Skip to main content

Current and Future Trials of Targeted Therapies in Cutaneous Melanoma

  • Chapter
  • First Online:
Impact of Genetic Targets on Cancer Therapy

Part of the book series: Advances in Experimental Medicine and Biology ((volume 779))

Abstract

In order to effectively treat melanoma, targeted inhibition of key mĀ­echanistic events regulating melanoma development such as cell proliferation, survival, angiogenesis and invasion or metastasis needs to be accomplished. The Mitogen Activated Protein Kinase (MAPK) pathway has been identified as a key player in melanoma development making this cascade an important therapeutic target. However, identification of the ideal pathway member to therapeutically target for maximal clinical benefit remains a challenge. In normal cells, the MAPK pathway relays extracellular signals from the cell membrane to the nucleus via a cascade of phosphorylation events, which promote cancer development. Dysregulation of the MAPK pathway occurs frequently in many human cancers including melanoma. Mutations in the B-RAF and RAS genes, genetic or epigenetic modifications are the key aberrations observed in this signaling cascade. Constitutive activation of this pathway causes oncogenic transformation of cells by promoting cell proliferation, invasion, metastasis, migration, survival and angiogenesis. This review provides an overview of (a) key members of MAPK signaling regulating melanoma development; (b) key proteins which can serve as biomarkers to assess disease progression; (c) the clinical efficacy of various pharmacological agents targeting MAPK pathway; (d) current clinical trials evaluating downstream targets of the MAPK pathway; (e) issues associated with pharmacological agents such as drug resistance, induction of cancers; and finally (e) various strategies overcoming drug resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rager EL, Bridgeford EP, Ollila DW. Cutaneous melanoma: update on prevention, screening, diagnosis, and treatment. Am Fam Physician. 2005;72(2):269ā€“76.

    PubMedĀ  Google ScholarĀ 

  2. Edwards BK, Howe HL, Ries LA, Thun MJ, Rosenberg HM, Yancik R, et al. Annual report to the nation on the status of cancer, 1973ā€“1999, featuring implications of age and aging on U.S. cancer burden. Cancer. 2002;94(10):2766ā€“92.

    PubMedĀ  Google ScholarĀ 

  3. Whiteman DC, Whiteman CA, Green AC. Childhood sun exposure as a risk factor for melanoma: a systematic review of epidemiologic studies. Cancer Causes Control. 2001;12(1):69ā€“82.

    CASĀ  PubMedĀ  Google ScholarĀ 

  4. Breslow A. Thickness, cross-sectional areas and depth of invasion in the prognosis of cutaneous melanoma. Ann Surg. 1970;172(5):902ā€“8.

    CASĀ  PubMedĀ  Google ScholarĀ 

  5. NIH Consensus conference. Diagnosis and treatment of early melanoma. JAMA. 9;268(10):1314ā€“9.

    Google ScholarĀ 

  6. Balch CM, Urist MM, Karakousis CP, Smith TJ, Temple WJ, Drzewiecki K, et al. Efficacy of 2-cm surgical margins for intermediate-thickness melanomas (1 to 4 mm). Results of a multi-institutional randomized surgical trial. Ann Surg. 1993;218(3):262ā€“7. discussion 7ā€“9.

    CASĀ  PubMedĀ  Google ScholarĀ 

  7. Veronesi U, Cascinelli N, Adamus J, Balch C, Bandiera D, Barchuk A, et al. Thin stage I Ā­primary cutaneous malignant melanoma. Comparison of excision with margins of 1 or 3 cm. N Engl J Med. 1988;318(18):1159ā€“62.

    CASĀ  PubMedĀ  Google ScholarĀ 

  8. Veronesi U, Adamus J, Aubert C, Bajetta E, Beretta G, Bonadonna G, et al. A randomized trial of adjuvant chemotherapy and immunotherapy in cutaneous melanoma. N Engl J Med. 1982;307(15):913ā€“6.

    CASĀ  PubMedĀ  Google ScholarĀ 

  9. Panka DJ, Atkins MB, Mier JW. Targeting the mitogen-activated protein kinase pathway in the treatment of malignant melanoma. Clin Cancer Res. 2006;12(7 Pt 2):2371sā€“5.

    CASĀ  PubMedĀ  Google ScholarĀ 

  10. Lopez-Bergami P, Fitchman B, Ronai Z. Understanding signaling cascades in melanoma. Photochem Photobiol. 2008;84(2):289ā€“306.

    CASĀ  PubMedĀ  Google ScholarĀ 

  11. Mercer KE, Pritchard CA. Raf proteins and cancer: B-Raf is identified as a mutational target. Biochim Biophys Acta. 2003;1653(1):25ā€“40.

    CASĀ  PubMedĀ  Google ScholarĀ 

  12. Russo AE, Torrisi E, Bevelacqua Y, Perrotta R, Libra M, McCubrey JA, et al. Melanoma: molecular pathogenesis and emerging target therapies (review). Int J Oncol. 2009;34(6):1481ā€“9.

    CASĀ  PubMedĀ  Google ScholarĀ 

  13. Madhunapantula SV, Desai D, Sharma A, Huh S, Amin S, Robertson GP. PBIse, a novel selenium containing drug for the treatment of malignant melanoma. Mol Cancer Ther. 2008;7(5):1297ā€“308.

    CASĀ  PubMedĀ  Google ScholarĀ 

  14. Dhomen N, Marais R. BRAF signaling and targeted therapies in melanoma. Hematol Oncol Clin North Am. 2009;23(3):529ā€“45. ix.

    PubMedĀ  Google ScholarĀ 

  15. Gollob JA, Wilhelm S, Carter C, Kelley SL. Role of Raf kinase in cancer: therapeutic potential of targeting the Raf/MEK/ERK signal transduction pathway. Semin Oncol. 2006;33(4):392ā€“406.

    CASĀ  PubMedĀ  Google ScholarĀ 

  16. Fensterle J. A trip through the signaling pathways of melanoma. J Dtsch Dermatol Ges. 2006;4(3):205ā€“17.

    PubMedĀ  Google ScholarĀ 

  17. Meier F, Schittek B, Busch S, Garbe C, Smalley K, Satyamoorthy K, et al. The RAS/RAF/MEK/ERK and PI3K/AKT signaling pathways present molecular targets for the effective treatment of advanced melanoma. Front Biosci. 2005;10:2986ā€“3001.

    CASĀ  PubMedĀ  Google ScholarĀ 

  18. Marquette A, Bagot M, Bensussan A, Dumaz N. Recent discoveries in the genetics of melanoma and their therapeutic implications. Arch Immunol Ther Exp (Warsz). 2007;55(6):363ā€“72.

    CASĀ  Google ScholarĀ 

  19. Tsao H, Zhang X, Fowlkes K, Haluska FG. Relative reciprocity of NRAS and PTEN/MMAC1 alterations in cutaneous melanoma cell lines. Cancer Res. 2000;60(7):1800ā€“4.

    CASĀ  PubMedĀ  Google ScholarĀ 

  20. Dahl C, Guldberg P. The genome and epigenome of malignant melanoma. APMIS. 2007;115(10):1161ā€“76.

    CASĀ  PubMedĀ  Google ScholarĀ 

  21. Chin L, Pomerantz J, Polsky D, Jacobson M, Cohen C, Cordon-Cardo C, et al. Cooperative effects of INK4a and ras in melanoma susceptibility in vivo. Genes Dev. 1997;11(21):2822ā€“34.

    CASĀ  PubMedĀ  Google ScholarĀ 

  22. Mishra PJ, Ha L, Rieker J, Sviderskaya EV, Bennett DC, Oberst MD, et al. Dissection of RAS downstream pathways in melanomagenesis: a role for Ral in transformation. Oncogene. 2010;29(16):2449ā€“56.

    CASĀ  PubMedĀ  Google ScholarĀ 

  23. Ackermann J, Frutschi M, Kaloulis K, McKee T, Trumpp A, Beermann F. Metastasizing melanoma formation caused by expression of activated N-RasQ61K on an INK4a-deficient background. Cancer Res. 2005;65(10):4005ā€“11.

    CASĀ  PubMedĀ  Google ScholarĀ 

  24. Chin L, Tam A, Pomerantz J, Wong M, Holash J, Bardeesy N, et al. Essential role for oncogenic Ras in tumour maintenance. Nature. 1999;400(6743):468ā€“72.

    CASĀ  PubMedĀ  Google ScholarĀ 

  25. Prendergast GC, Rane N. Farnesyltransferase inhibitors: mechanism and applications. Expert Opin Investig Drugs. 2001;10(12):2105ā€“16.

    CASĀ  PubMedĀ  Google ScholarĀ 

  26. Smalley KS, Eisen TG. Farnesyl transferase inhibitor SCH66336 is cytostatic, pro-apoptotic and enhances chemosensitivity to cisplatin in melanoma cells. Int J Cancer. 2003;105(2):165ā€“75.

    CASĀ  PubMedĀ  Google ScholarĀ 

  27. Halaschek-Wiener J, Kloog Y, Wacheck V, Jansen B. Farnesyl thiosalicylic acid chemosensitizes human melanoma in vivo. J Invest Dermatol. 2003;120(1):109ā€“15.

    CASĀ  PubMedĀ  Google ScholarĀ 

  28. Meier F, Niessner H, Flaherty K, Schadendorf D, Sinnberg T, Schittek B, Garbe C. Effect of the farnesyl transferase inhibitor lonafarnib on sensitivity of melanoma cells to multikinase inhibitor sorafenib and opn Rheb farnesylation and mTOR signaling. J Clin Oncol. [Abstract]. 2009;27(15S (Supplement abstract 9077).

    Google ScholarĀ 

  29. End DW, Smets G, Todd AV, Applegate TL, Fuery CJ, Angibaud P, et al. Characterization of the antitumor effects of the selective farnesyl protein transferase inhibitor R115777 in vivo and in vitro. Cancer Res. 2001;61(1):131ā€“7.

    CASĀ  PubMedĀ  Google ScholarĀ 

  30. Sosman JA, Puzanov I. Molecular targets in melanoma from angiogenesis to apoptosis. Clin Cancer Res. 2006;12(7 Pt 2):2376sā€“83.

    CASĀ  PubMedĀ  Google ScholarĀ 

  31. McCubrey JA, Steelman LS, Abrams SL, Chappell WH, Russo S, Ove R, et al. Emerging Raf inhibitors. Expert Opin Emerg Drugs. 2009;14(4):633ā€“48.

    CASĀ  PubMedĀ  Google ScholarĀ 

  32. Gajewsky T, Niedezwiecki D, Johnson J, Linette G, Bucher C, Blakovich M, et al. Phase-II study of farnesyltransferase inhibitor R115777 in advanced melanoma: CALGB500104. J Clin Oncol. [Abstract]. 2006;24(18S, June 20 Supplement, Abstract #8014).

    Google ScholarĀ 

  33. Dellavalle RP, Nicholas MK, Schilling LM. Melanoma chemoprevention: a role for statins or fibrates? Am J Ther. 2003;10(3):203ā€“10.

    PubMedĀ  Google ScholarĀ 

  34. Kelland LR. Farnesyl transferase inhibitors in the treatment of breast cancer. Expert Opin Emerg Drugs. 2003;12(3):413ā€“21.

    CASĀ  Google ScholarĀ 

  35. Rose WC, Lee FY, Fairchild CR, Lynch M, Monticello T, Kramer RA, et al. Preclinical antitumor activity of BMS-214662, a highly apoptotic and novel farnesyltransferase inhibitor. Cancer Res. 2001;61(20):7507ā€“17.

    CASĀ  PubMedĀ  Google ScholarĀ 

  36. Rose WC, Long BH, Fairchild CR, Lee FY, Kadow JF. Preclinical pharmacology of BMS-275183, an orally active taxane. Clin Cancer Res. 2001;7(7):2016ā€“21.

    CASĀ  PubMedĀ  Google ScholarĀ 

  37. Dinsmore CJ, Bogusky MJ, Culberson JC, Bergman JM, Homnick CF, Zartman CB, et al. Conformational restriction of flexible ligands guided by the transferred noe experiment: potent macrocyclic inhibitors of farnesyltransferase. J Am Chem Soc. 2001;123(9):2107ā€“8.

    CASĀ  PubMedĀ  Google ScholarĀ 

  38. Camacho LH SS, Pezzulli S, et al. Dose escalation study of oral farnesyl transferase inhibitor (FTI) BMS-214662 in patients with solid tumors. Proc Annu Meet Am Soc Clin Oncol. 2001;20:311 [Abstract].

    Google ScholarĀ 

  39. Rubin EAJ, Morrison BW, et al. Phase I trial of the farnesyl protein transferase inhibitor L-778123 on 14- or 28-day dosing schedule. Proc Annu Meet Am Soc Clin Oncol. 2000;19:689 [Abstract].

    Google ScholarĀ 

  40. Sharma SBC, Spriggs D, et al. A Phase I trial and PK study of farnesyl transferase inhibitor L-778123 administered as a seven day continuous infusion in combination with paclitaxel. Proc Annu Meet Am Soc Clin Oncol. 2000;19:719 [Abstract].

    Google ScholarĀ 

  41. Hahn SMKK, Morrison BW, et al. Phase I trial of farnesyl transferase inhibitor L-778123 in combination with radio-therapy. Proc Annu Meet Am Soc Clin Oncol. 2000;19:906 [Abstract].

    Google ScholarĀ 

  42. Adjei AA. Blocking oncogenic Ras signaling for cancer therapy. J Natl Cancer Inst. 2001;93(14):1062ā€“74.

    CASĀ  PubMedĀ  Google ScholarĀ 

  43. Brummer T, Martin P, Herzog S, Misawa Y, Daly RJ, Reth M. Functional analysis of the regulatory requirements of B-Raf and the B-Raf(V600E) oncoprotein. Oncogene. 2006;25(47):6262ā€“76.

    CASĀ  PubMedĀ  Google ScholarĀ 

  44. Rajakulendran T, Sahmi M, Lefrancois M, Sicheri F, Therrien M. A dimerization-dependent mechanism drives RAF catalytic activation. Nature. 2009;461(7263):542ā€“5.

    CASĀ  PubMedĀ  Google ScholarĀ 

  45. Wellbrock C, Karasarides M, Marais R. The RAF proteins take centre stage. Nat Rev Mol Cell Biol. 2004;5(11):875ā€“85.

    CASĀ  PubMedĀ  Google ScholarĀ 

  46. Michaloglou C, Vredeveld LC, Mooi WJ, Peeper DS. BRAF(E600) in benign and malignant human tumours. Oncogene. 2008;27(7):877ā€“95.

    CASĀ  PubMedĀ  Google ScholarĀ 

  47. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949ā€“54.

    CASĀ  PubMedĀ  Google ScholarĀ 

  48. Kumar R, Angelini S, Czene K, Sauroja I, Hahka-Kemppinen M, Pyrhonen S, et al. BRAF mutations in metastatic melanoma: a possible association with clinical outcome. Clin Cancer Res. 2003;9(9):3362ā€“8.

    CASĀ  PubMedĀ  Google ScholarĀ 

  49. Garnett MJ, Marais R. Guilty as charged: B-RAF is a human oncogene. Cancer Cell. 2004;6(4):313ā€“9.

    CASĀ  PubMedĀ  Google ScholarĀ 

  50. Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM, et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell. 2004;116(6):855ā€“67.

    CASĀ  PubMedĀ  Google ScholarĀ 

  51. Wellbrock C, Ogilvie L, Hedley D, Karasarides M, Martin J, Niculescu-Duvaz D, et al. V599EB-RAF is an oncogene in melanocytes. Cancer Res. 2004;64(7):2338ā€“42.

    CASĀ  PubMedĀ  Google ScholarĀ 

  52. Tuveson DA, Weber BL, Herlyn M. BRAF as a potential therapeutic target in melanoma and other malignancies. Cancer Cell. 2003;4(2):95ā€“8.

    CASĀ  PubMedĀ  Google ScholarĀ 

  53. Hoeflich KP, Gray DC, Eby MT, Tien JY, Wong L, Bower J, et al. Oncogenic BRAF is required for tumor growth and maintenance in melanoma models. Cancer Res. 2006;66(2):999ā€“1006.

    CASĀ  PubMedĀ  Google ScholarĀ 

  54. Liang S, Sharma A, Peng HH, Robertson G, Dong C. Targeting mutant (V600E) B-Raf in melanoma interrupts immunoediting of leukocyte functions and melanoma extravasation. Cancer Res. 2007;67(12):5814ā€“20.

    CASĀ  PubMedĀ  Google ScholarĀ 

  55. Sharma A, Tran MA, Liang S, Sharma AK, Amin S, Smith CD, et al. Targeting mitogen-activated protein kinase/extracellular signal-regulated kinase kinase in the mutant (V600E) B-Raf signaling cascade effectively inhibits melanoma lung metastases. Cancer Res. 2006;66(16):8200ā€“9.

    CASĀ  PubMedĀ  Google ScholarĀ 

  56. Boyle GM, Pedley J, Martyn AC, Banducci KJ, Strutton GM, Brown DA, et al. Macrophage inhibitory cytokine-1 is overexpressed in malignant melanoma and is associated with tumorigenicity. J Invest Dermatol. 2009;129(2):383ā€“91.

    CASĀ  PubMedĀ  Google ScholarĀ 

  57. Sharma A, Trivedi NR, Zimmerman MA, Tuveson DA, Smith CD, Robertson GP. Mutant V599EB-Raf regulates growth and vascular development of malignant melanoma tumors. Cancer Res. 2005;65(6):2412ā€“21.

    CASĀ  PubMedĀ  Google ScholarĀ 

  58. Cheung M, Sharma A, Madhunapantula SV, Robertson GP. Akt3 and mutant V600E B-Raf cooperate to promote early melanoma development. Cancer Res. 2008;68(9):3429ā€“39.

    CASĀ  PubMedĀ  Google ScholarĀ 

  59. Wajapeyee N, Serra RW, Zhu X, Mahalingam M, Green MR. Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell. 2008;132(3):363ā€“74.

    CASĀ  PubMedĀ  Google ScholarĀ 

  60. Dhomen N, Reis-Filho JS, da Rocha Dias S, Hayward R, Savage K, Delmas V, et al. Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell. 2009;15(4):294ā€“303.

    CASĀ  PubMedĀ  Google ScholarĀ 

  61. Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM, et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature. 2005;436(7051):720ā€“4.

    CASĀ  PubMedĀ  Google ScholarĀ 

  62. Nguyen LP, Emley A, Wajapeyee N, Green MR, Mahalingam M. BRAF V600E mutation and the tumour suppressor IGFBP7 in atypical genital naevi. Br J Dermatol. 2009;162(3):677ā€“80.

    PubMedĀ  Google ScholarĀ 

  63. Zhao Y, Zhang Y, Yang Z, Li A, Dong J. Simultaneous knockdown of BRAF and expression of INK4A in melanoma cells leads to potent growth inhibition and apoptosis. Biochem Biophys Res Commun. 2008;370(3):509ā€“13.

    CASĀ  PubMedĀ  Google ScholarĀ 

  64. Dankort D, Curley DP, Cartlidge RA, Nelson B, Karnezis AN, Damsky Jr WE, et al. Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nat Genet. 2009;41(5):544ā€“52.

    CASĀ  PubMedĀ  Google ScholarĀ 

  65. Patton EE, Widlund HR, Kutok JL, Kopani KR, Amatruda JF, Murphey RD, et al. BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr Biol. 2005;15(3):249ā€“54.

    CASĀ  PubMedĀ  Google ScholarĀ 

  66. Yu H, McDaid R, Lee J, Possik P, Li L, Kumar SM, et al. The role of BRAF mutation and p53 inactivation during transformation of a subpopulation of primary human melanocytes. Am J Pathol. 2009;174(6):2367ā€“77.

    CASĀ  PubMedĀ  Google ScholarĀ 

  67. Gallagher SJ, Thompson JF, Indsto J, Scurr LL, Lett M, Gao BF, et al. p16INK4a expression and absence of activated B-RAF are independent predictors of chemosensitivity in melanoma tumors. Neoplasia. 2008;10(11):1231ā€“9.

    CASĀ  PubMedĀ  Google ScholarĀ 

  68. Goel VK, Lazar AJ, Warneke CL, Redston MS, Haluska FG. Examination of mutations in BRAF, NRAS, and PTEN in primary cutaneous melanoma. J Invest Dermatol. 2006;126(1):154ā€“60.

    CASĀ  PubMedĀ  Google ScholarĀ 

  69. Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004;64(19):7099ā€“109.

    CASĀ  PubMedĀ  Google ScholarĀ 

  70. Eisen T, Ahmad T, Flaherty KT, Gore M, Kaye S, Marais R, et al. Sorafenib in advanced melanoma: a phase II randomised discontinuation trial analysis. Br J Cancer. 2006;95(5):581ā€“6.

    CASĀ  PubMedĀ  Google ScholarĀ 

  71. Takimoto CH, Awada A. Safety and anti-tumor activity of sorafenib (nexavar) in combination with other anti-cancer agents: a review of clinical trials. Cancer Chemother Pharmacol. 2008;61(4):535ā€“48.

    CASĀ  PubMedĀ  Google ScholarĀ 

  72. Karasarides M, Chiloeches A, Hayward R, Niculescu-Duvaz D, Scanlon I, Friedlos F, et al. B-RAF is a therapeutic target in melanoma. Oncogene. 2004;23(37):6292ā€“8.

    CASĀ  PubMedĀ  Google ScholarĀ 

  73. Madhunapantula SV, Robertson GP. Is B-Raf a good therapeutic target for melanoma and other malignancies? Cancer Res. 2008;68(1):5ā€“8.

    CASĀ  PubMedĀ  Google ScholarĀ 

  74. Tsai J, Lee JT, Wang W, Zhang J, Cho H, Mamo S, et al. Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc Natl Acad Sci USA. 2008;105(8):3041ā€“6.

    CASĀ  PubMedĀ  Google ScholarĀ 

  75. Bollag G, Hirth P, Tsai J, Zhang J, Ibrahim PN, Cho H, et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature. 2010;467(7315):596ā€“9.

    CASĀ  PubMedĀ  Google ScholarĀ 

  76. Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA, et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med. 2010;363(9):809ā€“19.

    CASĀ  PubMedĀ  Google ScholarĀ 

  77. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364(26):2507ā€“16.

    CASĀ  PubMedĀ  Google ScholarĀ 

  78. Hong S, Han SB. Overcoming metastatic melanoma with BRAF inhibitors. Arch Pharm Res. 2011;34(5):699ā€“701.

    CASĀ  PubMedĀ  Google ScholarĀ 

  79. Agarwala SS, di Pietro A, Flaherty KT, Garbe C, Grob JJ, Kashani-Sabet M, et al. Meeting report from the third global workshop on melanoma. Pigment Cell Melanoma Res. 2010;23(5):e1ā€“7.

    PubMedĀ  Google ScholarĀ 

  80. Nazarian R, Shi H, Wang Q, Kong X, Koya RC, Lee H, et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature. 2010;468(7326):973ā€“7.

    CASĀ  PubMedĀ  Google ScholarĀ 

  81. Solit DB, Rosen N. Resistance to BRAF inhibition in melanomas. N Engl J Med. 2011;364(8):772ā€“4.

    CASĀ  PubMedĀ  Google ScholarĀ 

  82. Johannessen CM, Boehm JS, Kim SY, Thomas SR, Wardwell L, Johnson LA, et al. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature. 2010;468(7326):968ā€“72. Dec 16 2010.

    CASĀ  PubMedĀ  Google ScholarĀ 

  83. Kaplan FM, Shao Y, Mayberry MM, Aplin AE. Hyperactivation of MEK-ERK1/2 signaling and resistance to apoptosis induced by the oncogenic B-RAF inhibitor, PLX4720, in mutant N-RAS melanoma cells. Oncogene. 2011;30(3):366ā€“71.

    CASĀ  PubMedĀ  Google ScholarĀ 

  84. Brower V. BRAF inhibitors: research accelerates in wake of positive findings. J Natl Cancer Inst. 2010;102(4):214ā€“5.

    CASĀ  PubMedĀ  Google ScholarĀ 

  85. Solit DB, Garraway LA, Pratilas CA, Sawai A, Getz G, Basso A, et al. BRAF mutation predicts sensitivity to MEK inhibition. Nature. 2006;439(7074):358ā€“62.

    CASĀ  PubMedĀ  Google ScholarĀ 

  86. Davies BR, Logie A, McKay JS, Martin P, Steele S, Jenkins R, et al. AZD6244 (ARRY-142886), a potent inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1/2 kinases: mechanism of action in vivo, pharmacokinetic/pharmacodynamic relationship, and potential for combination in preclinical models. Mol Cancer Ther. 2007;6(8):2209ā€“19.

    CASĀ  PubMedĀ  Google ScholarĀ 

  87. Adjei AA, Cohen RB, Franklin W, Morris C, Wilson D, Molina JR, et al. Phase I pharmacokinetic and pharmacodynamic study of the oral, small-molecule mitogen-activated protein kinase kinase 1/2 inhibitor AZD6244 (ARRY-142886) in patients with advanced cancers. J Clin Oncol. 2008;26(13):2139ā€“46.

    CASĀ  PubMedĀ  Google ScholarĀ 

  88. Daouti S, Higgins B, Kolinsky K, Packman K, Wang H, Rizzo C, et al. Preclinical in vivo evaluation of efficacy, pharmacokinetics, and pharmacodynamics of a novel MEK1/2 kinase inhibitor RO5068760 in multiple tumor models. Mol Cancer Ther. 2010;9(1):134ā€“44.

    CASĀ  PubMedĀ  Google ScholarĀ 

  89. Mandic A, Viktorsson K, Heiden T, Hansson J, Shoshan MC. The MEK1 inhibitor PD98059 sensitizes C8161 melanoma cells to cisplatin-induced apoptosis. Melanoma Res. 2001;11(1):11ā€“9.

    CASĀ  PubMedĀ  Google ScholarĀ 

  90. Emery CM, Vijayendran KG, Zipser MC, Sawyer AM, Niu L, Kim JJ, et al. MEK1 mutations confer resistance to MEK and B-RAF inhibition. Proc Natl Acad Sci USA. 2009;106(48):20411ā€“6.

    CASĀ  PubMedĀ  Google ScholarĀ 

  91. Lopez-Bergami P, Huang C, Goydos JS, Yip D, Bar-Eli M, Herlyn M, et al. Rewired ERK-JNK signaling pathways in melanoma. Cancer Cell. 2007;11(5):447ā€“60.

    CASĀ  PubMedĀ  Google ScholarĀ 

  92. Mirmohammadsadegh A, Mota R, Gustrau A, Hassan M, Nambiar S, Marini A, et al. ERK1/2 is highly phosphorylated in melanoma metastases and protects melanoma cells from cisplatin-mediated apoptosis. J Invest Dermatol. 2007;127(9):2207ā€“15.

    CASĀ  PubMedĀ  Google ScholarĀ 

  93. Pardo OE, Arcaro A, Salerno G, Tetley TD, Valovka T, Gout I, et al. Novel cross talk between MEK and S6K2 in FGF-2 induced proliferation of SCLC cells. Oncogene. 2001;20(52):7658ā€“67.

    CASĀ  PubMedĀ  Google ScholarĀ 

  94. Zhuang L, Lee CS, Scolyer RA, McCarthy SW, Palmer AA, Zhang XD, et al. Activation of the extracellular signal regulated kinase (ERK) pathway in human melanoma. J Clin Pathol. 2005;58(11):1163ā€“9.

    CASĀ  PubMedĀ  Google ScholarĀ 

  95. Kohno MJP. Pharmacological inhibitors of the ERK signaling pathway: applications as anticancer drugs. Prog Cell Cycle Res. 2003;5(Chapter 22):219ā€“24.

    PubMedĀ  Google ScholarĀ 

  96. Boss DS, Beijnen JH, Schellens JH. Clinical experience with aurora kinase inhibitors: a review. Oncologist. 2009;14(8):780ā€“93.

    CASĀ  PubMedĀ  Google ScholarĀ 

  97. Carmena M, Ruchaud S, Earnshaw WC. Making the Auroras glow: regulation of Aurora A and B kinase function by interacting proteins. Curr Opin Cell Biol. 2009;21(6):796ā€“805.

    CASĀ  PubMedĀ  Google ScholarĀ 

  98. Libertini S, Abagnale A, Passaro C, Botta G, Portella G. Aurora A and B kinasesā€”targets of novel anticancer drugs. Recent Pat Anticancer Drug Discov. 2010;5(3):219ā€“41.

    CASĀ  PubMedĀ  Google ScholarĀ 

  99. Kollareddy M, Dzubak P, Zheleva D, Hajduch M. Aurora kinases: structure, functions and their association with cancer. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2008;152(1):27ā€“33.

    CASĀ  PubMedĀ  Google ScholarĀ 

  100. Macarulla T, Ramos FJ, Tabernero J. Aurora kinase family: a new target for anticancer drug. Recent Pat Anticancer Drug Discov. 2008;3(2):114ā€“22.

    CASĀ  PubMedĀ  Google ScholarĀ 

  101. Vader G, Lens SM. The Aurora kinase family in cell division and cancer. Biochim Biophys Acta. 2008;1786(1):60ā€“72.

    CASĀ  PubMedĀ  Google ScholarĀ 

  102. Barr AR, Gergely F. Aurora-A: the maker and breaker of spindle poles. J Cell Sci. 2007;120(Pt 17):2987ā€“96.

    CASĀ  PubMedĀ  Google ScholarĀ 

  103. Cimini D. Detection and correction of merotelic kinetochore orientation by Aurora B and its partners. Cell Cycle. 2007;6(13):1558ā€“64.

    CASĀ  PubMedĀ  Google ScholarĀ 

  104. Yeung SC, Gully C, Lee MH. Aurora-B kinase inhibitors for cancer chemotherapy. Mini Rev Med Chem. 2008;8(14):1514ā€“25.

    CASĀ  PubMedĀ  Google ScholarĀ 

  105. Dar AA, Goff LW, Majid S, Berlin J, El-Rifai W. Aurora kinase inhibitorsā€”rising stars in cancer therapeutics? Mol Cancer Ther. 2010;9(2):268ā€“78.

    CASĀ  PubMedĀ  Google ScholarĀ 

  106. Saeki T, Ouchi M, Ouchi T. Physiological and oncogenic Aurora-A pathway. Int J Biol Sci. 2009;5(7):758ā€“62.

    CASĀ  PubMedĀ  Google ScholarĀ 

  107. Ju H, Cho H, Kim YS, Kim WH, Ihm C, Noh SM, et al. Functional polymorphism 57Val>Ile of aurora kinase A associated with increased risk of gastric cancer progression. Cancer Lett. 2006;242(2):273ā€“9.

    CASĀ  PubMedĀ  Google ScholarĀ 

  108. Tchatchou S, Wirtenberger M, Hemminki K, Sutter C, Meindl A, Wappenschmidt B, et al. Aurora kinases A and B and familial breast cancer risk. Cancer Lett. 2007;247(2):266ā€“72.

    CASĀ  PubMedĀ  Google ScholarĀ 

  109. Ewart-Toland A, Dai Q, Gao YT, Nagase H, Dunlop MG, Farrington SM, et al. Aurora-A/STK15 T+91A is a general low penetrance cancer susceptibility gene: a meta-analysis of multiple cancer types. Carcinogenesis. 2005;26(8):1368ā€“73.

    CASĀ  PubMedĀ  Google ScholarĀ 

  110. Arbitrario JP, Belmont BJ, Evanchik MJ, Flanagan WM, Fucini RV, Hansen SK, et al. SNS-314, a pan-Aurora kinase inhibitor, shows potent anti-tumor activity and dosing flexibility in vivo. Cancer Chemother Pharmacol. 2010;65(4):707ā€“17.

    CASĀ  PubMedĀ  Google ScholarĀ 

  111. Katayama H, Sen S. Aurora kinase inhibitors as anticancer molecules. Biochim Biophys Acta. 2010;1799(10ā€“12):829ā€“39.

    CASĀ  PubMedĀ  Google ScholarĀ 

  112. Lens SM, Voest EE, Medema RH. Shared and separate functions of polo-like kinases and aurora kinases in cancer. Nat Rev Cancer. 2010;10(12):825ā€“41.

    CASĀ  PubMedĀ  Google ScholarĀ 

  113. Pirker C, Lotsch D, Spiegl-Kreinecker S, Jantscher F, Sutterluty H, Micksche M, et al. Response of experimental malignant melanoma models to the pan-Aurora kinase inhibitor VE-465. Exp Dermatol. 2010;19(12):1040ā€“7.

    CASĀ  PubMedĀ  Google ScholarĀ 

  114. Dees EC, Infante JR, Cohen RB, Oā€™Neil BH, Jones S, von Mehren M, et al. Phase 1 study of MLN8054, a selective inhibitor of Aurora A kinase in patients with advanced solid tumors. Cancer Chemother Pharmacol. 2010;67(4):945ā€“54.

    PubMedĀ  Google ScholarĀ 

  115. Macarulla T, Cervantes A, Elez E, Rodriguez-Braun E, Baselga J, Rosello S, et al. Phase I study of the selective Aurora A kinase inhibitor MLN8054 in patients with advanced solid tumors: safety, pharmacokinetics, and pharmacodynamics. Mol Cancer Ther. 2010;9(10):2844ā€“52.

    CASĀ  PubMedĀ  Google ScholarĀ 

  116. Carol H, Boehm I, Reynolds CP, Kang MH, Maris JM, Morton CL, et al. Efficacy and pharmacokinetic/pharmacodynamic evaluation of the Aurora kinase A inhibitor MLN8237 against preclinical models of pediatric cancer. Cancer Chemother Pharmacol. 2011;68(5):1291ā€“304.

    CASĀ  PubMedĀ  Google ScholarĀ 

  117. Yamashita T, Yoneta A, Hida T. Macrophage inhibitory cytokine-1: a new player in melanoma development. J Invest Dermatol. 2009;129(2):262ā€“4.

    CASĀ  PubMedĀ  Google ScholarĀ 

  118. Huh SJ, Chung CY, Sharma A, Robertson GP. Macrophage inhibitory cytokine-1 regulates melanoma vascular development. Am J Pathol. 2010;176(6):2948ā€“57.

    CASĀ  PubMedĀ  Google ScholarĀ 

  119. Singh RK, Varney ML. IL-8 expression in malignant melanoma: implications in growth and metastasis. Histol Histopathol. 2000;15(3):843ā€“9.

    CASĀ  PubMedĀ  Google ScholarĀ 

  120. Zhang H, Fu T, McGettigan S, Kumar S, Liu S, Speicher D, et al. IL8 And cathepsin B as melanoma serum biomarkers. Int J Mol Sci. 2011;12(3):1505ā€“18.

    CASĀ  PubMedĀ  Google ScholarĀ 

  121. Jovanovic M, Stefanoska I, Radojcic L, Vicovac L. Interleukin-8 (CXCL8) stimulates trophoblast cell migration and invasion by increasing levels of matrix metalloproteinase (MMP)2 and MMP9 and integrins alpha5 and beta1. Reproduction. 2010;139(4):789ā€“98.

    CASĀ  PubMedĀ  Google ScholarĀ 

  122. Araki K, Shimura T, Yajima T, Tsutsumi S, Suzuki H, Okada K, et al. Phosphoglucose isomerase/autocrine motility factor promotes melanoma cell migration through ERK activation dependent on autocrine production of interleukin-8. J Biol Chem. 2009;284(47):32305ā€“11.

    CASĀ  PubMedĀ  Google ScholarĀ 

  123. Huh SJ, Liang S, Sharma A, Dong C, Robertson GP. Transiently entrapped circulating tumor cells interact with neutrophils to facilitate lung metastasis development. Cancer Res. 2010;70(14):6071ā€“82.

    CASĀ  PubMedĀ  Google ScholarĀ 

  124. Kim MY, Oskarsson T, Acharyya S, Nguyen DX, Zhang XH, Norton L, et al. Tumor self-seeding by circulating cancer cells. Cell. 2009;139(7):1315ā€“26.

    PubMedĀ  Google ScholarĀ 

  125. Crawford S, Belajic D, Wei J, Riley JP, Dunford PJ, Bembenek S, et al. A novel B-RAF inhibitor blocks interleukin-8 (IL-8) synthesis in human melanoma xenografts, revealing IL-8 as a potential pharmacodynamic biomarker. Mol Cancer Ther. 2008;7(3):492ā€“9.

    CASĀ  PubMedĀ  Google ScholarĀ 

  126. Ciuffreda L, Del Bufalo D, Desideri M, Di Sanza C, Stoppacciaro A, Ricciardi MR, et al. Growth-inhibitory and antiangiogenic activity of the MEK inhibitor PD0325901 in malignant melanoma with or without BRAF mutations. Neoplasia. 2009;11(8):720ā€“31.

    CASĀ  PubMedĀ  Google ScholarĀ 

  127. Oka M, Sakaguchi M, Okada T, Nagai H, Ozaki M, Yoshioka T, et al. Signal transducer and activator of transcription 3 upregulates interleukin-8 expression at the level of transcription in human melanoma cells. Exp Dermatol. 2010;19(8):e50ā€“5.

    PubMedĀ  Google ScholarĀ 

  128. Villares GJ, Zigler M, Wang H, Melnikova VO, Wu H, Friedman R, et al. Targeting melanoma growth and metastasis with systemic delivery of liposome-incorporated protease-activated receptor-1 small interfering RNA. Cancer Res. 2008;68(21):9078ā€“86.

    CASĀ  PubMedĀ  Google ScholarĀ 

  129. Lev DC, Ruiz M, Mills L, McGary EC, Price JE, Bar-Eli M. Dacarbazine causes transcriptional up-regulation of interleukin 8 and vascular endothelial growth factor in melanoma cells: a possible escape mechanism from chemotherapy. Mol Cancer Ther. 2003;2(8):753ā€“63.

    CASĀ  PubMedĀ  Google ScholarĀ 

  130. Lev DC, Onn A, Melinkova VO, Miller C, Stone V, Ruiz M, et al. Exposure of melanoma cells to dacarbazine results in enhanced tumor growth and metastasis in vivo. J Clin Oncol. 2004;22(11):2092ā€“100.

    CASĀ  PubMedĀ  Google ScholarĀ 

  131. Chung CY, Madhunapantula SV, Desai D, Amin S, Robertson GP. Melanoma prevention using topical PBISe. Cancer Prev Res (Phila Pa). 2011;4(6):935ā€“48.

    CASĀ  Google ScholarĀ 

  132. Huang S, Mills L, Mian B, Tellez C, McCarty M, Yang XD, et al. Fully humanized neutralizing antibodies to interleukin-8 (ABX-IL8) inhibit angiogenesis, tumor growth, and metastasis of human melanoma. Am J Pathol. 2002;161(1):125ā€“34.

    CASĀ  PubMedĀ  Google ScholarĀ 

  133. Zigler M, Villares GJ, Lev DC, Melnikova VO, Bar-Eli M. Tumor immunotherapy in Ā­melanoma: strategies for overcoming mechanisms of resistance and escape. Am J Clin Dermatol. 2008;9(5):307ā€“11.

    PubMedĀ  Google ScholarĀ 

  134. Murrow LM, Garimella SV, Jones TL, Caplen NJ, Lipkowitz S. Identification of WEE1 as a potential molecular target in cancer cells by RNAi screening of the human tyrosine kinome. Breast Cancer Res Treat. 2010;122(2):347ā€“57.

    CASĀ  PubMedĀ  Google ScholarĀ 

  135. Walter SA, Guadagno SN, Ferrell Jr JE. Activation of Wee1 by p42 MAPK in vitro and in cycling xenopus egg extracts. Mol Biol Cell. 2000;11(3):887ā€“96.

    CASĀ  PubMedĀ  Google ScholarĀ 

  136. De Witt Hamer PC, Mir SE, Noske D, Van Noorden CJ, Wurdinger T. WEE1 kinase targeting combined with DNA-damaging cancer therapy catalyzes mitotic catastrophe. Clin Cancer Res. 2011;17:4200ā€“7.

    PubMedĀ  Google ScholarĀ 

  137. Hirai H, Arai T, Okada M, Nishibata T, Kobayashi M, Sakai N, et al. MK-1775, a small molecule Wee1 inhibitor, enhances anti-tumor efficacy of various DNA-damaging agents, including 5-fluorouracil. Cancer Biol Ther. 2010;9(7):514ā€“22.

    CASĀ  PubMedĀ  Google ScholarĀ 

  138. Smaill JB, Lee HH, Palmer BD, Thompson AM, Squire CJ, Baker EN, et al. Synthesis and structure-activity relationships of soluble 8-substituted 4-(2-chlorophenyl)-9-hydroxypyrrolo[3,4-c]carbazole-1,3(2H,6H)-diones as inhibitors of the Wee1 and Chk1 checkpoint kinases. Bioorg Med Chem Lett. 2008;18(3):929ā€“33.

    CASĀ  PubMedĀ  Google ScholarĀ 

  139. Wang Y, Li J, Booher RN, Kraker A, Lawrence T, Leopold WR, et al. Radiosensitization of p53 mutant cells by PD0166285, a novel G(2) checkpoint abrogator. Cancer Res. 2001;61(22):8211ā€“7.

    CASĀ  PubMedĀ  Google ScholarĀ 

  140. Hashimoto O, Shinkawa M, Torimura T, Nakamura T, Selvendiran K, Sakamoto M, et al. Cell cycle regulation by the Wee1 inhibitor PD0166285, pyrido [2,3-d] pyrimidine, in the B16 mouse melanoma cell line. BMC Cancer. 2006;6:292.

    PubMedĀ  Google ScholarĀ 

  141. Park K, Lee MY, Kim KS, Hahn SK. Target specific tumor treatment by VEGF siRNA complexed with reducible polyethyleneimine-hyaluronic acid conjugate. Biomaterials. 2010;31(19):5258ā€“65.

    CASĀ  PubMedĀ  Google ScholarĀ 

  142. Molhoek KR, Griesemann H, Shu J, Gershenwald JE, Brautigan DL, Slingluff Jr CL. Human melanoma cytolysis by combined inhibition of mammalian target of rapamycin and vascular endothelial growth factor/vascular endothelial growth factor receptor-2. Cancer Res. 2008;68(11):4392ā€“7.

    CASĀ  PubMedĀ  Google ScholarĀ 

  143. Yang L, Chen G, Mohanty S, Scott G, Fazal F, Rahman A, et al. GPR56 regulates VEGF production and angiogenesis during melanoma progression. Cancer Res. 2011;71(16):5558ā€“68.

    CASĀ  PubMedĀ  Google ScholarĀ 

  144. Akula SM, Ford PW, Whitman AG, Hamden KE, Bryan BA, Cook PP, et al. B-Raf-dependent expression of vascular endothelial growth factor-A in Kaposi sarcoma-associated herpesvirus-infected human B cells. Blood. 2005;105(11):4516ā€“22.

    CASĀ  PubMedĀ  Google ScholarĀ 

  145. Niers TM, Richel DJ, Meijers JC, Schlingemann RO. Vascular endothelial growth factor in the circulation in cancer patients may not be a relevant biomarker. PLoS One. 2011;6(5):e19873.

    CASĀ  PubMedĀ  Google ScholarĀ 

  146. Corrie PG, Basu B, Zaki KA. Targeting angiogenesis in melanoma: prospects for the future. Ther Adv Med Oncol. 2010;2(6):367ā€“80.

    CASĀ  PubMedĀ  Google ScholarĀ 

  147. Kelly RJ, Rixe O. Axitinib (AG-013736). Recent Results Cancer Res. 2010;184:33ā€“44.

    CASĀ  PubMedĀ  Google ScholarĀ 

  148. Choueiri TK. Axitinib, a novel anti-angiogenic drug with promising activity in various solid tumors. Curr Opin Investig Drugs. 2008;9(6):658ā€“71.

    CASĀ  PubMedĀ  Google ScholarĀ 

  149. Holash J, Davis S, Papadopoulos N, Croll SD, Ho L, Russell M, et al. VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci USA. 2002;99(17):11393ā€“8.

    CASĀ  PubMedĀ  Google ScholarĀ 

  150. Hu R, Aplin AE. AlphaB-crystallin is mutant B-RAF regulated and contributes to cyclin D1 turnover in melanocytic cells. Pigment Cell Melanoma Res. 2010;23:201ā€“9.

    CASĀ  PubMedĀ  Google ScholarĀ 

  151. Oba J, Nakahara T, Abe T, Hagihara A, Moroi Y, Furue M. Expression of c-Kit, p-ERK and cyclin D1 in malignant melanoma: an immunohistochemical study and analysis of prognostic value. J Dermatol Sci. 2011;62(2):116ā€“23.

    CASĀ  PubMedĀ  Google ScholarĀ 

  152. Lebe B, Pabuccuoglu U, Ozer E. The significance of Ki-67 proliferative index and cyclin D1 expression of dysplastic nevi in the biologic spectrum of melanocytic lesions. Appl Immunohistochem Mol Morphol. 2007;15(2):160ā€“4.

    PubMedĀ  Google ScholarĀ 

  153. Joshi KS, Rathos MJ, Mahajan P, Wagh V, Shenoy S, Bhatia D, et al. P276-00, a novel cyclin-dependent inhibitor induces G1-G2 arrest, shows antitumor activity on cisplatin-resistant cells and significant in vivo efficacy in tumor models. Mol Cancer Ther. 2007;6(3):926ā€“34.

    CASĀ  PubMedĀ  Google ScholarĀ 

  154. Mandara M, Nortilli R, Sava T, Cetto GL. Chemotherapy for metastatic melanoma. Expert Rev Anticancer Ther. 2006;6(1):121ā€“30.

    CASĀ  PubMedĀ  Google ScholarĀ 

  155. Huncharek M, Caubet JF, McGarry R. Single-agent DTIC versus combination chemotherapy with or without immunotherapy in metastatic melanoma: a meta-analysis of 3273 patients from 20 randomized trials. Melanoma Res. 2001;11(1):75ā€“81.

    CASĀ  PubMedĀ  Google ScholarĀ 

  156. Smalley KS, Haass NK, Brafford PA, Lioni M, Flaherty KT, Herlyn M. Multiple signaling pathways must be targeted to overcome drug resistance in cell lines derived from melanoma metastases. Mol Cancer Ther. 2006;5(5):1136ā€“44.

    CASĀ  PubMedĀ  Google ScholarĀ 

  157. Tran MA, Gowda R, Sharma A, Park EJ, Adair J, Kester M, et al. Targeting V600EB-Raf and Akt3 using nanoliposomal-small interfering RNA inhibits cutaneous melanocytic lesion development. Cancer Res. 2008;68(18):7638ā€“49.

    CASĀ  PubMedĀ  Google ScholarĀ 

  158. Meier FE, Lasithiotakis K, Schittek B, Sinnberg T, Garbe C. Temozolomide combined with the PI3K inhibitor LY294002 or the mTOR inhibitor rapamycin inhibits melanoma cell growth, survival and invasion. J Clin Oncol. [Abstract]. 2007;25(18S (June 20 Suppl) Abstract 8559).

    Google ScholarĀ 

  159. Li J, Xu M, Yang Z, Li A, Dong J. Simultaneous inhibition of MEK and CDK4 leads to potent apoptosis in human melanoma cells. Cancer Invest. 2009;28(4):350ā€“6.

    CASĀ  Google ScholarĀ 

  160. Meier F, Busch S, Lasithiotakis K, Kulms D, Garbe C, Maczey E, et al. Combined targeting of MAPK and AKT signalling pathways is a promising strategy for melanoma treatment. Br J Dermatol. 2007;156(6):1204ā€“13.

    CASĀ  PubMedĀ  Google ScholarĀ 

  161. Villanueva J, Herlyn M. Melanoma and the tumor microenvironment. Curr Oncol Rep. 2008;10(5):439ā€“46.

    CASĀ  PubMedĀ  Google ScholarĀ 

  162. Flach EH, Rebecca VW, Herlyn M, Smalley KS, Anderson AR. Fibroblasts contribute to melanoma tumor growth and drug resistance. Mol Pharm. 2011;8(6):2039ā€“49.

    CASĀ  PubMedĀ  Google ScholarĀ 

  163. Dong C, Slattery MJ, Liang S, Peng HH. Melanoma cell extravasation under flow conditions is modulated by leukocytes and endogenously produced interleukin 8. Mol Cell Biomech. 2005;2(3):145ā€“59.

    PubMedĀ  Google ScholarĀ 

  164. Liang S, Hoskins M, Dong C. Tumor cell extravasation mediated by leukocyte adhesion is shear rate dependent on IL-8 signaling. Mol Cell Biomech. 2010;7(2):77ā€“91.

    PubMedĀ  Google ScholarĀ 

  165. Ozdemir T, Zhang P, Fu C, Dong C. Fibrin serves as a divalent ligand that regulates neutrophil-mediated melanoma cells adhesion to endothelium under shear conditions. Am J Physiol Cell Physiol. 2012;302(8):C1189ā€“201.

    CASĀ  PubMedĀ  Google ScholarĀ 

  166. Zhang P, Ozdemir T, Chung CY, Robertson GP, Dong C. Sequential binding of alphaVbeta3 and ICAM-1 determines fibrin-mediated melanoma capture and stable adhesion to CD11b/CD18 on neutrophils. J Immunol. 2011;186(1):242ā€“54.

    CASĀ  PubMedĀ  Google ScholarĀ 

  167. Dong C, Robertson GP. Immunoediting of leukocyte functions within the tumor microenvironment promotes cancer metastasis development. Biorheology. 2009;46(4):265ā€“79.

    CASĀ  PubMedĀ  Google ScholarĀ 

  168. Liang S, Seto EY, Remais JV, Zhong B, Yang C, Hubbard A, et al. Environmental effects on parasitic disease transmission exemplified by schistosomiasis in western China. Proc Natl Acad Sci USA. 2007;104(17):7110ā€“5.

    CASĀ  PubMedĀ  Google ScholarĀ 

  169. van Kempen LC, Rijntjes J, Mamor-Cornelissen I, Vincent-Naulleau S, Gerritsen MJ, Ruiter DJ, et al. Type I collagen expression contributes to angiogenesis and the development of deeply invasive cutaneous melanoma. Int J Cancer. 2008;122(5):1019ā€“29.

    PubMedĀ  Google ScholarĀ 

  170. Huh SJ, Chen YL, Friedman SL, Liao J, Huang HJ, Cavenee WK, et al. KLF6 gene and early melanoma development in a collagen I-rich extracellular environment. J Natl Cancer Inst. 2010;102(15):1131ā€“47.

    CASĀ  PubMedĀ  Google ScholarĀ 

  171. Denkert C, Kobel M, Berger S, Siegert A, Leclere A, Trefzer U, et al. Expression of cyclooxygenase 2 in human malignant melanoma. Cancer Res. 2001;61(1):303ā€“8.

    CASĀ  PubMedĀ  Google ScholarĀ 

  172. Goulet AC, Einsphar JG, Alberts DS, Beas A, Burk C, Bhattacharyya A, et al. Analysis of cyclooxygenase 2 (COX-2) expression during malignant melanoma progression. Cancer Biol Ther. 2003;2(6):713ā€“8.

    CASĀ  PubMedĀ  Google ScholarĀ 

  173. Becker MR, Siegelin MD, Rompel R, Enk AH, Gaiser T. COX-2 expression in malignant melanoma: a novel prognostic marker? Melanoma Res. 2009;19(1):8ā€“16.

    CASĀ  PubMedĀ  Google ScholarĀ 

  174. Flockhart RJ, Armstrong JL, Reynolds NJ, Lovat PE. NFAT signalling is a novel target of oncogenic BRAF in metastatic melanoma. Br J Cancer. 2009;101(8):1448ā€“55.

    CASĀ  PubMedĀ  Google ScholarĀ 

  175. Kuzbicki L, Sarnecka A, Chwirot BW. Expression of cyclooxygenase-2 in benign naevi and during human cutaneous melanoma progression. Melanoma Res. 2006;16(1):29ā€“36.

    CASĀ  PubMedĀ  Google ScholarĀ 

  176. Valcarcel M, Mendoza L, Hernandez JJ, Carrascal T, Salado C, Crende O, et al. Vascular endothelial growth factor regulates melanoma cell adhesion and growth in the bone marrow microenvironment via tumor cyclooxygenase-2. J Transl Med. 2011;9:142.

    CASĀ  PubMedĀ  Google ScholarĀ 

  177. Wilson KS. Cyclooxygenase-2 inhibition and regression of metastatic melanoma. Melanoma Res. 2006;16(5):465.

    PubMedĀ  Google ScholarĀ 

  178. Goldberg GM, Rubenstone AI, Saphir O. A study of malignant lymphomas and leukemias. III. Stem cell, blast cell, and monocytic leukemias (with reference to their lymphogenous or myelogenous origin). Cancer. 1961;14:21ā€“9.

    CASĀ  PubMedĀ  Google ScholarĀ 

  179. Soltanian S, Matin MM. Cancer stem cells and cancer therapy. Tumour Biol. 2011;32(3):425ā€“40.

    PubMedĀ  Google ScholarĀ 

  180. Schatton T, Frank MH. Cancer stem cells and human malignant melanoma. Pigment Cell Melanoma Res. 2008;21(1):39ā€“55.

    CASĀ  PubMedĀ  Google ScholarĀ 

  181. Menaa F, Houben R, Eyrich M, Broecker EB, Becker JC, Wischhusen J. Stem cells, melanoma and cancer stem cells: the good, the bad and the evil? G Ital Dermatol Venereol. 2009;144(3):287ā€“96.

    CASĀ  PubMedĀ  Google ScholarĀ 

  182. Mimeault M, Hauke R, Mehta PP, Batra SK. Recent advances in cancer stem/progenitor cell research: therapeutic implications for overcoming resistance to the most aggressive cancers. J Cell Mol Med. 2007;11(5):981ā€“1011.

    CASĀ  PubMedĀ  Google ScholarĀ 

  183. Zabierowski SE, Fukunaga-Kalabis M, Li L, Herlyn M. Dermis-derived stem cells: a source of epidermal melanocytes and melanoma? Pigment Cell Melanoma Res. 2011;24(3):422ā€“9.

    CASĀ  PubMedĀ  Google ScholarĀ 

  184. Fang D, Nguyen TK, Leishear K, Finko R, Kulp AN, Hotz S, et al. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res. 2005;65(20):9328ā€“37.

    CASĀ  PubMedĀ  Google ScholarĀ 

  185. Kumar SM, Zhang G, Bastian BC, Arcasoy MO, Karande P, Pushparajan A, et al. Erythropoietin receptor contributes to melanoma cell survival in vivo. Oncogene. 2012;31(13):1649ā€“60.

    CASĀ  PubMedĀ  Google ScholarĀ 

  186. Tran MA, Watts RJ, Robertson GP. Use of liposomes as drug delivery vehicles for treatment of melanoma. Pigment Cell Melanoma Res. 2009;22(4):388ā€“99.

    CASĀ  PubMedĀ  Google ScholarĀ 

  187. Basu S, Harfouche R, Soni S, Chimote G, Mashelkar RA, Sengupta S. Nanoparticle-mediated targeting of MAPK signaling predisposes tumor to chemotherapy. Proc Natl Acad Sci USA. 2009;106(19):7957ā€“61.

    CASĀ  PubMedĀ  Google ScholarĀ 

  188. Fink W, Zimpfer-Rechner C, Thoelke A, Figl R, Kaatz M, Ugurel S, et al. Clinical phase II study of pegylated liposomal doxorubicin as second-line treatment in disseminated melanoma. Onkologie. 2004;27(6):540ā€“4.

    CASĀ  PubMedĀ  Google ScholarĀ 

  189. Hughes GA. Nanostructure-mediated drug delivery. Nanomedicine. 2005;1(1):22ā€“30.

    CASĀ  PubMedĀ  Google ScholarĀ 

  190. Tran MA, Smith CD, Kester M, Robertson GP. Combining nanoliposomal ceramide with sorafenib synergistically inhibits melanoma and breast cancer cell survival to decrease tumor development. Clin Cancer Res. 2008;14(11):3571ā€“81.

    CASĀ  PubMedĀ  Google ScholarĀ 

  191. Hwang TL, Lee WR, Hua SC, Fang JY. Cisplatin encapsulated in phosphatidylethanolamine liposomes enhances the in vitro cytotoxicity and in vivo intratumor drug accumulation against melanomas. J Dermatol Sci. 2007;46(1):11ā€“20.

    CASĀ  PubMedĀ  Google ScholarĀ 

  192. Bawa R. Nanoparticle-based therapeutics in humans: a survey. Nanotechnol Law Bus. 2008;5(2):135ā€“55.

    Google ScholarĀ 

  193. Yih TC, Al-Fandi M. Engineered nanoparticles as precise drug delivery systems. J Cell Biochem. 2006;97(6):1184ā€“90.

    CASĀ  PubMedĀ  Google ScholarĀ 

  194. Fulmer T. Curiously strong lipidoids. Science-Business exchange, ā€œCover story: targets and mechanismsā€ featured in nature. Nature. 2010;3(2):1ā€“2.

    Google ScholarĀ 

  195. Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi CA, et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature. 2010;464(7291):1067ā€“70.

    CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Grant Support

NIH CA-127892-01A and The Foreman Foundation for Melanoma Research (GPR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew S. Evans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Evans, M.S., Madhunapantula, S.V., Robertson, G.P., Drabick, J.J. (2013). Current and Future Trials of Targeted Therapies in Cutaneous Melanoma. In: El-Deiry, W. (eds) Impact of Genetic Targets on Cancer Therapy. Advances in Experimental Medicine and Biology, vol 779. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6176-0_10

Download citation

Publish with us

Policies and ethics