Genetic Component of Oxidative Stress in Rheumatoid Arthritis

  • F. David Carmona
  • Jose-Ezequiel Martin
  • Javier Martin
Part of the Oxidative Stress in Applied Basic Research and Clinical Practice book series (OXISTRESS)


There are increasing evidences pointing to a crucial role of the redox control in the maintenance of self-tolerance, and oxidative stress is emerging as a key factor contributing to susceptibility and progression of a wide spectrum of autoimmune diseases. For instance, oxidative stress at sites of chronic inflammation has been associated with the course of rheumatoid arthritis (RA) patients. Nevertheless, very little is known about the possible genetic background of oxidative stress that leads to pathologic conditions like RA despite the large genome-wide association studies performed during the last years. There are some genes that clearly represent good candidates to be important players in the pathophysiology of diseases influenced by oxidative stress. These include nuclear genes like HIF1A, MSRA, HO1, p53, NCF1, and NOS2A but also mitochondrial genes. Here we shall review the current knowledge about the molecular mechanisms affected by oxidative stress situations and will give some clues of how these changes may contribute to the development and progression of RA.


Reactive Oxygen Species Rheumatoid Arthritis Rheumatoid Arthritis Patient Chronic Fatigue Syndrome Chronic Granulomatous Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Anti-citrullinated protein autoantibodies


Apoptosis signal-regulating kinase 1


Adenosine triphosphate


Deoxyribonucleic acid


Genome-wide association study


Inducible factor-1 α


Homeodomain-interacting protein kinase 1


Heme oxygenase-1


Low-density lipoprotein


Methionine sulfoxide reductase A


Mitochondrial deoxyribonucleic acid


Nicotinamide adenine dinucleotide


Neutrophil cytosolic factor 1


Nuclear factor-κB


Rheumatoid arthritis




Reactive nitrogen species


Reactive oxygen species


Sentrin-specific protease 1


Small ubiquitin-like modifier


Tumor necrosis factor receptor


Tumor necrosis factor alpha


  1. 1.
    McInnes IB, Schett G (2011) The pathogenesis of rheumatoid arthritis. N Engl J Med 365:2205–2219PubMedCrossRefGoogle Scholar
  2. 2.
    Bali D, Gourley S, Kostyu DD et al (1999) Genetic analysis of multiplex rheumatoid arthritis families. Genes Immun 1:28–36PubMedCrossRefGoogle Scholar
  3. 3.
    MacGregor AJ, Snieder H, Rigby AS et al (2000) Characterizing the quantitative genetic contribution to rheumatoid arthritis using data from twins. Arthritis Rheum 43:30–37PubMedCrossRefGoogle Scholar
  4. 4.
    Gregersen PK, Silver J, Winchester RJ (1987) The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum 30:1205–1213PubMedCrossRefGoogle Scholar
  5. 5.
    Begovich AB, Carlton VE, Honigberg LA et al (2004) A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am J Hum Genet 75:330–337PubMedCrossRefGoogle Scholar
  6. 6.
    Raychaudhuri S, Sandor C, Stahl EA et al (2012) Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat Genet 44:291–296PubMedCrossRefGoogle Scholar
  7. 7.
    Remmers EF, Plenge RM, Lee AT et al (2007) STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N Engl J Med 357:977–986PubMedCrossRefGoogle Scholar
  8. 8.
    Stahl EA, Raychaudhuri S, Remmers EF et al (2010) Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nat Genet 42:508–514PubMedCrossRefGoogle Scholar
  9. 9.
    Thomson W, Barton A, Ke X et al (2007) Rheumatoid arthritis association at 6q23. Nat Genet 39:1431–1433PubMedCrossRefGoogle Scholar
  10. 10.
    Gregersen PK, Amos CI, Lee AT et al (2009) REL, encoding a member of the NF-kappaB family of transcription factors, is a newly defined risk locus for rheumatoid arthritis. Nat Genet 41:820–823PubMedCrossRefGoogle Scholar
  11. 11.
    Zhernakova A, Stahl EA, Trynka G et al (2011) Meta-analysis of genome-wide association studies in celiac disease and rheumatoid arthritis identifies fourteen non-HLA shared loci. PLoS Genet 7:e1002004PubMedCrossRefGoogle Scholar
  12. 12.
    Gregersen PK (2010) Susceptibility genes for rheumatoid arthritis – a rapidly expanding harvest. Bull NYU Hosp Jt Dis 68(3):179–182PubMedGoogle Scholar
  13. 13.
    Alvarez-Lafuente R, Fernandez-Gutierrez B, de Miguel S et al (2005) Potential relationship between herpes viruses and rheumatoid arthritis: analysis with quantitative real time polymerase chain reaction. Ann Rheum Dis 64:1357–1359PubMedCrossRefGoogle Scholar
  14. 14.
    Catalano MA, Carson DA, Slovin SF et al (1979) Antibodies to Epstein-Barr virus-determined antigens in normal subjects and in patients with seropositive rheumatoid arthritis. Proc Natl Acad Sci USA 76:5825–5828PubMedCrossRefGoogle Scholar
  15. 15.
    Ferrell PB, Aitcheson CT, Pearson GR et al (1981) Seroepidemiological study of relationships between Epstein-Barr virus and rheumatoid arthritis. J Clin Invest 67:681–687PubMedCrossRefGoogle Scholar
  16. 16.
    Chiurchiu V, Maccarrone M (2011) Chronic inflammatory disorders and their redox control: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 15:2605–2641PubMedCrossRefGoogle Scholar
  17. 17.
    Jones DP (2006) Redefining oxidative stress. Antioxid Redox Signal 8:1865–1879PubMedCrossRefGoogle Scholar
  18. 18.
    Valko M, Leibfritz D, Moncol J et al (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84PubMedCrossRefGoogle Scholar
  19. 19.
    Valko M, Morris H, Cronin MT (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208PubMedCrossRefGoogle Scholar
  20. 20.
    Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30:1191–1212PubMedCrossRefGoogle Scholar
  21. 21.
    Lennon SV, Martin SJ, Cotter TG (1991) Dose-dependent induction of apoptosis in human tumour cell lines by widely diverging stimuli. Cell Prolif 24:203–214PubMedCrossRefGoogle Scholar
  22. 22.
    Halliwell B (2007) Oxidative stress and cancer: have we moved forward? Biochem J 401:1–11PubMedCrossRefGoogle Scholar
  23. 23.
    Singh N, Dhalla AK, Seneviratne C et al (1995) Oxidative stress and heart failure. Mol Cell Biochem 147:77–81PubMedCrossRefGoogle Scholar
  24. 24.
    Ramond A, Godin-Ribuot D, Ribuot C et al (2011) Oxidative stress mediates cardiac ­infarction aggravation induced by intermittent hypoxia. Fundam Clin Pharmacol. doi: 10.1111/j.1472-8206.2011.01015.xGoogle Scholar
  25. 25.
    Boskovic M, Vovk T, Kores Plesnicar B et al (2011) Oxidative stress in schizophrenia. Curr Neuropharmacol 9:301–312PubMedCrossRefGoogle Scholar
  26. 26.
    Dean OM, van den Buuse M, Berk M et al (2011) N-acetyl cysteine restores brain glutathione loss in combined 2-cyclohexene-1-one and d-amphetamine-treated rats: relevance to schizophrenia and bipolar disorder. Neurosci Lett 499:149–153PubMedCrossRefGoogle Scholar
  27. 27.
    de Diego-Otero Y, Romero-Zerbo Y, el Bekay R et al (2009) Alpha-tocopherol protects against oxidative stress in the fragile X knockout mouse: an experimental therapeutic approach for the Fmr1 deficiency. Neuropsychopharmacology 34:1011–1026PubMedCrossRefGoogle Scholar
  28. 28.
    Amer J, Ghoti H, Rachmilewitz E et al (2006) Red blood cells, platelets and polymorphonuclear neutrophils of patients with sickle cell disease exhibit oxidative stress that can be ameliorated by antioxidants. Br J Haematol 132:108–113PubMedCrossRefGoogle Scholar
  29. 29.
    Kennedy G, Spence VA, McLaren M et al (2005) Oxidative stress levels are raised in chronic fatigue syndrome and are associated with clinical symptoms. Free Radic Biol Med 39:584–589PubMedCrossRefGoogle Scholar
  30. 30.
    Hitchon CA, El-Gabalawy HS (2004) Oxidation in rheumatoid arthritis. Arthritis Res Ther 6:265–278PubMedCrossRefGoogle Scholar
  31. 31.
    Gelderman KA, Hultqvist M, Olsson LM et al (2007) Rheumatoid arthritis: the role of reactive oxygen species in disease development and therapeutic strategies. Antioxid Redox Signal 9:1541–1567PubMedCrossRefGoogle Scholar
  32. 32.
    Remans PH, Wijbrandts CA, Sanders ME et al (2006) CTLA-4IG suppresses reactive oxygen species by preventing synovial adherent cell-induced inactivation of Rap1, a Ras family GTPASE mediator of oxidative stress in rheumatoid arthritis T cells. Arthritis Rheum 54: 3135–3143PubMedCrossRefGoogle Scholar
  33. 33.
    Grootveld M, Henderson EB, Farrell A et al (1991) Oxidative damage to hyaluronate and glucose in synovial fluid during exercise of the inflamed rheumatoid joint. Detection of abnormal low-molecular-mass metabolites by proton-n.m.r. spectroscopy. Biochem J 273:459–467PubMedGoogle Scholar
  34. 34.
    Rowley D, Gutteridge JM, Blake D et al (1984) Lipid peroxidation in rheumatoid arthritis: thiobarbituric acid-reactive material and catalytic iron salts in synovial fluid from rheumatoid patients. Clin Sci (Lond) 66:691–695PubMedGoogle Scholar
  35. 35.
    Dai L, Lamb DJ, Leake DS et al (2000) Evidence for oxidised low density lipoprotein in synovial fluid from rheumatoid arthritis patients. Free Radic Res 32:479–486PubMedCrossRefGoogle Scholar
  36. 36.
    Dalle-Donne I, Rossi R, Giustarini D et al (2003) Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 329:23–38PubMedCrossRefGoogle Scholar
  37. 37.
    Tiku ML, Shah R, Allison GT (2000) Evidence linking chondrocyte lipid peroxidation to cartilage matrix protein degradation. Possible role in cartilage aging and the pathogenesis of osteoarthritis. J Biol Chem 275:20069–20076PubMedCrossRefGoogle Scholar
  38. 38.
    Gibson JS, Milner PI, White R et al (2008) Oxygen and reactive oxygen species in articular cartilage: modulators of ionic homeostasis. Pflugers Arch 455:563–573PubMedCrossRefGoogle Scholar
  39. 39.
    Panasyuk A, Frati E, Ribault D et al (1994) Effect of reactive oxygen species on the biosynthesis and structure of newly synthesized proteoglycans. Free Radic Biol Med 16:157–167PubMedCrossRefGoogle Scholar
  40. 40.
    Clancy RM, Rediske J, Tang X et al (1997) Outside-in signaling in the chondrocyte. Nitric oxide disrupts fibronectin-induced assembly of a subplasmalemmal actin/rho A/focal adhesion kinase signaling complex. J Clin Invest 100:1789–1796PubMedCrossRefGoogle Scholar
  41. 41.
    del Rincon I, Escalante A (2003) Atherosclerotic cardiovascular disease in rheumatoid arthritis. Curr Rheumatol Rep 5:278–286PubMedCrossRefGoogle Scholar
  42. 42.
    Sattar N, McCarey DW, Capell H et al (2003) Explaining how “high-grade” systemic inflammation accelerates vascular risk in rheumatoid arthritis. Circulation 108:2957–2963PubMedCrossRefGoogle Scholar
  43. 43.
    Taysi S, Polat F, Gul M et al (2002) Lipid peroxidation, some extracellular antioxidants, and antioxidant enzymes in serum of patients with rheumatoid arthritis. Rheumatol Int 21:200–204PubMedCrossRefGoogle Scholar
  44. 44.
    Moodley D, Mody G, Patel N et al (2008) Mitochondrial depolarisation and oxidative stress in rheumatoid arthritis patients. Clin Biochem 41:1396–1401PubMedCrossRefGoogle Scholar
  45. 45.
    Sarban S, Kocyigit A, Yazar M et al (2005) Plasma total antioxidant capacity, lipid peroxidation, and erythrocyte antioxidant enzyme activities in patients with rheumatoid arthritis and osteoarthritis. Clin Biochem 38:981–986PubMedCrossRefGoogle Scholar
  46. 46.
    Seven A, Guzel S, Aslan M et al (2008) Lipid, protein, DNA oxidation and antioxidant status in rheumatoid arthritis. Clin Biochem 41:538–543PubMedCrossRefGoogle Scholar
  47. 47.
    Bashir S, Harris G, Denman MA et al (1993) Oxidative DNA damage and cellular sensitivity to oxidative stress in human autoimmune diseases. Ann Rheum Dis 52:659–666PubMedCrossRefGoogle Scholar
  48. 48.
    Hajizadeh S, DeGroot J, TeKoppele JM et al (2003) Extracellular mitochondrial DNA and oxidatively damaged DNA in synovial fluid of patients with rheumatoid arthritis. Arthritis Res Ther 5:R234–R240PubMedCrossRefGoogle Scholar
  49. 49.
    Collins LV, Hajizadeh S, Holme E et al (2004) Endogenously oxidized mitochondrial DNA induces in vivo and in vitro inflammatory responses. J Leukoc Biol 75:995–1000PubMedCrossRefGoogle Scholar
  50. 50.
    Tak PP, Zvaifler NJ, Green DR et al (2000) Rheumatoid arthritis and p53: how oxidative stress might alter the course of inflammatory diseases. Immunol Today 21:78–82PubMedCrossRefGoogle Scholar
  51. 51.
    Carmeliet P, Dor Y, Herbert JM et al (1998) Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394:485–490PubMedCrossRefGoogle Scholar
  52. 52.
    Marx J (2004) Cell biology. How cells endure low oxygen. Science 303:1454–1456PubMedCrossRefGoogle Scholar
  53. 53.
    Wang GL, Jiang BH, Rue EA et al (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 92:5510–5514PubMedCrossRefGoogle Scholar
  54. 54.
    Semenza GL (2001) HIF-1, O(2), and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell 107:1–3PubMedCrossRefGoogle Scholar
  55. 55.
    Stevens CR, Blake DR, Merry P et al (1991) A comparative study by morphometry of the microvasculature in normal and rheumatoid synovium. Arthritis Rheum 34:1508–1513PubMedCrossRefGoogle Scholar
  56. 56.
    Levick JR (1990) Hypoxia and acidosis in chronic inflammatory arthritis; relation to vascular supply and dynamic effusion pressure. J Rheumatol 17:579–582PubMedGoogle Scholar
  57. 57.
    James MJ, Cleland LG, Rofe AM et al (1990) Intraarticular pressure and the relationship between synovial perfusion and metabolic demand. J Rheumatol 17:521–527PubMedGoogle Scholar
  58. 58.
    Bonizzi G, Piette J, Merville MP et al (2000) Cell type-specific role for reactive oxygen species in nuclear factor-kappaB activation by interleukin-1. Biochem Pharmacol 59:7–11PubMedCrossRefGoogle Scholar
  59. 59.
    Bonizzi G, Piette J, Schoonbroodt S et al (1999) Reactive oxygen intermediate-dependent NF-kappaB activation by interleukin-1beta requires 5-lipoxygenase or NADPH oxidase activity. Mol Cell Biol 19:1950–1960PubMedGoogle Scholar
  60. 60.
    Muz B, Khan MN, Kiriakidis S et al (2009) Hypoxia. The role of hypoxia and HIF-dependent signalling events in rheumatoid arthritis. Arthritis Res Ther 11:201PubMedCrossRefGoogle Scholar
  61. 61.
    Elbers CC, van Eijk KR, Franke L et al (2009) Using genome-wide pathway analysis to unravel the etiology of complex diseases. Genet Epidemiol 33:419–431PubMedCrossRefGoogle Scholar
  62. 62.
    Martin JE, Alizadeh BZ, Gonzalez-Gay MA et al (2010) Identification of the oxidative stress-related gene MSRA as a rheumatoid arthritis susceptibility locus by genome-wide pathway analysis. Arthritis Rheum 62:3183–3190PubMedCrossRefGoogle Scholar
  63. 63.
    Garcia-Bermudez M, Lopez-Mejias R, Gonzalez-Juanatey C et al (2012) Association of the methionine sulfoxide reductase A rs10903323 gene polymorphism with cardiovascular disease in patients with rheumatoid arthritis. Scand J Rheumatol 41(5):350–353PubMedCrossRefGoogle Scholar
  64. 64.
    Schallreuter KU, Wood JM (2001) Thioredoxin reductase – its role in epidermal redox status. J Photochem Photobiol B 64:179–184PubMedCrossRefGoogle Scholar
  65. 65.
    Aggarwal BB (2003) Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 3:745–756PubMedCrossRefGoogle Scholar
  66. 66.
    Bazzoni F, Beutler B (1996) The tumor necrosis factor ligand and receptor families. N Engl J Med 334:1717–1725PubMedCrossRefGoogle Scholar
  67. 67.
    Li X, Luo Y, Yu L et al (2008) SENP1 mediates TNF-induced desumoylation and cytoplasmic translocation of HIPK1 to enhance ASK1-dependent apoptosis. Cell Death Differ 15:739–750PubMedCrossRefGoogle Scholar
  68. 68.
    Dai L, Xu L, Huang D et al (2002) ASK1 physically interacts with COI1 and is required for male fertility in Arabidopsis. Sci China C Life Sci 45:631–636PubMedGoogle Scholar
  69. 69.
    Koharyova M, Kolarova M (2008) Oxidative stress and thioredoxin system. Gen Physiol Biophys 27:71–84PubMedGoogle Scholar
  70. 70.
    Lee HS, Irigoyen P, Kern M et al (2007) Interaction between smoking, the shared epitope, and anti-cyclic citrullinated peptide: a mixed picture in three large North American rheumatoid arthritis cohorts. Arthritis Rheum 56:1745–1753PubMedCrossRefGoogle Scholar
  71. 71.
    Padyukov L, Seielstad M, Ong RT et al (2011) A genome-wide association study suggests contrasting associations in ACPA-positive versus ACPA-negative rheumatoid arthritis. Ann Rheum Dis 70:259–265PubMedCrossRefGoogle Scholar
  72. 72.
    Schallreuter KU, Rubsam K, Gibbons NC et al (2008) Methionine sulfoxide reductases A and B are deactivated by hydrogen peroxide (H2O2) in the epidermis of patients with vitiligo. J Invest Dermatol 128:808–815PubMedCrossRefGoogle Scholar
  73. 73.
    Ogawa F, Shimizu K, Hara T et al (2010) Autoantibody against one of the antioxidant repair enzymes, methionine sulfoxide reductase A, in systemic sclerosis: association with pulmonary fibrosis and vascular damage. Arch Dermatol Res 302:27–35PubMedCrossRefGoogle Scholar
  74. 74.
    Ryter SW, Choi AM (2009) Heme oxygenase-1/carbon monoxide: from metabolism to molecular therapy. Am J Respir Cell Mol Biol 41:251–260PubMedCrossRefGoogle Scholar
  75. 75.
    Ferrandiz ML, Devesa I (2008) Inducers of heme oxygenase-1. Curr Pharm Des 14:473–486PubMedCrossRefGoogle Scholar
  76. 76.
    Abraham NG, Asija A, Drummond G et al (2007) Heme oxygenase-1 gene therapy: recent advances and therapeutic applications. Curr Gene Ther 7:89–108PubMedCrossRefGoogle Scholar
  77. 77.
    Shinohara T, Kaneko T, Nagashima Y et al (2005) Adenovirus-mediated transfer and overexpression of heme oxygenase 1 cDNA in lungs attenuates elastase-induced pulmonary emphysema in mice. Hum Gene Ther 16:318–327PubMedCrossRefGoogle Scholar
  78. 78.
    Kapturczak MH, Wasserfall C, Brusko T et al (2004) Heme oxygenase-1 modulates early inflammatory responses: evidence from the heme oxygenase-1-deficient mouse. Am J Pathol 165:1045–1053PubMedCrossRefGoogle Scholar
  79. 79.
    Poss KD, Tonegawa S (1997) Reduced stress defense in heme oxygenase 1-deficient cells. Proc Natl Acad Sci USA 94:10925–10930PubMedCrossRefGoogle Scholar
  80. 80.
    Willis D, Moore AR, Willoughby DA (2000) Heme oxygenase isoform expression in cellular and antibody-mediated models of acute inflammation in the rat. J Pathol 190:627–634PubMedCrossRefGoogle Scholar
  81. 81.
    Vicente AM, Guillen MI, Habib A et al (2003) Beneficial effects of heme oxygenase-1 up-regulation in the development of experimental inflammation induced by zymosan. J Pharmacol Exp Ther 307:1030–1037PubMedCrossRefGoogle Scholar
  82. 82.
    Devesa I, Ferrandiz ML, Terencio MC et al (2005) Influence of heme oxygenase 1 modulation on the progression of murine collagen-induced arthritis. Arthritis Rheum 52:3230–3238PubMedCrossRefGoogle Scholar
  83. 83.
    Bonelli M, Savitskaya A, Steiner CW et al (2012) Heme oxygenase-1 end-products carbon monoxide and biliverdin ameliorate murine collagen induced arthritis. Clin Exp Rheumatol 30:73–78PubMedGoogle Scholar
  84. 84.
    Zwerina J, Tzima S, Hayer S et al (2005) Heme oxygenase 1 (HO-1) regulates osteoclastogenesis and bone resorption. FASEB J 19:2011–2013PubMedGoogle Scholar
  85. 85.
    Takeda Y, Takeno M, Iwasaki M et al (2004) Chemical induction of HO-1 suppresses lupus nephritis by reducing local iNOS expression and synthesis of anti-dsDNA antibody. Clin Exp Immunol 138:237–244PubMedCrossRefGoogle Scholar
  86. 86.
    Kobayashi H, Takeno M, Saito T et al (2006) Regulatory role of heme oxygenase 1 in inflammation of rheumatoid arthritis. Arthritis Rheum 54:1132–1142PubMedCrossRefGoogle Scholar
  87. 87.
    Chi PL, Chen YW, Hsiao LD et al (2012) Heme oxygenase 1 attenuates interleukin-1β-induced cytosolic phospholipase A2 expression via a decrease in NADPH oxidase/reactive oxygen species/activator protein 1 activation in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum 64(7):2114–2125PubMedCrossRefGoogle Scholar
  88. 88.
    Shibahara S (2003) The heme oxygenase dilemma in cellular homeostasis: new insights for the feedback regulation of heme catabolism. Tohoku J Exp Med 200:167–186PubMedCrossRefGoogle Scholar
  89. 89.
    Exner M, Minar E, Wagner O et al (2004) The role of heme oxygenase-1 promoter polymorphisms in human disease. Free Radic Biol Med 37:1097–1104PubMedCrossRefGoogle Scholar
  90. 90.
    Rueda B, Oliver J, Robledo G et al (2007) HO-1 promoter polymorphism associated with rheumatoid arthritis. Arthritis Rheum 56:3953–3958PubMedCrossRefGoogle Scholar
  91. 91.
    Wagener FA, Toonen EJ, Wigman L et al (2008) HMOX1 promoter polymorphism modulates the relationship between disease activity and joint damage in rheumatoid arthritis. Arthritis Rheum 58:3388–3393PubMedCrossRefGoogle Scholar
  92. 92.
    Evans MD, Cooke MS (2004) Factors contributing to the outcome of oxidative damage to nucleic acids. Bioessays 26(5):533–542PubMedCrossRefGoogle Scholar
  93. 93.
    Evans MD, Dizdaroglu M, Cooke MS (2004) Oxidative DNA damage and disease: induction, repair and significance. Mutat Res 567:1–61PubMedCrossRefGoogle Scholar
  94. 94.
    Forrester K, Ambs S, Lupold SE et al (1996) Nitric oxide-induced p53 accumulation and regulation of inducible nitric oxide synthase expression by wild-type p53. Proc Natl Acad Sci USA 93:2442–2447PubMedCrossRefGoogle Scholar
  95. 95.
    Sionov RV, Haupt Y (1998) Apoptosis by p53: mechanisms, regulation, and clinical implications. Springer Semin Immunopathol 19:345–362PubMedCrossRefGoogle Scholar
  96. 96.
    Firestein GS, Nguyen K, Aupperle KR et al (1996) Apoptosis in rheumatoid arthritis: p53 overexpression in rheumatoid arthritis synovium. Am J Pathol 149:2143–2151PubMedGoogle Scholar
  97. 97.
    Tak PP, Smeets TJ, Boyle DL et al (1999) p53 overexpression in synovial tissue from patients with early and longstanding rheumatoid arthritis compared with patients with reactive arthritis and osteoarthritis. Arthritis Rheum 42:948–953PubMedCrossRefGoogle Scholar
  98. 98.
    Firestein GS, Yeo M, Zvaifler NJ (1995) Apoptosis in rheumatoid arthritis synovium. J Clin Invest 96:1631–1638PubMedCrossRefGoogle Scholar
  99. 99.
    Han Z, Boyle DL, Shi Y et al (1999) Dominant-negative p53 mutations in rheumatoid arthritis. Arthritis Rheum 42:1088–1092PubMedCrossRefGoogle Scholar
  100. 100.
    Graeber TG, Osmanian C, Jacks T et al (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379:88–91PubMedCrossRefGoogle Scholar
  101. 101.
    Hamanaka RB, Chandel NS (2009) Mitochondrial reactive oxygen species regulate hypoxic signaling. Curr Opin Cell Biol 21:894–899PubMedCrossRefGoogle Scholar
  102. 102.
    Taylor RW, Turnbull DM (2005) Mitochondrial DNA mutations in human disease. Nat Rev Genet 6:389–402PubMedCrossRefGoogle Scholar
  103. 103.
    Wallace DC (2005) The mitochondrial genome in human adaptive radiation and disease: on the road to therapeutics and performance enhancement. Gene 354:169–180PubMedCrossRefGoogle Scholar
  104. 104.
    Harty LC, Biniecka M, O’Sullivan J et al (2012) Mitochondrial mutagenesis correlates with the local inflammatory environment in arthritis. Ann Rheum Dis 71:582–588PubMedCrossRefGoogle Scholar
  105. 105.
    Olofsson P, Holmberg J, Tordsson J et al (2003) Positional identification of NCF1 as a gene that regulates arthritis severity in rats. Nat Genet 33:25–32PubMedCrossRefGoogle Scholar
  106. 106.
    van de Loo FA, Bennink MB, Arntz OJ et al (2003) Deficiency of NADPH oxidase components p47phox and gp91phox caused granulomatous synovitis and increased connective tissue destruction in experimental arthritis models. Am J Pathol 163:1525–1537PubMedCrossRefGoogle Scholar
  107. 107.
    van der Veen RC, Dietlin TA, Hofman FM et al (2000) Superoxide prevents nitric oxide-mediated suppression of helper T lymphocytes: decreased autoimmune encephalomyelitis in nicotinamide adenine dinucleotide phosphate oxidase knockout mice. J Immunol 164: 5177–5183PubMedGoogle Scholar
  108. 108.
    Knowles RG, Moncada S (1994) Nitric oxide synthases in mammals. Biochem J 298:249–258PubMedGoogle Scholar
  109. 109.
    Bogdan C (2001) Nitric oxide and the immune response. Nat Immunol 2:907–916PubMedCrossRefGoogle Scholar
  110. 110.
    St Clair EW, Wilkinson WE, Lang T et al (1996) Increased expression of blood mononuclear cell nitric oxide synthase type 2 in rheumatoid arthritis patients. J Exp Med 184:1173–1178PubMedCrossRefGoogle Scholar
  111. 111.
    Yki-Jarvinen H, Bergholm R, Leirisalo-Repo M (2003) Increased inflammatory activity parallels increased basal nitric oxide production and blunted response to nitric oxide in vivo in rheumatoid arthritis. Ann Rheum Dis 62:630–634PubMedCrossRefGoogle Scholar
  112. 112.
    Pautz A, Art J, Hahn S et al (2010) Regulation of the expression of inducible nitric oxide synthase. Nitric Oxide 23:75–93PubMedCrossRefGoogle Scholar
  113. 113.
    Gonzalez-Gay MA, Llorca J, Sanchez E et al (2004) Inducible but not endothelial nitric oxide synthase polymorphism is associated with susceptibility to rheumatoid arthritis in northwest Spain. Rheumatology (Oxford) 43:1182–1185PubMedCrossRefGoogle Scholar
  114. 114.
    Gonzalez-Gay MA, Llorca J, Palomino-Morales R et al (2009) Influence of nitric oxide synthase gene polymorphisms on the risk of cardiovascular events in rheumatoid arthritis. Clin Exp Rheumatol 27:116–119PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • F. David Carmona
    • 1
  • Jose-Ezequiel Martin
    • 1
  • Javier Martin
    • 1
  1. 1.Instituto de Parasitología y Biomedicina López Neyra, ArmillaGranadaSpain

Personalised recommendations