Skip to main content

Regulation of T-Cell Functions by Oxidative Stress

  • Chapter
  • First Online:
Studies on Arthritis and Joint Disorders

Abstract

The principal role of adaptive immunity is to distinguish between “self” and “nonself” and thus provide a highly specific line of immunological defence for the efficient removal of foreign material. It comprises of two arms: the effector B-cell arm and effector T-cell arm which act together to remove nonself. The balance between oxidising and reducing agents within these immune cells governs their redox state. This is important as transient controlled changes in the redox state, such as increased production of reactive oxygen species, are vital for signalling and induction of various biological processes, including cell growth and apoptosis. However, in chronic inflammatory diseases, the prolonged and persistent production of ROS, which overwhelms cellular antioxidant systems leading to oxidative stress, may influence T-cell function. This contributes to a T-cell phenotype which is hyporesponsive to growth and death signals and persists at the site of inflammation, perpetuating the immune response. The regulation of T-cell function by oxidative stress therefore has implications for rheumatoid arthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APC:

Antigen-presenting cell

DC:

Dendritic cell

DMARD:

Disease-modifying antirheumatic drug

GSH:

Reduced glutathione

GSSG:

Oxidised glutathione

H2O2 :

Hydrogen peroxide

iGSH:

Intracellular glutathione

IL-1b:

Interleukin-1β

IL-2:

Interleukin-2

LAT:

Linker for activation of T cells

MDA:

Malondialdehyde

MTX:

Methotrexate

NAC:

N-acetylcysteine

NFκB:

Nuclear factor kappa B

NO:

Nitric oxide

NOS:

Nitric oxide synthase

O2 •− :

Superoxide anion radical

ONOO:

Peroxynitrite

PBMC:

Peripheral blood mononuclear cells

RA:

Rheumatoid arthritis

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

TCR:

T-cell receptor

TNFα:

Tumour necrosis factor-α

Treg:

Regulatory T cell

Trx:

Thioredoxin

TXRX1:

Thioredoxin reductase 1

References

  1. Wing K, Sakaguchi S (2010) Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat Immunol 11:7–13

    Article  PubMed  CAS  Google Scholar 

  2. Zhu J, Paul WE (2008) CD4 T cells: fates, functions, and faults. Blood 112:1557–1569

    Article  PubMed  CAS  Google Scholar 

  3. Phillips DC, Dias HK, Kitas GD et al (2010) Aberrant reactive oxygen and nitrogen species generation in rheumatoid arthritis (RA): causes and consequences for immune function, cell survival, and therapeutic intervention. Antioxid Redox Signal 12:743–785

    Article  PubMed  CAS  Google Scholar 

  4. Mariani E, Polidori MC, Cherubini A et al (2005) Oxidative stress in brain aging, neurodegenerative and vascular diseases: an overview. J Chromatogr B Analyt Technol Biomed Life Sci 827:65–75

    Article  PubMed  CAS  Google Scholar 

  5. Paul WE, Seder RA (1994) Lymphocyte responses and cytokines. Cell 76:241–251

    Article  PubMed  CAS  Google Scholar 

  6. Smith-Garvin JE, Koretzky GA, Jordan MS (2009) T cell activation. Annu Rev Immunol 27:591–619

    Article  PubMed  CAS  Google Scholar 

  7. Tesmer LA, Lundy SK, Sarkar S et al (2008) Th17 cells in human disease. Immunol Rev 223:87–113

    Article  PubMed  CAS  Google Scholar 

  8. Lawrence DA, Song R, Weber P (1996) Surface thiols of human lymphocytes and their changes after in vitro and in vivo activation. J Leukoc Biol 60:611–618

    PubMed  CAS  Google Scholar 

  9. Angelini G, Gardella S, Ardy M et al (2002) Antigen-presenting dendritic cells provide the reducing extracellular microenvironment required for T lymphocyte activation. Proc Natl Acad Sci USA 99:1491–1496

    Article  PubMed  CAS  Google Scholar 

  10. Yan Z, Garg SK, Banerjee R (2010) Regulatory T cells interfere with glutathione metabolism in dendritic cells and T cells. J Biol Chem 285:41525–41532

    Article  PubMed  CAS  Google Scholar 

  11. Sies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol 82:291–295

    PubMed  CAS  Google Scholar 

  12. Suzuki YJ, Forman HJ, Sevanian A (1997) Oxidants as stimulators of signal transduction. Free Radic Biol Med 22:269–285

    Article  PubMed  CAS  Google Scholar 

  13. Dahlgren C, Karlsson A (1999) Respiratory burst in human neutrophils. J Immunol Methods 232:3–14

    Article  PubMed  CAS  Google Scholar 

  14. Thoren FB, Betten A, Romero AI et al (2007) Cutting edge: antioxidative properties of myeloid dendritic cells: protection of T cells and NK cells from oxygen radical-induced inactivation and apoptosis. J Immunol 179:21–25

    PubMed  CAS  Google Scholar 

  15. Kasic T, Colombo P, Soldani C et al (2011) Modulation of human T-cell functions by reactive nitrogen species. Eur J Immunol 41:1843–1849

    Article  PubMed  CAS  Google Scholar 

  16. Cemerski S, van Meerwijk JP, Romagnoli P (2003) Oxidative-stress-induced T lymphocyte hyporesponsiveness is caused by structural modification rather than proteasomal degradation of crucial TCR signalling molecules. Eur J Immunol 33:2178–2185

    Article  PubMed  CAS  Google Scholar 

  17. Los M, Droge W, Stricker K et al (1995) Hydrogen peroxide as a potent activator of T lymphocyte functions. Eur J Immunol 25:159–165

    Article  PubMed  CAS  Google Scholar 

  18. Griffiths HR (2005) ROS as signalling molecules in T cells – evidence for abnormal redox signalling in the autoimmune disease, rheumatoid arthritis. Redox Rep 10:273–280

    Article  PubMed  CAS  Google Scholar 

  19. King MR, Ismail AS, Davis LS et al (2006) Oxidative stress promotes polarization of human T cell differentiation toward a T helper 2 phenotype. J Immunol 176:2765–2772

    PubMed  CAS  Google Scholar 

  20. Moghaddam AE, Gartlan KH, Kong L et al (2011) Reactive carbonyls are a major Th2-inducing damage-associated molecular pattern generated by oxidative stress. J Immunol 187:1626–1633

    Article  PubMed  CAS  Google Scholar 

  21. Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711–760

    Article  PubMed  CAS  Google Scholar 

  22. Jones DP, Mody VC Jr, Carlson JL et al (2002) Redox analysis of human plasma allows separation of pro-oxidant events of aging from decline in antioxidant defenses. Free Radic Biol Med 33:1290–1300

    Article  PubMed  CAS  Google Scholar 

  23. Yan Z, Banerjee R (2010) Redox remodeling as an immunoregulatory strategy. Biochemistry 49:1059–1066

    Article  PubMed  CAS  Google Scholar 

  24. Yan Z, Garg SK, Kipnis J et al (2009) Extracellular redox modulation by regulatory T cells. Nat Chem Biol 5:721–723

    Article  PubMed  CAS  Google Scholar 

  25. Hamilos DL, Zelarney P, Mascali JJ (1989) Lymphocyte proliferation in glutathione-depleted lymphocytes: direct relationship between glutathione availability and the proliferative response. Immunopharmacology 18:223–235

    Article  PubMed  CAS  Google Scholar 

  26. Suthanthiran M, Anderson ME, Sharma VK et al (1990) Glutathione regulates activation-dependent DNA synthesis in highly purified normal human T lymphocytes stimulated via the CD2 and CD3 antigens. Proc Natl Acad Sci USA 87:3343–3347

    Article  PubMed  CAS  Google Scholar 

  27. Hadzic T, Li L, Cheng N et al (2005) The role of low molecular weight thiols in T lymphocyte proliferation and IL-2 secretion. J Immunol 175:7965–7972

    PubMed  CAS  Google Scholar 

  28. Checker R, Sharma D, Sandur SK et al (2010) Plumbagin inhibits proliferative and inflammatory responses of T cells independent of ROS generation but by modulating intracellular thiols. J Cell Biochem 110:1082–1093

    Article  PubMed  CAS  Google Scholar 

  29. Shrimali RK, Irons RD, Carlson BA et al (2008) Selenoproteins mediate T cell immunity through an antioxidant mechanism. J Biol Chem 283:20181–20185

    Article  PubMed  CAS  Google Scholar 

  30. Hoffmann FW, Hashimoto AC, Shafer LA et al (2010) Dietary selenium modulates activation and differentiation of CD4+ T cells in mice through a mechanism involving cellular free thiols. J Nutr 140:1155–1161

    Article  PubMed  CAS  Google Scholar 

  31. Mougiakakos D, Johansson CC, Kiessling R (2009) Naturally occurring regulatory T cells show reduced sensitivity toward oxidative stress-induced cell death. Blood 113:3542–3545

    Article  PubMed  CAS  Google Scholar 

  32. Mougiakakos D, Johansson CC, Jitschin R et al (2011) Increased thioredoxin-1 production in human naturally occurring regulatory T cells confers enhanced tolerance to oxidative stress. Blood 117:857–861

    Article  PubMed  CAS  Google Scholar 

  33. Murasko DM, Weiner P, Kaye D (1987) Decline in mitogen induced proliferation of lymphocytes with increasing age. Clin Exp Immunol 70:440–448

    PubMed  CAS  Google Scholar 

  34. Franklin RA, Li YM, Arkins S et al (1990) Glutathione augments in vitro proliferative responses of lymphocytes to concanavalin A to a greater degree in old than in young rats. J Nutr 120:1710–1717

    PubMed  CAS  Google Scholar 

  35. van Lieshout EM, Peters WH (1998) Age and gender dependent levels of glutathione and glutathione S-transferases in human lymphocytes. Carcinogenesis 19:1873–1875

    Article  PubMed  Google Scholar 

  36. Gautam N, Das S, Mahapatra SK et al (2010) Age associated oxidative damage in lymphocytes. Oxid Med Cell Longev 3:275–282

    Article  PubMed  Google Scholar 

  37. Smeets TJ, Barg EC, Kraan MC et al (2003) Analysis of the cell infiltrate and expression of proinflammatory cytokines and matrix metalloproteinases in arthroscopic synovial biopsies: comparison with synovial samples from patients with end stage, destructive rheumatoid arthritis. Ann Rheum Dis 62:635–638

    Article  PubMed  CAS  Google Scholar 

  38. Kaur H, Halliwell B (1994) Evidence for nitric oxide-mediated oxidative damage in chronic inflammation. Nitrotyrosine in serum and synovial fluid from rheumatoid patients. FEBS Lett 350:9–12

    Article  PubMed  CAS  Google Scholar 

  39. Sarban S, Kocyigit A, Yazar M et al (2005) Plasma total antioxidant capacity, lipid peroxidation, and erythrocyte antioxidant enzyme activities in patients with rheumatoid arthritis and osteoarthritis. Clin Biochem 38:981–986

    Article  PubMed  CAS  Google Scholar 

  40. Altindag O, Karakoc M, Kocyigit A et al (2007) Increased DNA damage and oxidative stress in patients with rheumatoid arthritis. Clin Biochem 40:167–171

    Article  PubMed  CAS  Google Scholar 

  41. Mishra R, Singh A, Chandra V et al (2012) A comparative analysis of serological parameters and oxidative stress in osteoarthritis and rheumatoid arthritis. Rheumatol Int 32(8):2377–2382

    Article  PubMed  CAS  Google Scholar 

  42. Bashir S, Harris G, Denman MA et al (1993) Oxidative DNA damage and cellular sensitivity to oxidative stress in human autoimmune diseases. Ann Rheum Dis 52:659–666

    Article  PubMed  CAS  Google Scholar 

  43. Jikimoto T, Nishikubo Y, Koshiba M et al (2002) Thioredoxin as a biomarker for oxidative stress in patients with rheumatoid arthritis. Mol Immunol 38:765–772

    Article  PubMed  CAS  Google Scholar 

  44. Maurice MM, Nakamura H, van der Voort EA et al (1997) Evidence for the role of an altered redox state in hyporesponsiveness of synovial T cells in rheumatoid arthritis. J Immunol 158: 1458–1465

    PubMed  CAS  Google Scholar 

  45. Remans PH, van Oosterhout M, Smeets TJ et al (2005) Intracellular free radical production in synovial T lymphocytes from patients with rheumatoid arthritis. Arthritis Rheum 52: 2003–2009

    Article  PubMed  CAS  Google Scholar 

  46. Remans PH, Wijbrandts CA, Sanders ME et al (2006) CTLA-4IG suppresses reactive oxygen species by preventing synovial adherent cell-induced inactivation of Rap1, a Ras family GTPASE mediator of oxidative stress in rheumatoid arthritis T cells. Arthritis Rheum 54:3135–3143

    Article  PubMed  CAS  Google Scholar 

  47. Gringhuis SI, Leow A, Papendrecht-Van Der Voort EA et al (2000) Displacement of linker for activation of T cells from the plasma membrane due to redox balance alterations results in hyporesponsiveness of synovial fluid T lymphocytes in rheumatoid arthritis. J Immunol 164:2170–2179

    PubMed  CAS  Google Scholar 

  48. Farrell AJ, Blake DR, Palmer RM et al (1992) Increased concentrations of nitrite in synovial fluid and serum samples suggest increased nitric oxide synthesis in rheumatic diseases. Ann Rheum Dis 51:1219–1222

    Article  PubMed  CAS  Google Scholar 

  49. Nagy G, Koncz A, Telarico T et al (2010) Central role of nitric oxide in the pathogenesis of rheumatoid arthritis and systemic lupus erythematosus. Arthritis Res Ther 12:210

    Article  PubMed  Google Scholar 

  50. McCartney-Francis N, Allen JB, Mizel DE et al (1993) Suppression of arthritis by an inhibitor of nitric oxide synthase. J Exp Med 178:749–754

    Article  PubMed  CAS  Google Scholar 

  51. Nagy G, Clark JM, Buzas E et al (2008) Nitric oxide production of T lymphocytes is increased in rheumatoid arthritis. Immunol Lett 118:55–58

    Article  PubMed  CAS  Google Scholar 

  52. Niedbala W, Wei XQ, Campbell C et al (2002) Nitric oxide preferentially induces type 1 T cell differentiation by selectively up-regulating IL-12 receptor beta 2 expression via cGMP. Proc Natl Acad Sci USA 99:16186–16191

    Article  PubMed  CAS  Google Scholar 

  53. Gelderman KA, Hultqvist M, Holmberg J et al (2006) T cell surface redox levels determine T cell reactivity and arthritis susceptibility. Proc Natl Acad Sci USA 103:12831–12836

    Article  PubMed  CAS  Google Scholar 

  54. Pedersen-Lane JH, Zurier RB, Lawrence DA (2007) Analysis of the thiol status of peripheral blood leukocytes in rheumatoid arthritis patients. J Leukoc Biol 81:934–941

    Article  PubMed  CAS  Google Scholar 

  55. Salmon M, Scheel-Toellner D, Huissoon AP et al (1997) Inhibition of T cell apoptosis in the rheumatoid synovium. J Clin Invest 99:439–446

    Article  PubMed  CAS  Google Scholar 

  56. Raza K, Scheel-Toellner D, Lee CY et al (2006) Synovial fluid leukocyte apoptosis is inhibited in patients with very early rheumatoid arthritis. Arthritis Res Ther 8:R120

    Article  PubMed  Google Scholar 

  57. Kannan K, Jain SK (2000) Oxidative stress and apoptosis. Pathophysiology 7:153–163

    Article  PubMed  CAS  Google Scholar 

  58. Kabuyama Y, Kitamura T, Yamaki J et al (2008) Involvement of thioredoxin reductase 1 in the regulation of redox balance and viability of rheumatoid synovial cells. Biochem Biophys Res Commun 367:491–496

    Article  PubMed  CAS  Google Scholar 

  59. Cao D, van Vollenhoven R, Klareskog L et al (2004) CD25brightCD4+ regulatory T cells are enriched in inflamed joints of patients with chronic rheumatic disease. Arthritis Res Ther 6: R335–R346

    Article  PubMed  CAS  Google Scholar 

  60. Weinblatt ME (1985) Toxicity of low dose methotrexate in rheumatoid arthritis. J Rheumatol Suppl 12(Suppl 12):35–39

    PubMed  Google Scholar 

  61. Williams HJ, Willkens RF, Samuelson CO Jr et al (1985) Comparison of low-dose oral pulse methotrexate and placebo in the treatment of rheumatoid arthritis. A controlled clinical trial. Arthritis Rheum 28:721–730

    Article  PubMed  CAS  Google Scholar 

  62. Cronstein BN (2005) Low-dose methotrexate: a mainstay in the treatment of rheumatoid arthritis. Pharmacol Rev 57:163–172

    Article  PubMed  CAS  Google Scholar 

  63. Genestier L, Paillot R, Fournel S et al (1998) Immunosuppressive properties of methotrexate: apoptosis and clonal deletion of activated peripheral T cells. J Clin Invest 102:322–328

    Article  PubMed  CAS  Google Scholar 

  64. Herman S, Zurgil N, Langevitz P et al (2003) The induction of apoptosis by methotrexate in activated lymphocytes as indicated by fluorescence hyperpolarization: a possible model for predicting methotrexate therapy for rheumatoid arthritis patients. Cell Struct Funct 28:113–122

    Article  PubMed  CAS  Google Scholar 

  65. Herman S, Zurgil N, Langevitz P et al (2004) The immunosuppressive effect of methotrexate in active rheumatoid arthritis patients vs. its stimulatory effect in nonactive patients, as indicated by cytometric measurements of CD4+ T cell subpopulations. Immunol Invest 33:351–362

    Article  PubMed  CAS  Google Scholar 

  66. Phillips DC, Woollard KJ, Griffiths HR (2003) The anti-inflammatory actions of methotrexate are critically dependent upon the production of reactive oxygen species. Br J Pharmacol 138:501–511

    Article  PubMed  CAS  Google Scholar 

  67. Chenevier-Gobeaux C, Lemarechal H, Bonnefont-Rousselot D et al (2006) Superoxide production and NADPH oxidase expression in human rheumatoid synovial cells: regulation by interleukin-1beta and tumour necrosis factor-alpha. Inflamm Res 55:483–490

    Article  PubMed  CAS  Google Scholar 

  68. Lemarechal H, Allanore Y, Chenevier-Gobeaux C et al (2006) Serum protein oxidation in patients with rheumatoid arthritis and effects of infliximab therapy. Clin Chim Acta 372: 147–153

    Article  PubMed  CAS  Google Scholar 

  69. Kageyama Y, Takahashi M, Ichikawa T et al (2008) Reduction of oxidative stress marker levels by anti-TNF-alpha antibody, infliximab, in patients with rheumatoid arthritis. Clin Exp Rheumatol 26:73–80

    PubMed  CAS  Google Scholar 

  70. Kageyama Y, Takahashi M, Nagafusa T et al (2008) Etanercept reduces the oxidative stress marker levels in patients with rheumatoid arthritis. Rheumatol Int 28:245–251

    Article  PubMed  CAS  Google Scholar 

  71. Droge W, Breitkreutz R (2000) Glutathione and immune function. Proc Nutr Soc 59:595–600

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen R. Griffiths .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bennett, S.J., Griffiths, H.R. (2013). Regulation of T-Cell Functions by Oxidative Stress. In: Alcaraz, M., Gualillo, O., Sánchez-Pernaute, O. (eds) Studies on Arthritis and Joint Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-6166-1_2

Download citation

Publish with us

Policies and ethics