, Spiegelman BM, et al. PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma [corrected]. Science. 2000;289(5483):1357–60.

    Article  PubMed  CAS  Google Scholar 

  36. Giordano TJ. Genome-wide studies in thyroid neoplasia. Endocrinol Metab Clin North Am. 2008;37(2):311–31.

    Article  PubMed  CAS  Google Scholar 

  37. Eberhardt NL, Grebe SKG, McIver B, Reddi HV. The role of the PAX8/PPARgamma fusion oncogene in the pathogenesis of follicular thyroid cancer. Mol Cell Endocrinol. 2010;321(1):50–6.

    Article  PubMed  CAS  Google Scholar 

  38. Learoyd DL, Messina M, Zedenius J, Robinson BG. Molecular genetics of thyroid tumors and surgical decision-making. World J Surg. 2000;24(8):923–33.

    Article  PubMed  CAS  Google Scholar 

  39. Castro P, Soares P, Gusmao L, Seruca R, Sobrinho-Simoes M. H-RAS 81 polymorphism is significantly associated with aneuploidy in follicular tumors of the thyroid. Oncogene. 2006;25(33):4620–7.

    Article  PubMed  CAS  Google Scholar 

  40. Antonelli A, Ferrari SM, Fallahi P, Berti P, Materazzi G, Marchetti I, et al. Evaluation of the sensitivity to chemotherapeutics or thiazolidinediones of primary anaplastic thyroid cancer cells obtained by fine-needle aspiration. Eur J Endocrinol. 2008;159(3):283–91.

    Article  PubMed  CAS  Google Scholar 

  41. Maximo V, Sobrinho-Simoes M. Hurthle cell tumours of the thyroid. A review with emphasis on mitochondrial abnormalities with clinical relevance. Virchows Archiv. 2000;437(2):107–15.

    Article  PubMed  CAS  Google Scholar 

  42. Sobrinho-Simoes M, Preto A, Rocha AS, Castro P, Maximo V, Fonseca E, et al. Molecular pathology of well-differentiated thyroid carcinomas. Virchows Arch. 2005;447(5):787–93.

    Article  PubMed  CAS  Google Scholar 

  43. Pacifico F, Crescenzi E, Mellone S, Iannetti A, Porrino N, Liguoro D, et al. Nuclear factor-{kappa}B contributes to anaplastic thyroid carcinomas through up-regulation of miR-146a. J Clin Endocrinol Metabol. 2010;95(3):1421–30.

    Article  CAS  Google Scholar 

  44. Kojic SL, Strugnell SS, Wiseman SM. Anaplastic thyroid cancer: a comprehensive review of novel therapy. Expert Rev Anticancer Ther. 2011;11(3):387–402.

    Article  PubMed  CAS  Google Scholar 

  45. Smallridge RC, Marlow LA, Copland JA. Anaplastic thyroid cancer: molecular pathogenesis and emerging therapies. Endocr Relat Cancer. 2009;16(1):17–44.

    Article  PubMed  CAS  Google Scholar 

  46. Volante M, Rapa I, Gandhi M, Bussolati G, Giachino D, Papotti M, et al. RAS mutations are the predominant molecular alteration in poorly differentiated thyroid carcinomas and bear prognostic impact. J Clin Endocrinol Metab. 2009;94(12):4735–41.

    Article  PubMed  CAS  Google Scholar 

  47. Nikiforov YE. Genetic alterations involved in the transition from well-differentiated to poorly differentiated and anaplastic thyroid carcinomas. Endocr Pathol. 2004;15(4):319–27.

    Article  PubMed  CAS  Google Scholar 

  48. Kim TH, Lee SY, Rho JH, Jeong NY, Soung YH, Jo WS, et al. Mutant p53 (G199V) gains antiapoptotic function through signal transducer and activator of transcription 3 in anaplastic thyroid cancer cells. Mol Cancer Res. 2009;7(10):1645–54.

    Article  PubMed  CAS  Google Scholar 

  49. Salerno P, Garcia-Rostan G, Piccinin S, Bencivenga TC, Di Maro G, Doglioni C, et al. TWIST1 plays a pleiotropic role in determining the anaplastic thyroid cancer phenotype. J Clin Endocrinol Metabol. 2011;96(5):E772–81.

    Article  CAS  Google Scholar 

  50. Gauchotte G, Philippe C, Lacomme S, Leotard B, Wissler MP, Allou L, et al. BRAF, p53 and SOX2 in anaplastic thyroid carcinoma: evidence for multistep carcinogenesis. Pathology. 2011;43:447–52.

    Article  PubMed  CAS  Google Scholar 

  51. Nakachi K, Hayashi T, Hamatani K, Eguchi H, Kusunoki Y. Sixty years of follow-up of Hiroshima and Nagasaki survivors: current progress in molecular epidemiology studies. Mutat Res. 2008;659(1–2):109–17.

    PubMed  CAS  Google Scholar 

  52. Ermak G, Figge JJ, Kartel NA, Davies KJA. Genetic aberrations in Chernobyl-related thyroid cancers: implications for possible future nuclear accidents or nuclear attacks. IUBMB Life. 2003;55(12):637–41.

    Article  PubMed  CAS  Google Scholar 

  53. Hamatani K, Eguchi H, Ito R, Mukai M, Takahashi K, Taga M, et al. RET/PTC rearrangements preferentially occurred in papillary thyroid cancer among atomic bomb survivors exposed to high radiation dose. Cancer Res. 2008;68(17):7176–82.

    Article  PubMed  CAS  Google Scholar 

  54. Levin RJ. Incidence of thyroid cancer in residents surrounding the Three Mile Island nuclear facility. Laryngoscope. 2008;118(4):618–28.

    Article  PubMed  Google Scholar 

  55. Xing M. Prognostic utility of BRAF mutation in papillary thyroid cancer. Mol Cell Endocrinol. 2010;321(1):86–93.

    Article  PubMed  CAS  Google Scholar 

  56. Nikiforov YE. Molecular analysis of thyroid tumors. Mod Pathol. 2011;24(2):34–43.

    Article  Google Scholar 

  57. Guerra A, Sapio MR, Marotta V, Campanile E, Moretti MI, Deandrea M, et al. Prevalence of RET/PTC rearrangement in benign and malignant thyroid nodules and its clinical application. Endocr J. 2011;58(1):31–8.

    Article  PubMed  CAS  Google Scholar 

  58. Kitano M, Rahbari R, Patterson EE, Xiong Y, Prasad NB, Wang Y, et al. Expression profiling of difficult-to-diagnose thyroid histologic subtypes shows distinct expression profiles and identify candidate diagnostic microRNAs. Ann Surg Oncol. 2011;18:3443–52.

    Article  PubMed  Google Scholar 

  59. Cradic KW, Milosevic D, Rosenberg AM, Erickson LA, McIver B, Grebe SK. Mutant BRAF(T1799A) can be detected in the blood of papillary thyroid carcinoma patients and correlates with disease status. J Clin Endocrinol Metabol. 2009;94(12):5001–9.

    Article  CAS  Google Scholar 

  60. Espinosa AV, Porchia L, Ringel MD. Targeting BRAF in thyroid cancer. Br J Cancer. 2007;96(1):16–20.

    Article  PubMed  CAS  Google Scholar 

  61. Salerno P, De Falco V, Tamburrino A, Nappi TC, Vecchio G, Schweppe RE, et al. Cytostatic activity of adenosine triphosphate-competitive kinase inhibitors in BRAF mutant thyroid carcinoma cells. J Clin Endocrinol Metabol. 2010;95(1):450–5.

    Article  CAS  Google Scholar 

  62. Nucera C, Nehs MA, Nagarkatti SS, Sadow PM, Mekel M, Fischer AH, et al. Targeting BRAFV600E with PLX4720 displays potent antimigratory and anti-invasive activity in preclinical models of human thyroid cancer. Oncologist. 2011;16(3):296–309.

    Article  PubMed  CAS  Google Scholar 

  63. Xing J, Liu R, Xing M, Trink B. The BRAFT1799A mutation confers sensitivity of thyroid cancer cells to the BRAFV600E inhibitor PLX4032 (RG7204). Biochem Biophys Res Commun. 2011;404(4):958–62.

    Article  PubMed  CAS  Google Scholar 

  64. Woyach JA, Shah MH. New therapeutic advances in the management of progressive thyroid cancer. Endocr Relat Cancer. 2009;16(3):715–31.

    Article  PubMed  CAS  Google Scholar 

  65. Hong DS, Cabanillas ME, Wheler J, Naing A, Tsimberidou AM, Ye L, et al. Inhibition of the Ras/Raf/MEK/ERK and RET kinase pathways with the combination of the multikinase inhibitor sorafenib and the farnesyltransferase inhibitor tipifarnib in medullary and differentiated thyroid malignancies. J Clin Endocrinol Metab. 2011;96(4):997–1005.

    Article  PubMed  Google Scholar 

  66. Sherman SI. Targeted therapy of thyroid cancer. Biochem Pharmacol. 2010;80(5):592–601.

    Article  PubMed  CAS  Google Scholar 

  67. Schweppe RE, Kerege AA, Sharma V, Poczobutt JM, Gutierrez-Hartmann A, Grzywa RL, et al. Distinct genetic alterations in the mitogen-activated protein kinase pathway dictate sensitivity of thyroid cancer cells to mitogen-activated protein kinase kinase 1/2 inhibition. Thyroid. 2009;19(8):825–35.

    Article  PubMed  CAS  Google Scholar 

  68. Henderson YC, Ahn SH, Clayman GL. Inhibition of the growth of papillary thyroid carcinoma cells by CI-1040. Arch Otolaryngol Head Neck Surg. 2009;135(4):347–54.

    Article  PubMed  Google Scholar 

  69. Vivaldi A, Miasaki FY, Ciampi R, Agate L, Collecchi P, Capodanno A, et al. Re-differentiation of thyroid carcinoma cell lines treated with 5-Aza-2’-deoxycytidine and retinoic acid. Mol Cell Endocrinol. 2009;307(1–2):142–8.

    Article  PubMed  CAS  Google Scholar 

  70. Akagi T, Luong QT, Gui D, Said J, Selektar J, Yung A, et al. Induction of sodium iodide symporter gene and molecular characterisation of HNF3 beta/FoxA2, TTF-1 and C/EBP beta in thyroid carcinoma cells. Br J Cancer. 2008;99(5):781–8.

    Article  PubMed  CAS  Google Scholar 

  71. Fernandez CA, Puig-Domingo M, Lomena F, Estorch M, Camacho Marti V, Bittini AL, et al. Effectiveness of retinoic acid treatment for redifferentiation of thyroid cancer in relation to recovery of radioiodine uptake. J Endocrinol Invest. 2009;32(3):228–33.

    PubMed  CAS  Google Scholar 

  72. Riesco-Eizaguirre G, Santisteban P. New insights in thyroid follicular cell biology and its impact in thyroid cancer therapy. Endocr-Relat Cancer. 2007;14(4):957–77.

    Article  PubMed  CAS  Google Scholar 

  73. Dumont JE, Lamy F, Roger P, Maenhaut C. Physiological and pathological regulation of thyroid cell proliferation and differentiation by thyrotropin and other factors. Physiol Rev. 1992;72(3):667–97.

    PubMed  CAS  Google Scholar 

  74. Watanabe H, Gould MN, Mahler PA, Mulcahy RT, Clifton KH. The influence of donor and recipient age and sex on the quantitative transplantation of monodispersed rat thyroid cells. Endocrinology. 1983;112(1):172–7.

    Article  PubMed  CAS  Google Scholar 

  75. Thomas T, Nowka K, Lan L, Derwahl M. Expression of endoderm stem cell markers: evidence for the presence of adult stem cells in human thyroid glands. Thyroid. 2006;16(6):537–44.

    Article  PubMed  CAS  Google Scholar 

  76. Malaguarnera R, Frasca F, Garozzo A, Giani F, Pandini G, Vella V, et al. Insulin receptor isoforms and insulin-like growth factor receptor in human follicular cell precursors from papillary thyroid cancer and normal thyroid. J Clin Endocrinol Metab. 2011;96(3):766–74.

    Article  PubMed  CAS  Google Scholar 

  77. Lan L, Cui D, Nowka K, Derwahl M. Stem cells derived from goiters in adults form spheres in response to intense growth stimulation and require thyrotropin for differentiation into thyrocytes. J Clin Endocrinol Metab. 2007;92(9):3681–8.

    Article  PubMed  CAS  Google Scholar 

  78. Cannito S, Novo E, di Bonzo LV, Busletta C, Colombatto S, Parola M. Epithelial-mesenchymal transition: from molecular mechanisms, redox regulation to implications in human health and disease. Antioxid Redox Signal. 2010;12(12):1383–430.

    Article  PubMed  CAS  Google Scholar 

  79. Coclet J, Lamy F, Rickaert F, Dumont JE, Roger PP. Intermediate filaments in normal thyrocytes: modulation of vimentin expression in primary cultures. Mol Cell Endocrinol. 1991;76(1–3):135–48.

    Article  PubMed  CAS  Google Scholar 

  80. Coclet J, Foureau F, Ketelbant P, Galand P, Dumont JE. Cell population kinetics in dog and human adult thyroid. Clin Endocrinol (Oxf). 1989;31(6):655–65.

    Article  CAS  Google Scholar 

  81. Riesco-Eizaguirre G, Rodriguez I, De la Vieja A, Costamagna E, Carrasco N, Nistal M, et al. The BRAFV600E oncogene induces transforming growth factor beta secretion leading to sodium iodide symporter repression and increased malignancy in thyroid cancer. Cancer Res. 2009;69(21):8317–25.

    Article  PubMed  CAS  Google Scholar 

  82. Zhu W, Hai T, Ye L, Cote GJ. Medullary thyroid carcinoma cell lines contain a self-renewing CD133+ population that is dependent on ret proto-oncogene activity. J Clin Endocrinol Metab. 2010;95(1):439–44.

    Article  PubMed  CAS  Google Scholar 

  83. Santarpia L, Ye L, Gagel R. Beyond RET: potential therapeutic approaches for advanced and metastatic medullary thyroid carcinoma. J Intern Med. 2009;266(1):99–113.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Goldenberg M.D. FACS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goyal, N., Setabutr, D., Abdulghani, J., Goldenberg, D. (2013). Molecular and Genetic Markers of Follicular-Cell Thyroid Cancer: Etiology and Diagnostic and Therapeutic Opportunities. In: El-Deiry, W. (eds) Impact of Genetic Targets on Cancer Therapy. Advances in Experimental Medicine and Biology, vol 779. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6176-0_14

Download citation

Publish with us

Policies and ethics