Advertisement

Antioxidants in the Treatment of Osteoarthritis and Bone Mineral Loss

  • Ali Mobasheri
  • Mehdi Shakibaei
  • Hans Konrad Biesalski
  • Yves Henrotin
Chapter
Part of the Oxidative Stress in Applied Basic Research and Clinical Practice book series (OXISTRESS)

Abstract

The concept that inflammatory diseases of bones and joints can be postponed or even prevented naturally by consuming certain foods or food-derived substances is currently eliciting considerable interest from researchers, clinicians and patients. Oxidative stress results in the production of reactive oxygen species (ROS), which play important roles in the development of many diseases including those relating to bones and joints. Metabolic reactions in osteoblasts, osteoclasts, chondrocytes and synoviocytes produce free radicals, ROS and their derivatives. These dangerous chemicals can accumulate in bones and synovial joints, and in combination with inflammatory mediators they can cause extensive structural damage, inflammation and cell death. Antioxidants are naturally occurring reducing agents capable of inhibiting ROS formation, scavenging free radicals and removing ROS derivatives. Antioxidant vitamins have major roles in modulating oxidative stress, regulating immune responses and contributing to cell differentiation. Vitamin C (ascorbic acid), vitamin E, thiols (glutathione) and plant polyphenols have the capacity to neutralize ROS in joints and decrease the oxidative stress associated with the progression of arthritis. This chapter focuses on antioxidants and their potential for the treatment of diseases of bones and joints, particularly focusing on osteoarthritis (OA) and bone mineral loss.

Keywords

Reactive Oxygen Species Articular Cartilage Subchondral Bone European Food Safety Authority Antioxidant Vitamin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

AP-1

Activator protein 1

AR

Androgen receptor

BMD

Bone mineral density

CBP

CREB-binding protein or CREBBP

CDC

Centers for Disease Control and Prevention

cGMP

current Good Manufacturing Practices

COX

Cyclooxygenase

EFSA

European Food Safety Authority

EGR-1

Early growth response protein 1

eNOS

Endothelial NOS

EpRE

Electrophile-responsive element

FA

Fatty acids

FDA

Food and Drug Administration

GSH

Glutathione or gamma-l-glutamyl-l-cysteinylglycine

H2O2

Hydrogen peroxide

IFN-γ

Interferon gamma

IGF-I

Insulin-like growth factor I

IGF-IR

Insulin-like growth factor I receptor

IL-1β

Interleukin 1 beta

iNOS

Inducible NOS

JSW

Joint space width

LOX

Lipoxygenase

LPS

Lipopolysaccharides

NAC

N-acetylcysteine

NADPH

Nicotinamide adenine dinucleotide phosphate

NALP

Pyrin-like protein containing a pyrin domain

NF-κB

Nuclear factor kappa B

NIAMS

National Institute of Arthritis and Musculoskeletal and Skin Diseases

NO

Nitric oxide

NOS

Nitric oxide synthase

NRF-2

Nuclear respiratory factor 2

NSAID

Nonsteroidal anti-inflammatory drug

OA

Osteoarthritis

p300

E1A binding protein p300

p53

Protein 53 or tumour protein 53

PGE2

Prostaglandin E2

PPAR-γ

Peroxisome proliferator-activated receptor gamma

PYCARD

Apoptosis-associated speck-like protein containing a caspase-recruitment domain (CARD)

RA

Rheumatoid arthritis

RANK

Receptor activator of nuclear factor kappa B

RANKL

Receptor activator of nuclear factor kappa B ligand

ROS

Reactive oxygen species

Sirt-1

Sirtuin (silent mating type information regulation 2 homolog) 1

SLE

Systemic lupus erythematosus

SOD

Superoxide dismutase

STAT

Signal transducer and activator of transcription

TGF-β

Transforming growth factor beta

UN

United Nations

WHO

World Health Organization

Notes

Acknowledgments

A. Mobasheri wishes to acknowledge the financial support of the Wellcome Trust, the National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs) (grant number: Mobasheri.A.28102007), the Biotechnology and Biological Sciences Research Council (BBSRC) (grants BBSRC/S/M/2006/13141 and BB/G018030/1) and the Engineering and Physical Sciences Research Council (EPSRC). A. Mobasheri and Y. Henrotin are members of the D-BOARD Consortium funded by European Commission Framework 7 program (EU FP7; HEALTH.2012.2.4.5–2, project number 305815, NovelDiagnostics and Biomarkers for Early Identification of Chronic Inflammatory Joint Diseases).

References

  1. 1.
    Woolf AD, Pfleger B (2003) Burden of major musculoskeletal conditions. Bull World Health Organ 81:646–656PubMedGoogle Scholar
  2. 2.
    Di Paola R, Cuzzocrea S (2008) Predictivity and sensitivity of animal models of arthritis. Autoimmun Rev 8:73–75PubMedCrossRefGoogle Scholar
  3. 3.
    Aigner T, Rose J, Martin J et al (2004) Aging theories of primary osteoarthritis: from epidemiology to molecular biology. Rejuvenation Res 7(2):134–145PubMedCrossRefGoogle Scholar
  4. 4.
    Hamerman D (1998) Biology of the aging joint. Clin Geriatr Med 14:417–433PubMedGoogle Scholar
  5. 5.
    Lotz MK, Carames B (2011) Autophagy and cartilage homeostasis mechanisms in joint health, aging and OA. Nat Rev Rheumatol 7(10):579–587PubMedGoogle Scholar
  6. 6.
    Buckwalter JA, Mankin HJ (1998) Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect 47:487–504PubMedGoogle Scholar
  7. 7.
    Shane Anderson A, Loeser RF (2010) Why is osteoarthritis an age-related disease? Best Pract Res Clin Rheumatol 24:15–26PubMedCrossRefGoogle Scholar
  8. 8.
    Lotz MK, Kraus VB (2010) New developments in osteoarthritis. Posttraumatic osteoarthritis: pathogenesis and pharmacological treatment options. Arthritis Res Ther 12:211PubMedCrossRefGoogle Scholar
  9. 9.
    Yusuf E, Nelissen RG, Ioan-Facsinay A et al (2010) Association between weight or body mass index and hand osteoarthritis: a systematic review. Ann Rheum Dis 69:761–765PubMedCrossRefGoogle Scholar
  10. 10.
    Abramson SB, Attur M (2009) Developments in the scientific understanding of osteoarthritis. Arthritis Res Ther 11:227PubMedCrossRefGoogle Scholar
  11. 11.
    Sutton S, Clutterbuck A, Harris P et al (2009) The contribution of the synovium, synovial derived inflammatory cytokines and neuropeptides to the pathogenesis of osteoarthritis. Vet J 179:10–24PubMedCrossRefGoogle Scholar
  12. 12.
    Buckwalter JA, Mankin HJ, Grodzinsky AJ (2005) Articular cartilage and osteoarthritis. Instr Course Lect 54:465–480PubMedGoogle Scholar
  13. 13.
    Goldring MB, Goldring SR (2007) Osteoarthritis. J Cell Physiol 213:626–634PubMedCrossRefGoogle Scholar
  14. 14.
    Mease PJ, Hanna S, Frakes EP et al (2011) Pain mechanisms in osteoarthritis: understanding the role of central pain and current approaches to its treatment. J Rheumatol 38:1546–1551PubMedCrossRefGoogle Scholar
  15. 15.
    Loeser RF (2011) Aging and osteoarthritis. Curr Opin Rheumatol 23:492–496PubMedCrossRefGoogle Scholar
  16. 16.
    Sellam J, Berenbaum F (2010) The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat Rev Rheumatol 6:625–635PubMedCrossRefGoogle Scholar
  17. 17.
    Parke DV, Sapota A (1996) Chemical toxicity and reactive oxygen species. Int J Occup Med Environ Health 9:331–340PubMedGoogle Scholar
  18. 18.
    Gloire G, Legrand-Poels S, Piette J (2006) NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol 72:1493–1505PubMedCrossRefGoogle Scholar
  19. 19.
    Schreck R, Rieber P, Baeuerle PA (1991) Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J 10:2247–2258PubMedGoogle Scholar
  20. 20.
    Zhou R, Yazdi AS, Menu P, Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469(7329):221–225PubMedCrossRefGoogle Scholar
  21. 21.
    Ogura Y, Sutterwala FS, Flavell RA (2006) The inflammasome: first line of the immune response to cell stress. Cell 126:659–662PubMedCrossRefGoogle Scholar
  22. 22.
    Tschopp J (2011) Mitochondria: Sovereign of inflammation? Eur J Immunol 41:1196–1202PubMedCrossRefGoogle Scholar
  23. 23.
    Blanco FJ, Lopez-Armada MJ, Maneiro E (2004) Mitochondrial dysfunction in osteoarthritis. Mitochondrion 4:715–728PubMedCrossRefGoogle Scholar
  24. 24.
    Terkeltaub R, Johnson K, Murphy A, Ghosh S (2002) Invited review: the mitochondrion in osteoarthritis. Mitochondrion 1:301–319PubMedCrossRefGoogle Scholar
  25. 25.
    Blanco FJ, Rego I, Ruiz-Romero C (2011) The role of mitochondria in osteoarthritis. Nat Rev Rheumatol 7:161–169PubMedCrossRefGoogle Scholar
  26. 26.
    Carames B, Taniguchi N, Otsuki S et al (2010) Autophagy is a protective mechanism in normal cartilage, and its aging-related loss is linked with cell death and osteoarthritis. Arthritis Rheum 62:791–801PubMedCrossRefGoogle Scholar
  27. 27.
    Jha P, Flather M, Lonn E et al (1995) The antioxidant vitamins and cardiovascular disease. A critical review of epidemiologic and clinical trial data. Ann Intern Med 123:860–972PubMedCrossRefGoogle Scholar
  28. 28.
    Meister A (1994) Glutathione-ascorbic acid antioxidant system in animals. J Biol Chem 269:9397–9400PubMedGoogle Scholar
  29. 29.
    Meister A (1994) Glutathione, ascorbate, and cellular protection. Cancer Res 54(7 Suppl):1969s–1975sPubMedGoogle Scholar
  30. 30.
    Mobasheri A, Vannucci SJ, Bondy CA, Carter SD, Innes JF, Arteaga MF et al (2002) Glucose transport and metabolism in chondrocytes: a key to understanding chondrogenesis, skeletal development and cartilage degradation in osteoarthritis. Histol Histopathol 17:1239–1267PubMedGoogle Scholar
  31. 31.
    Mobasheri A, Bondy CA, Moley K et al (2008) Facilitative glucose transporters in articular chondrocytes. Expression, distribution and functional regulation of GLUT isoforms by hypoxia, hypoxia mimetics, growth factors and pro-inflammatory cytokines. Adv Anat Embryol Cell Biol 200:1 p following vi, 1–84Google Scholar
  32. 32.
    Archer CW, Francis-West P (2003) The chondrocyte. Int J Biochem Cell Biol 35(4):401–404PubMedCrossRefGoogle Scholar
  33. 33.
    Henrotin Y, Kurz B (2007) Antioxidant to treat osteoarthritis: dream or reality? Curr Drug Targets 8:347–357PubMedCrossRefGoogle Scholar
  34. 34.
    Henrotin YE, Bruckner P, Pujol JP (2003) The role of reactive oxygen species in homeostasis and degradation of cartilage. Osteoarthritis Cartilage 11:747–755PubMedCrossRefGoogle Scholar
  35. 35.
    Pfander D, Gelse K (2007) Hypoxia and osteoarthritis: how chondrocytes survive hypoxic environments. Curr Opin Rheumatol 19:457–462PubMedCrossRefGoogle Scholar
  36. 36.
    Lafont JE (2010) Lack of oxygen in articular cartilage: consequences for chondrocyte biology. Int J Exp Pathol 91:99–106PubMedCrossRefGoogle Scholar
  37. 37.
    Imhof H, Sulzbacher I, Grampp S et al (2000) Subchondral bone and cartilage disease: a rediscovered functional unit. Invest Radiol 35:581–588PubMedCrossRefGoogle Scholar
  38. 38.
    Levick JR (1995) Microvascular architecture and exchange in synovial joints. Microcirculation 2:217–233PubMedCrossRefGoogle Scholar
  39. 39.
    Findlay DM (2007) Vascular pathology and osteoarthritis. Rheumatology (Oxford) 46:1763–1768CrossRefGoogle Scholar
  40. 40.
    Henrotin Y, Deby-Dupont G, Deby C et al (1992) Active oxygen species, articular inflammation and cartilage damage. EXS 62:308–322PubMedGoogle Scholar
  41. 41.
    Hiran TS, Moulton PJ, Hancock JT (1998) In situ detection of superoxide anions within porcine articular cartilage. Br J Biomed Sci 55:199–203PubMedGoogle Scholar
  42. 42.
    Moulton PJ, Hiran TS, Goldring MB et al (1997) Detection of protein and mRNA of various components of the NADPH oxidase complex in an immortalized human chondrocyte line. Br J Rheumatol 36:522–529PubMedCrossRefGoogle Scholar
  43. 43.
    Hiran TS, Moulton PJ, Hancock JT (1997) Detection of superoxide and NADPH oxidase in porcine articular chondrocytes. Free Radic Biol Med 23:736–743PubMedCrossRefGoogle Scholar
  44. 44.
    Moulton PJ, Goldring MB, Hancock JT (1998) NADPH oxidase of chondrocytes contains an isoform of the gp91phox subunit. Biochem J 329(Pt 3):449–451PubMedGoogle Scholar
  45. 45.
    Carlo MD Jr, Loeser RF (2003) Increased oxidative stress with aging reduces chondrocyte survival: correlation with intracellular glutathione levels. Arthritis Rheum 48:3419–3430PubMedCrossRefGoogle Scholar
  46. 46.
    He SJ, Hou JF, Dai YY, Zhou ZL, Deng YF (2012) N-acetyl-cysteine protects chicken growth plate chondrocytes from T-2 toxin-induced oxidative stress. J Appl Toxicol 32:980–985 Google Scholar
  47. 47.
    Ueno T, Yamada M, Sugita Y, Ogawa T (2011) N-acetyl cysteine protects TMJ chondrocytes from oxidative stress. J Dent Res 90:353–359PubMedCrossRefGoogle Scholar
  48. 48.
    Nakagawa S, Arai Y, Mazda O et al (2010) N-acetylcysteine prevents nitric oxide-induced chondrocyte apoptosis and cartilage degeneration in an experimental model of osteoarthritis. J Orthop Res 28:156–163PubMedGoogle Scholar
  49. 49.
    Li WQ, Dehnade F, Zafarullah M (2000) Thiol antioxidant, N-acetylcysteine, activates extracellular signal-regulated kinase signaling pathway in articular chondrocytes. Biochem Biophys Res Commun 275:789–794PubMedCrossRefGoogle Scholar
  50. 50.
    Vaillancourt F, Fahmi H, Shi Q et al (2008) 4-Hydroxynonenal induces apoptosis in human osteoarthritic chondrocytes: the protective role of glutathione-S-transferase. Arthritis Res Ther 10:R107PubMedCrossRefGoogle Scholar
  51. 51.
    Studer RK (2004) Nitric oxide decreases IGF-1 receptor function in vitro; glutathione depletion enhances this effect in vivo. Osteoarthritis Cartilage 12:863–869PubMedCrossRefGoogle Scholar
  52. 52.
    Chakravarthi S, Jessop CE, Bulleid NJ (2006) The role of glutathione in disulphide bond formation and endoplasmic-reticulum-generated oxidative stress. EMBO Rep 7:271–275PubMedCrossRefGoogle Scholar
  53. 53.
    Afonso V, Champy R, Mitrovic D et al (2007) Reactive oxygen species and superoxide dismutases: role in joint diseases. Joint Bone Spine 74:324–329PubMedCrossRefGoogle Scholar
  54. 54.
    Baker MS, Feigan J, Lowther DA (1988) Chondrocyte antioxidant defences: the roles of catalase and glutathione peroxidase in protection against H2O2 dependent inhibition of proteoglycan biosynthesis. J Rheumatol 15:670–677PubMedGoogle Scholar
  55. 55.
    Deahl ST 2nd, Oberley LW, Oberley TD et al (1992) Immunohistochemical identification of superoxide dismutases, catalase, and glutathione-S-transferases in rat femora. J Bone Miner Res 7:187–198PubMedCrossRefGoogle Scholar
  56. 56.
    Michiels C, Raes M, Zachary MD, Delaive E, Remacle J (1988) Microinjection of antibodies against superoxide dismutase and glutathione peroxidase. Exp Cell Res 179:581–589PubMedCrossRefGoogle Scholar
  57. 57.
    McGregor GP, Biesalski HK (2006) Rationale and impact of vitamin C in clinical nutrition. Curr Opin Clin Nutr Metab Care 9:697–703PubMedCrossRefGoogle Scholar
  58. 58.
    Muhlhofer A, Mrosek S, Schlegel B et al (2004) High-dose intravenous vitamin C is not associated with an increase of pro-oxidative biomarkers. Eur J Clin Nutr 58:1151–1158PubMedCrossRefGoogle Scholar
  59. 59.
    Hak AE, Choi HK (2008) Lifestyle and gout. Curr Opin Rheumatol 20(2):179–186PubMedCrossRefGoogle Scholar
  60. 60.
    Sale JE, Gignac M, Hawker G (2008) The relationship between disease symptoms, life events, coping and treatment, and depression among older adults with osteoarthritis. J Rheumatol 35:335–342PubMedGoogle Scholar
  61. 61.
    Corson TW, Crews CM (2007) Molecular understanding and modern application of traditional medicines: triumphs and trials. Cell 130:769–774PubMedCrossRefGoogle Scholar
  62. 62.
    Curtis CL, Rees SG, Little CB et al (2002) Pathologic indicators of degradation and inflammation in human osteoarthritic cartilage are abrogated by exposure to n-3 fatty acids. Arthritis Rheum 46:1544–1553PubMedCrossRefGoogle Scholar
  63. 63.
    Henrotin Y, Mobasheri A, Clutterbuck AL et al (2010) Biological actions of curcumin on articular chondrocytes. Osteoarthritis Cartilage 18:141–149PubMedCrossRefGoogle Scholar
  64. 64.
    Lee B, Moon SK (2005) Resveratrol inhibits TNF-alpha-induced proliferation and matrix metalloproteinase expression in human vascular smooth muscle cells. J Nutr 135:2767–2773PubMedGoogle Scholar
  65. 65.
    Annabi B, Currie JC, Moghrabi A, Beliveau R (2007) Inhibition of HuR and MMP-9 expression in macrophage-differentiated HL-60 myeloid leukemia cells by green tea polyphenol EGCg. Leukemia Res 31:1277–1284CrossRefGoogle Scholar
  66. 66.
    Kim M, Murakami A, Ohigashi H (2007) Modifying effects of dietary factors on (-)-epigallocatechin-3-gallate-induced pro-matrix metalloproteinase-7 production in HT-29 human colorectal cancer cells. Biosci Biotechnol Biochem 71:2442–2450PubMedCrossRefGoogle Scholar
  67. 67.
    Kong CS, Kim YA, Kim MM et al (2008) Flavonoid glycosides isolated from Salicornia herbacea inhibit matrix metalloproteinase in HT1080 cells. Toxicol In Vitro 22:1742–1748PubMedCrossRefGoogle Scholar
  68. 68.
    Vijayababu MR, Arunkumar A, Kanagaraj P et al (2006) Quercetin downregulates matrix metalloproteinases 2 and 9 proteins expression in prostate cancer cells (PC-3). Mol Cell Biochem 287:109–116PubMedCrossRefGoogle Scholar
  69. 69.
    Shishodia S, Singh T, Chaturvedi MM (2007) Modulation of transcription factors by curcumin. Adv Exp Med Biol 595:127–148PubMedCrossRefGoogle Scholar
  70. 70.
    Shakibaei M, Buhrmann C, Mobasheri A (2011) Resveratrol-mediated SIRT-1 interactions with p300 modulate receptor activator of NF-kappaB ligand (RANKL) activation of NF-kappaB signaling and inhibit osteoclastogenesis in bone-derived cells. J Biol Chem 286:11492–11505PubMedCrossRefGoogle Scholar
  71. 71.
    ClinicalTrials.gov (2012) A service of the National Institutes of Health (NIH). [cited 20 Mar 2012]. Available from: http://clinicaltrials.gov/
  72. 72.
    Curcumin in Rheumatoid Arthritis (2012) [cited 20 Mar 2012]. Available from: http://clinicaltrials.gov/show/NCT00752154Google Scholar
  73. 73.
    Limbrel (2012) [cited 20 Mar 2012]. Available from: http://www.limbrel.com/
  74. 74.
    Study of flavocoxid (Limbrel) versus naproxen in subjects with moderate-severe osteoarthritis of the knee. Available from: http://clinicaltrials.gov/ct2/show/NCT00928837
  75. 75.
    The European Food Safety Authority (EFSA) (2012) [cited 20 Mar 2012]. Available from: http://www.efsa.europa.eu/
  76. 76.
    EFSA Panel on Dietetic Products NaAN (2009) Scientific opinion on the substantiation of health claims related to glucosamine alone or in combination with chondroitin sulphate and maintenance of joints (ID 1561, 1562, 1563, 1564, 1565) and reduction of inflammation (ID 1869) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J 7(9):1264 [17 pp]Google Scholar
  77. 77.
    Lean JM, Davies JT, Fuller K et al (2003) A crucial role for thiol antioxidants in estrogen-deficiency bone loss. J Clin Invest 112:915–923PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Ali Mobasheri
    • 1
  • Mehdi Shakibaei
    • 2
  • Hans Konrad Biesalski
    • 3
  • Yves Henrotin
    • 4
    • 5
  1. 1.Musculoskeletal Research Group, Division of Veterinary Medicine, School of Veterinary Medicine and Science, Faculty of Medicine and Health SciencesThe University of NottinghamLeicestershireUK
  2. 2.Musculoskeletal Research Group, Institute of AnatomyLudwig-Maximilian-University MunichMunichGermany
  3. 3.Department of Biological Chemistry and Nutrition, Institute of Biological Chemistry and NutritionUniversity of HohenheimStuttgartGermany
  4. 4.Bone and Cartilage Research Unit, Institute of PathologyUniversity of Liege, Sart-TilmanLiegeBelgium
  5. 5.Physical Therapy and Rehabilitation DepartmentPrincess Paola Hospital, VivaliaMarche-en-FamenneBelgium

Personalised recommendations