Skip to main content

Soluble Proteomic Biomakers in the Management of Arthritis

  • Chapter
  • First Online:
Studies on Arthritis and Joint Disorders

Abstract

This chapter introduces the readers of this volume to arthritic diseases including osteoarthritis (OA) and rheumatoid arthritis (RA) before focusing on collagenous and non-collagenous biomarkers of these joint diseases. The main objective of this chapter is to focus on reactive oxygen species and in vivo biomarkers of oxidative stress. Such biomarkers may be early indicators of oxidative stress-induced tissue damage and could be used to identify patients at increased risk of developing joint disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.who.int/healthinfo/statistics/bod_osteoarthritis.pdf

  2. 2.

    http://whqlibdoc.who.int/bulletin/2003/Vol81-No9/bulletin_2003_81(9)_630.pdf

  3. 3.

    http://www.who.int/en/

  4. 4.

    http://www.niams.nih.gov/

  5. 5.

    http://www.cdc.gov/

  6. 6.

    http://www.nras.org.uk/

  7. 7.

    http://www.nras.org.uk/about_rheumatoid_arthritis/what_is_ra/what_is_ra.aspx

  8. 8.

    http://www.arthritisresearchuk.org/arthritis_information/arthritis_types__symptoms/rheumatoid_arthritis.aspx

Abbreviations

ACCP:

Anti-cyclic citrullinated protein antibodies

ACPA:

Anti-citrullinated protein antibodies

AGE:

Advanced glycation end product

BMD:

Bone mineral density

CDC:

Centers for Disease Control and Prevention

CML:

Carboxymethyl lysine

COMO:

Cartilage oligomeric matrix protein

CRP:

C-reactive protein

CTX-I:

Carboxy-terminal cross-linked telopeptide of type I collagen

CTX-II:

Carboxy-terminal cross-linked telopeptide of type II collagen

DNA:

Deoxyribonucleic acid

DTPA:

Diethylene triamine penta-acetate

ECM:

Extracellular matrix

EFSA:

European Food Safety Authority

EGR-1:

Early growth response protein 1

ELISA:

Enzyme-linked immunosorbent assays

eNOS:

Endothelial NOS

ESR:

Erythrocyte sedimentation rate

ESR:

Electron spin resonance

GC:

Gas chromatography

GSH:

Glutathione or gamma-l-glutamyl-l-cysteinylglycine

H2O2 :

Hydrogen peroxide

HA:

Hyaluronic acid

HPLC:

High-performance liquid chromatography

HRT:

Hormone replacement therapy

IFN-γ:

Interferon gamma

IGF-I:

Insulin-like growth factor I

IGF-IR:

Insulin-like growth factor I receptor

IL-1β:

Interleukin 1 beta

IL-6:

Interleukin-6

iNOS:

Inducible NOS

JSW:

Joint space width

LC:

Liquid chromatography

MMP-13:

Matrix metalloproteinase 13

MPO:

Peroxynitrite

MRI:

Magnetic resonance imaging

MS:

Mass spectrometry

NADPH:

Nicotinamide adenine dinucleotide phosphate

NALP:

Pyrin-like protein containing a pyrin domain

NEN:

Nonenzymatic nitrite

NF-κB:

Nuclear factor kappa B

NIAMS:

National Institute of Arthritis and Musculoskeletal and Skin Diseases

NO:

Nitric oxide

NTX-I:

Amino-terminal cross-linked telopeptide of type I collagen

OA:

Osteoarthritis

PAS:

Patient Activity Scale

PGE2 :

Prostaglandin E2

PKC:

Protein kinase C

PMN:

Polymorphonuclear leukocytes

PYCARD:

Apoptosis-associated speck-like protein containing a caspase recruitment domain (CARD)

RA:

Rheumatoid arthritis

RAGE:

AGE receptor

RF:

Rheumatoid factor

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TBAR:

Thiobarbituric acid reactants

TIINE:

Collagen type II neoepitope

uPA:

Urokinase or urokinase-type plasminogen activator

WHO:

World Health Organization

WOMAC:

Western Ontario and McMaster University Osteoarthritis Index

WT:

Wild type

YKL-40:

Cartilage glycoprotein-39

References

  1. Oeppen J, Vaupel JW (2002) Demography. Broken limits to life expectancy. Science 296(5570):1029–1031

    Article  PubMed  CAS  Google Scholar 

  2. Woolf AD, Pfleger B (2003) Burden of major musculoskeletal conditions. Bull World Health Organ 81(9):646–656

    PubMed  Google Scholar 

  3. Di Paola R, Cuzzocrea S (2008) Predictivity and sensitivity of animal models of arthritis. Autoimmun Rev 8(1):73–75

    Article  PubMed  Google Scholar 

  4. Aigner T, Rose J, Martin J, Buckwalter J (2004) Aging theories of primary osteoarthritis: from epidemiology to molecular biology. Rejuvenation Res 7(2):134–145

    Article  PubMed  CAS  Google Scholar 

  5. Abramson SB, Attur M (2009) Developments in the scientific understanding of osteoarthritis. Arthritis Res Ther 11(3):227

    Article  PubMed  Google Scholar 

  6. Sutton S, Clutterbuck A, Harris P et al (2009) The contribution of the synovium, synovial derived inflammatory cytokines and neuropeptides to the pathogenesis of osteoarthritis. Vet J 179(1):10–24

    Article  PubMed  CAS  Google Scholar 

  7. Lotz MK, Kraus VB (2010) New developments in osteoarthritis. Posttraumatic osteoarthritis: pathogenesis and pharmacological treatment options. Arthritis Res Ther 12(3):211

    Article  PubMed  Google Scholar 

  8. Yusuf E, Nelissen RG, Ioan-Facsinay A et al (2010) Association between weight or body mass index and hand osteoarthritis: a systematic review. Ann Rheum Dis 69(4):761–765

    Article  PubMed  Google Scholar 

  9. Buckwalter JA, Mankin HJ, Grodzinsky AJ (2005) Articular cartilage and osteoarthritis. Instr Course Lect 54:465–480

    PubMed  Google Scholar 

  10. Goldring MB, Goldring SR (2007) Osteoarthritis. J Cell Physiol 213(3):626–634

    Article  PubMed  CAS  Google Scholar 

  11. Sellam J, Berenbaum F (2010) The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat Rev Rheumatol 6(11):625–635

    Article  PubMed  CAS  Google Scholar 

  12. Wolfe F, Michaud K (2007) The effect of methotrexate and anti-tumor necrosis factor therapy on the risk of lymphoma in rheumatoid arthritis in 19,562 patients during 89,710 person-years of observation. Arthritis Rheum 56(5):1433–1439

    Article  PubMed  CAS  Google Scholar 

  13. Wolfe F, Michaud K (2004) Lymphoma in rheumatoid arthritis: the effect of methotrexate and anti-tumor necrosis factor therapy in 18,572 patients. Arthritis Rheum 50(6):1740–1751

    Article  PubMed  CAS  Google Scholar 

  14. Pinals RS (1987) Survival in rheumatoid arthritis. Arthritis Rheum 30(4):473–475

    Article  PubMed  CAS  Google Scholar 

  15. Reilly PA, Cosh JA, Maddison PJ, Rasker JJ, Silman AJ (1990) Mortality and survival in rheumatoid arthritis: a 25 year prospective study of 100 patients. Ann Rheum Dis 49(6): 363–369

    Article  PubMed  CAS  Google Scholar 

  16. Mitchell DM, Spitz PW, Young DY, Bloch DA, McShane DJ, Fries JF (1986) Survival, ­prognosis, and causes of death in rheumatoid arthritis. Arthritis Rheum 29(6):706–714

    Article  PubMed  CAS  Google Scholar 

  17. Goemaere S, Ackerman C, Goethals K et al (1990) Onset of symptoms of rheumatoid arthritis in relation to age, sex and menopausal transition. J Rheumatol 17(12):1620–1622

    PubMed  CAS  Google Scholar 

  18. D’Elia HF, Larsen A, Mattsson LA et al (2003) Influence of hormone replacement therapy on disease progression and bone mineral density in rheumatoid arthritis. J Rheumatol 30(7): 1456–1463

    PubMed  Google Scholar 

  19. D’Elia HF, Mattsson LA, Ohlsson C, Nordborg E, Carlsten H (2003) Hormone replacement therapy in rheumatoid arthritis is associated with lower serum levels of soluble IL-6 receptor and higher insulin-like growth factor 1. Arthritis Res Ther 5(4):R202–R209

    Article  PubMed  Google Scholar 

  20. Biomarkers Definitions Working Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69(3):89–95

    Article  Google Scholar 

  21. Eyre DR (2004) Collagens and cartilage matrix homeostasis. Clin Orthop Relat Res 427(Suppl):S118–S122

    Article  PubMed  Google Scholar 

  22. Todhunter RJ (1996) Anatomy and physiology of synovial joints. In: McIllwraith CW, Trotter GW (eds) Joint disease in the horse. WB Saunders, Philadelphia, pp 1–28

    Google Scholar 

  23. Henrotin Y, Addison S, Kraus V, Deberg M (2007) Type II collagen markers in osteoarthritis: what do they indicate? Curr Opin Rheumatol 19(5):444–450

    Article  PubMed  CAS  Google Scholar 

  24. Elsaid KA, Chichester CO (2006) Review: collagen markers in early arthritic diseases. Clin Chim Acta 365(1–2):68–77

    Article  PubMed  CAS  Google Scholar 

  25. Lohmander LS, Eyre D (2008) Biochemical markers as surrogate end points of joint disease. In: Reid D, Miller C (eds) Clinical trials in rheumatoid arthritis and osteoarthritis. Springer, New York, pp 249–274

    Chapter  Google Scholar 

  26. Garvican ER, Vaughan-Thomas A, Innes JF, Clegg PD (2010) Biomarkers of cartilage ­turnover. Part 1: Markers of collagen degradation and synthesis. Vet J 185(1):36–42

    Article  PubMed  CAS  Google Scholar 

  27. Garvican ER, Vaughan-Thomas A, Clegg PD, Innes JF (2010) Biomarkers of cartilage turnover. Part 2: Non-collagenous markers. Vet J 185(1):43–49

    Article  PubMed  CAS  Google Scholar 

  28. Tseng S, Reddi AH, Di Cesare PE (2009) Cartilage oligomeric matrix protein (COMP): a biomarker of arthritis. Biomark Insights 4:33–44

    PubMed  CAS  Google Scholar 

  29. Jordan JM (2004) Cartilage oligomeric matrix protein as a marker of osteoarthritis. J Rheumatol Suppl 70:45–49

    PubMed  CAS  Google Scholar 

  30. Petersson IF, Sandqvist L, Svensson B, Saxne T (1997) Cartilage markers in synovial fluid in symptomatic knee osteoarthritis. Ann Rheum Dis 56(1):64–67

    Article  PubMed  CAS  Google Scholar 

  31. Petersson IF, Boegard T, Svensson B, Heinegard D, Saxne T (1998) Changes in cartilage and bone metabolism identified by serum markers in early osteoarthritis of the knee joint. Br J Rheumatol 37(1):46–50

    Article  PubMed  CAS  Google Scholar 

  32. Conrozier T, Saxne T, Fan CS et al (1998) Serum concentrations of cartilage oligomeric matrix protein and bone sialoprotein in hip osteoarthritis: a one year prospective study. Ann Rheum Dis 57(9):527–532

    Article  PubMed  CAS  Google Scholar 

  33. Saxne T, Heinegard D (1992) Cartilage oligomeric matrix protein: a novel marker of cartilage turnover detectable in synovial fluid and blood. Br J Rheumatol 31(9):583–591

    Article  PubMed  CAS  Google Scholar 

  34. Neidhart M, Hauser N, Paulsson M, DiCesare PE, Michel BA, Hauselmann HJ (1997) Small fragments of cartilage oligomeric matrix protein in synovial fluid and serum as markers for cartilage degradation. Br J Rheumatol 36(11):1151–1160

    Article  PubMed  CAS  Google Scholar 

  35. Kuhne SA, Neidhart M, Everson MP et al (1998) Persistent high serum levels of cartilage oligomeric matrix protein in a subgroup of patients with traumatic knee injury. Rheumatol Int 18(1):21–25

    Article  PubMed  CAS  Google Scholar 

  36. Lohmander LS, Ionescu M, Jugessur H, Poole AR (1999) Changes in joint cartilage aggrecan after knee injury and in osteoarthritis. Arthritis Rheum 42(3):534–544

    Article  PubMed  CAS  Google Scholar 

  37. Clark AG, Jordan JM, Vilim V et al (1999) Serum cartilage oligomeric matrix protein reflects osteoarthritis presence and severity: the Johnston County Osteoarthritis Project. Arthritis Rheum 42(11):2356–2364

    Article  PubMed  CAS  Google Scholar 

  38. Dodge GR, Hawkins D, Boesler E, Sakai L, Jimenez SA (1998) Production of cartilage oligomeric matrix protein (COMP) by cultured human dermal and synovial fibroblasts. Osteoarthritis Cartilage 6(6):435–440

    Article  PubMed  CAS  Google Scholar 

  39. Goldberg RL, Huff JP, Lenz ME, Glickman P, Katz R, Thonar EJ (1991) Elevated plasma levels of hyaluronate in patients with osteoarthritis and rheumatoid arthritis. Arthritis Rheum 34(7):799–807

    Article  PubMed  CAS  Google Scholar 

  40. Sharif M, George E, Shepstone L, Knudson W, Thonar EJ, Cushnaghan J et al (1995) Serum hyaluronic acid level as a predictor of disease progression in osteoarthritis of the knee. Arthritis Rheum 38(6):760–767

    Article  PubMed  CAS  Google Scholar 

  41. Pavelka K, Forejtova S, Olejarova M et al (2004) Hyaluronic acid levels may have predictive value for the progression of knee osteoarthritis. Osteoarthritis Cartilage 12(4):277–283

    Article  PubMed  CAS  Google Scholar 

  42. Iwase T, Hasegawa Y, Ishiguro N et al (1998) Synovial fluid cartilage metabolism marker concentrations in osteonecrosis of the femoral head compared with osteoarthrosis of the hip. J Rheumatol 25(3):527–531

    PubMed  CAS  Google Scholar 

  43. Bruyere O, Collette JH, Ethgen O et al (2003) Biochemical markers of bone and cartilage remodeling in prediction of longterm progression of knee osteoarthritis. J Rheumatol 30(5):1043–1050

    PubMed  CAS  Google Scholar 

  44. Taylor SE, Weaver MP, Pitsillides AA et al (2006) Cartilage oligomeric matrix protein and hyaluronan levels in synovial fluid from horses with osteoarthritis of the tarsometatarsal joint compared to a control population. Equine Vet J 38(6):502–507

    Article  PubMed  CAS  Google Scholar 

  45. Budsberg SC, Lenz ME, Thonar EJ (2006) Serum and synovial fluid concentrations of keratan sulfate and hyaluronan in dogs with induced stifle joint osteoarthritis following cranial cruciate ligament transection. Am J Vet Res 67(3):429–432

    Article  PubMed  CAS  Google Scholar 

  46. Nganvongpanit K, Itthiarbha A, Ong-Chai S, Kongtawelert P (2008) Evaluation of serum chondroitin sulfate and hyaluronan: biomarkers for osteoarthritis in canine hip dysplasia. J Vet Sci 9(3):317–325

    Article  PubMed  Google Scholar 

  47. Chichibu K, Matsuura T, Shichijo S, Yokoyama MM (1989) Assay of serum hyaluronic acid in clinical application. Clin Chim Acta 181(3):317–323

    Article  PubMed  CAS  Google Scholar 

  48. Kongtawelert P, Ghosh P (1990) A method for the quantitation of hyaluronan (hyaluronic acid) in biological fluids using a labeled avidin-biotin technique. Anal Biochem 185(2):313–318

    Article  PubMed  CAS  Google Scholar 

  49. Wakitani S, Nawata M, Kawaguchi A et al (2007) Serum keratan sulfate is a promising marker of early articular cartilage breakdown. Rheumatology (Oxford) 46(11): 1652–1656

    Article  CAS  Google Scholar 

  50. Pothacharoen P, Teekachunhatean S, Louthrenoo W et al (2006) Raised chondroitin sulfate epitopes and hyaluronan in serum from rheumatoid arthritis and osteoarthritis patients. Osteoarthritis Cartilage 14(3):299–301

    Article  PubMed  CAS  Google Scholar 

  51. Itokazu M, Shinozaki M, Ohno T (1998) Quantitative analysis of hyaluronan in the synovial tissues of patients with joint disorders. Clin Rheumatol 17(3):261–262

    Article  PubMed  CAS  Google Scholar 

  52. Elliott AL, Kraus VB, Luta G et al (2005) Serum hyaluronan levels and radiographic knee and hip osteoarthritis in African Americans and Caucasians in the Johnston County Osteoarthritis Project. Arthritis Rheum 52(1):105–111

    Article  PubMed  CAS  Google Scholar 

  53. Chen HC, Shah S, Stabler TV, Li YJ, Kraus VB (2008) Biomarkers associated with clinical phenotypes of hand osteoarthritis in a large multigenerational family: the CARRIAGE family study. Osteoarthritis Cartilage 16(9):1054–1059

    Article  PubMed  Google Scholar 

  54. Filkova M, Senolt L, Braun M et al (2009) Serum hyaluronic acid as a potential marker with a predictive value for further radiographic progression of hand osteoarthritis. Osteoarthritis Cartilage 17(12):1615–1619

    Article  PubMed  CAS  Google Scholar 

  55. Kong SY, Stabler TV, Criscione LG, Elliott AL, Jordan JM, Kraus VB (2006) Diurnal variation of serum and urine biomarkers in patients with radiographic knee osteoarthritis. Arthritis Rheum 54(8):2496–2504

    Article  PubMed  CAS  Google Scholar 

  56. Criscione LG, Elliott AL, Stabler T, Jordan JM, Pieper CF, Kraus VB (2005) Variation of serum hyaluronan with activity in individuals with knee osteoarthritis. Osteoarthritis Cartilage 13(9):837–840

    Article  PubMed  Google Scholar 

  57. Chua SD Jr, Messier SP, Legault C, Lenz ME, Thonar EJ, Loeser RF (2008) Effect of an exercise and dietary intervention on serum biomarkers in overweight and obese adults with osteoarthritis of the knee. Osteoarthritis Cartilage 16(9):1047–1053

    Article  PubMed  Google Scholar 

  58. Nagaya H, Ymagata T, Ymagata S et al (1999) Examination of synovial fluid and serum hyaluronidase activity as a joint marker in rheumatoid arthritis and osteoarthritis patients (by zymography). Ann Rheum Dis 58(3):186–188

    Article  PubMed  CAS  Google Scholar 

  59. Punzi L, Oliviero F, Ramonda R, Valvason C, Sfriso P, Todesco S (2003) Laboratory investigations in osteoarthritis. Aging Clin Exp Res 15(5):373–379

    PubMed  CAS  Google Scholar 

  60. Huang K, Wu LD (2009) YKL-40: a potential biomarker for osteoarthritis. J Int Med Res 37(1):18–24

    Article  PubMed  CAS  Google Scholar 

  61. Johansen JS, Hvolris J, Hansen M, Backer V, Lorenzen I, Price PA (1996) Serum YKL-40 levels in healthy children and adults. Comparison with serum and synovial fluid levels of YKL-40 in patients with osteoarthritis or trauma of the knee joint. Br J Rheumatol 35(6):553–559

    Article  PubMed  CAS  Google Scholar 

  62. Clancy R (1999) Nitric oxide alters chondrocyte function by disrupting cytoskeletal signaling complexes. Osteoarthritis Cartilage 7(4):399–400

    Article  PubMed  CAS  Google Scholar 

  63. Conrozier T, Carlier MC, Mathieu P et al (2000) Serum levels of YKL-40 and C reactive protein in patients with hip osteoarthritis and healthy subjects: a cross sectional study. Ann Rheum Dis 59(10):828–831

    Article  PubMed  CAS  Google Scholar 

  64. Kawasaki M, Hasegawa Y, Kondo S, Iwata H (2001) Concentration and localization of YKL-40 in hip joint diseases. J Rheumatol 28(2):341–345

    PubMed  CAS  Google Scholar 

  65. Volck B, Johansen JS, Stoltenberg M et al (2001) Studies on YKL-40 in knee joints of patients with rheumatoid arthritis and osteoarthritis. Involvement of YKL-40 in the joint pathology. Osteoarthritis Cartilage 9(3):203–214

    Article  PubMed  CAS  Google Scholar 

  66. Volck B, Ostergaard K, Johansen JS, Garbarsch C, Price PA (1999) The distribution of YKL-40 in osteoarthritic and normal human articular cartilage. Scand J Rheumatol 28(3): 171–179

    Article  PubMed  CAS  Google Scholar 

  67. Vos K, Steenbakkers P, Miltenburg AM et al (2000) Raised human cartilage glycoprotein-39 plasma levels in patients with rheumatoid arthritis and other inflammatory conditions. Ann Rheum Dis 59(7):544–548

    Article  PubMed  CAS  Google Scholar 

  68. Farng E, Friedrich JB (2011) Laboratory diagnosis of rheumatoid arthritis. J Hand Surg Am 36(5):926–927, quiz 8

    Article  PubMed  Google Scholar 

  69. Waits JB (2010) Rational use of laboratory testing in the initial evaluation of soft tissue and joint complaints. Prim Care 37(4):673–689, v

    Article  PubMed  Google Scholar 

  70. Anderson J, Caplan L, Yazdany J et al (2012) Rheumatoid arthritis disease activity measures: American College of Rheumatology recommendations for use in clinical practice. Arthritis Care Res (Hoboken) 64(5):640–647

    Article  Google Scholar 

  71. Parke DV, Sapota A (1996) Chemical toxicity and reactive oxygen species. Int J Occup Med Environ Health 9(4):331–340

    PubMed  CAS  Google Scholar 

  72. Gloire G, Legrand-Poels S, Piette J (2006) NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol 72(11):1493–1505

    Article  PubMed  CAS  Google Scholar 

  73. Schreck R, Rieber P, Baeuerle PA (1991) Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J 10(8):2247–2258

    PubMed  CAS  Google Scholar 

  74. Meister A (1994) Glutathione-ascorbic acid antioxidant system in animals. J Biol Chem 269(13):9397–9400

    PubMed  CAS  Google Scholar 

  75. Meister A (1994) Glutathione, ascorbate, and cellular protection. Cancer Res 54(7 Suppl): 1969s–1975s

    PubMed  CAS  Google Scholar 

  76. Schalkwijk J, van den Berg WB, van de Putte LB, Joosten LA (1986) An experimental model for hydrogen peroxide-induced tissue damage. Effects of a single inflammatory mediator on (peri)articular tissues. Arthritis Rheum 29(4):532–538

    Article  PubMed  CAS  Google Scholar 

  77. Tiku ML, Liesch JB, Robertson FM (1990) Production of hydrogen peroxide by rabbit ­articular chondrocytes. Enhancement by cytokines. J Immunol 145(2):690–696

    PubMed  CAS  Google Scholar 

  78. Baker MS, Feigan J, Lowther DA (1988) Chondrocyte antioxidant defences: the roles of ­catalase and glutathione peroxidase in protection against H2O2 dependent inhibition of ­proteoglycan biosynthesis. J Rheumatol 15(4):670–677

    PubMed  CAS  Google Scholar 

  79. Saura R, Matsubara T, Hirohata K, Itoh H (1992) Damage of cultured chondrocytes by hydrogen peroxide derived from polymorphonuclear leukocytes: a possible mechanism of cartilage degradation. Rheumatol Int 12(4):141–146

    Article  PubMed  CAS  Google Scholar 

  80. Tschan T, Hoerler I, Houze Y, Winterhalter KH, Richter C, Bruckner P (1990) Resting chondrocytes in culture survive without growth factors, but are sensitive to toxic oxygen metabolites. J Cell Biol 111(1):257–260

    Article  PubMed  CAS  Google Scholar 

  81. Deahl ST 2nd, Oberley LW, Oberley TD, Elwell JH (1992) Immunohistochemical identification of superoxide dismutases, catalase, and glutathione-S-transferases in rat femora. J Bone Miner Res 7(2):187–198

    Article  PubMed  CAS  Google Scholar 

  82. Schalkwijk J, van den Berg WB, van de Putte LB, Joosten LA (1985) Hydrogen peroxide suppresses the proteoglycan synthesis of intact articular cartilage. J Rheumatol 12(2): 205–210

    PubMed  CAS  Google Scholar 

  83. Carlo MD Jr, Loeser RF (2003) Increased oxidative stress with aging reduces chondrocyte survival: correlation with intracellular glutathione levels. Arthritis Rheum 48(12): 3419–3430

    Article  PubMed  CAS  Google Scholar 

  84. He SJ, Hou JF, Dai YY, Zhou ZL, Deng YF (2011) N-acetyl-cysteine protects chicken growth plate chondrocytes from T-2 toxin-induced oxidative stress. J Appl Toxicol 28:111–134

    Google Scholar 

  85. Ueno T, Yamada M, Sugita Y, Ogawa T (2011) N-acetyl cysteine protects TMJ chondrocytes from oxidative stress. J Dent Res 90(3):353–359

    Article  PubMed  CAS  Google Scholar 

  86. Nakagawa S, Arai Y, Mazda O et al (2010) N-acetylcysteine prevents nitric oxide-induced chondrocyte apoptosis and cartilage degeneration in an experimental model of osteoarthritis. J Orthop Res 28(2):156–163

    PubMed  CAS  Google Scholar 

  87. Li WQ, Dehnade F, Zafarullah M (2000) Thiol antioxidant, N-acetylcysteine, activates ­extracellular signal-regulated kinase signaling pathway in articular chondrocytes. Biochem Biophys Res Commun 275(3):789–794

    Article  PubMed  CAS  Google Scholar 

  88. Vaillancourt F, Fahmi H, Shi Q et al (2008) 4-Hydroxynonenal induces apoptosis in human osteoarthritic chondrocytes: the protective role of glutathione-S-transferase. Arthritis Res Ther 10(5):R107

    Article  PubMed  CAS  Google Scholar 

  89. Studer RK (2004) Nitric oxide decreases IGF-1 receptor function in vitro; glutathione ­depletion enhances this effect in vivo. Osteoarthritis Cartilage 12(11):863–869

    Article  PubMed  CAS  Google Scholar 

  90. Chakravarthi S, Jessop CE, Bulleid NJ (2006) The role of glutathione in disulphide bond formation and endoplasmic-reticulum-generated oxidative stress. EMBO Rep 7(3):271–275

    Article  PubMed  CAS  Google Scholar 

  91. Afonso V, Champy R, Mitrovic D, Collin P, Lomri A (2007) Reactive oxygen species and superoxide dismutases: role in joint diseases. Joint Bone Spine 74(4):324–329

    Article  PubMed  CAS  Google Scholar 

  92. Michiels C, Raes M, Zachary MD, Delaive E, Remacle J (1988) Microinjection of antibodies against superoxide dismutase and glutathione peroxidase. Exp Cell Res 179(2):581–589

    Article  PubMed  CAS  Google Scholar 

  93. Zhou R, Yazdi AS, Menu P, Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469(7329):221–225

    Article  PubMed  CAS  Google Scholar 

  94. Ogura Y, Sutterwala FS, Flavell RA (2006) The inflammasome: first line of the immune response to cell stress. Cell 126(4):659–662

    Article  PubMed  CAS  Google Scholar 

  95. Tschopp J (2011) Mitochondria: Sovereign of inflammation? Eur J Immunol 41(5): 1196–1202

    Article  PubMed  CAS  Google Scholar 

  96. Blanco FJ, Lopez-Armada MJ, Maneiro E (2004) Mitochondrial dysfunction in osteoarthritis. Mitochondrion 4(5–6):715–728

    Article  PubMed  CAS  Google Scholar 

  97. Terkeltaub R, Johnson K, Murphy A, Ghosh S (2002) Invited review: the mitochondrion in osteoarthritis. Mitochondrion 1(4):301–319

    Article  PubMed  CAS  Google Scholar 

  98. Blanco FJ, Rego I, Ruiz-Romero C (2011) The role of mitochondria in osteoarthritis. Nat Rev Rheumatol 7(3):161–169

    Article  PubMed  CAS  Google Scholar 

  99. Carames B, Taniguchi N, Otsuki S, Blanco FJ, Lotz M (2010) Autophagy is a protective mechanism in normal cartilage, and its aging-related loss is linked with cell death and osteoarthritis. Arthritis Rheum 62(3):791–801

    Article  PubMed  CAS  Google Scholar 

  100. Loeser RF (2011) Aging and osteoarthritis. Curr Opin Rheumatol 23(5):492–496

    Article  PubMed  CAS  Google Scholar 

  101. Valgimigli M, Valgimigli L, Trere D et al (2002) Oxidative stress EPR measurement in human liver by radical-probe technique. Correlation with etiology, histology and cell proliferation. Free Radic Res 36(9):939–948

    Article  PubMed  CAS  Google Scholar 

  102. Pratico D, Reilly M, Lawson J, Delanty N, FitzGerald GA (1995) Formation of 8-iso-prostaglandin F2 alpha by human platelets. Agents Actions Suppl 45:27–31

    PubMed  CAS  Google Scholar 

  103. Henrotin Y, Deberg M, Mathy-Hartert M, Deby-Dupont G (2009) Biochemical biomarkers of oxidative collagen damage. Adv Clin Chem 49:31–55

    Article  PubMed  CAS  Google Scholar 

  104. Morrow JD, Roberts LJ 2nd (1996) The isoprostanes. Current knowledge and directions for future research. Biochem Pharmacol 51(1):1–9

    Article  PubMed  CAS  Google Scholar 

  105. Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186:421–431

    Article  PubMed  CAS  Google Scholar 

  106. Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407–421

    Article  PubMed  CAS  Google Scholar 

  107. Cowley HC, Bacon PJ, Goode HF, Webster NR, Jones JG, Menon DK (1996) Plasma antioxidant potential in severe sepsis: a comparison of survivors and nonsurvivors. Crit Care Med 24(7):1179–1183

    Article  PubMed  CAS  Google Scholar 

  108. Chuang CC, Shiesh SC, Chi CH et al (2006) Serum total antioxidant capacity reflects severity of illness in patients with severe sepsis. Crit Care 10(1):R36

    Article  PubMed  Google Scholar 

  109. Bauer DC, Hunter DJ, Abramson SB et al (2006) Classification of osteoarthritis biomarkers: a proposed approach. Osteoarthritis Cartilage 14(8):723–727

    Article  PubMed  CAS  Google Scholar 

  110. Garnero P (2006) Biochemical markers in osteoarthritis: will they measure up? Nat Clin Pract 2(3):116–117

    CAS  Google Scholar 

  111. Garnero P (2006) Use of biochemical markers to study and follow patients with osteoarthritis. Curr Rheumatol Rep 8(1):37–44

    Article  PubMed  Google Scholar 

  112. Kraus VB (2006) Do biochemical markers have a role in osteoarthritis diagnosis and ­treatment? Best Pract Res Clin Rheumatol 20(1):69–80

    Article  PubMed  CAS  Google Scholar 

  113. Lichtman MA (1975) Does ATP, decrease exponentially during red cell aging? Nouv Rev Fr Hematol 15(6):625–632

    PubMed  CAS  Google Scholar 

  114. Monboisse JC, Braquet P, Randoux A, Borel JP (1983) Non-enzymatic degradation of acid-soluble calf skin collagen by superoxide ion: protective effect of flavonoids. Biochem Pharmacol 32(1):53–58

    Article  PubMed  CAS  Google Scholar 

  115. Monboisse JC, Poulin G, Braquet P, Randoux A, Ferradini C, Borel JP (1984) Effect of oxy radicals on several types of collagen. Int J Tissue React 6(5):385–390

    PubMed  CAS  Google Scholar 

  116. Monboisse V, Monboisse JC, Borel JP, Randoux A (1989) Nonisotopic evaluation of collagen in fibroblasts cultures. Anal Biochem 176(2):395–399

    Article  PubMed  CAS  Google Scholar 

  117. Daumer KM, Khan AU, Steinbeck MJ (2000) Chlorination of pyridinium compounds. Possible role of hypochlorite, N-chloramines, and chlorine in the oxidation of pyridinoline cross-links of articular cartilage collagen type II during acute inflammation. J Biol Chem 275(44):34681–34692

    Article  PubMed  CAS  Google Scholar 

  118. Olszowski S, Mak P, Olszowska E, Marcinkiewicz J (2003) Collagen type II modification by hypochlorite. Acta Biochim Pol 50(2):471–479

    PubMed  CAS  Google Scholar 

  119. Davies JM, Horwitz DA, Davies KJ (1993) Potential roles of hypochlorous acid and N-chloroamines in collagen breakdown by phagocytic cells in synovitis. Free Radic Biol Med 15(6):637–643

    Article  PubMed  CAS  Google Scholar 

  120. Uchida K, Kato Y, Kawakishi S (1990) A novel mechanism for oxidative cleavage of prolyl peptides induced by the hydroxyl radical. Biochem Biophys Res Commun 169(1):265–271

    Article  PubMed  CAS  Google Scholar 

  121. Wang K, Xu SJ, Zhang FH et al (1991) Free radicals-induced abnormal chondrocytes, matrix and mineralization. A new concept of Kaschin–Beck’s disease. Chin Med J (Engl) 104(4):307–312

    CAS  Google Scholar 

  122. Sajithlal GB, Chithra P, Chandrakasan G (1999) An in vitro study on the role of metal catalyzed oxidation in glycation and crosslinking of collagen. Mol Cell Biochem 194(1–2): 257–263

    Article  PubMed  CAS  Google Scholar 

  123. Sulochana KN, Ramprasad S, Coral K et al (2003) Glycation and glycoxidation studies in vitro on isolated human vitreous collagen. Med Sci Monit 9(6):BR220-4

    PubMed  Google Scholar 

  124. Fu MX, Wells-Knecht KJ, Blackledge JA, Lyons TJ, Thorpe SR, Baynes JW (1994) Glycation, glycoxidation, and cross-linking of collagen by glucose. Kinetics, mechanisms, and inhibition of late stages of the Maillard reaction. Diabetes 43(5):676–683

    Article  PubMed  CAS  Google Scholar 

  125. Verzijl N, DeGroot J, Oldehinkel E et al (2000) Age-related accumulation of Maillard reaction products in human articular cartilage collagen. Biochem J 350(Pt 2):381–387

    Article  PubMed  CAS  Google Scholar 

  126. Sell DR, Nagaraj RH, Grandhee SK et al (1991) Pentosidine: a molecular marker for the cumulative damage to proteins in diabetes, aging, and uremia. Diabetes Metab Rev 7(4):239–251

    Article  PubMed  CAS  Google Scholar 

  127. Hernandez CJ, Tang SY, Baumbach BM, Hwu PB et al (2005) Trabecular microfracture and the influence of pyridinium and non-enzymatic glycation-mediated collagen cross-links. Bone 37(6):825–832

    Article  PubMed  CAS  Google Scholar 

  128. Verzijl N, DeGroot J, Bank RA et al (2001) Age-related accumulation of the advanced glycation endproduct pentosidine in human articular cartilage aggrecan: the use of pentosidine levels as a quantitative measure of protein turnover. Matrix Biol 20(7):409–417

    Article  PubMed  CAS  Google Scholar 

  129. Wang X, Shen X, Li X, Agrawal CM (2002) Age-related changes in the collagen network and toughness of bone. Bone 31(1):1–7

    Article  PubMed  Google Scholar 

  130. Monboisse JC, Rittie L, Lamfarraj H, Garnotel R, Gillery P (2000) In vitro glycoxidation alters the interactions between collagens and human polymorphonuclear leucocytes. Biochem J 350(Pt 3):777–783

    Article  PubMed  CAS  Google Scholar 

  131. Horiuchi S, Sano H, Higashi T et al (1996) Extra- and intracellular localization of advanced glycation end-products in human atherosclerotic lesions. Nephrol Dial Transplant 11(Suppl 5): 81–86

    Article  PubMed  CAS  Google Scholar 

  132. Lander HM, Tauras JM, Ogiste JS, Hori O, Moss RA, Schmidt AM (1997) Activation of the receptor for advanced glycation end products triggers a p21(ras)-dependent mitogen-activated protein kinase pathway regulated by oxidant stress. J Biol Chem 272(28):17810–17814

    Article  PubMed  CAS  Google Scholar 

  133. Paik DC, Saito LY, Sugirtharaj DD, Holmes JW (2006) Nitrite-induced cross-linking alters remodeling and mechanical properties of collagenous engineered tissues. Connect Tissue Res 47(3):163–176

    Article  PubMed  CAS  Google Scholar 

  134. Bank RA, Bayliss MT, Lafeber FP, Maroudas A, Tekoppele JM (1998) Ageing and zonal variation in post-translational modification of collagen in normal human articular cartilage. The age-related increase in non-enzymatic glycation affects biomechanical properties of cartilage. Biochem J 330(Pt 1):345–351

    PubMed  CAS  Google Scholar 

  135. Maroudas A, Palla G, Gilav E (1992) Racemization of aspartic acid in human articular cartilage. Connect Tissue Res 28(3):161–169

    Article  PubMed  CAS  Google Scholar 

  136. DeGroot J, Verzijl N, Wenting-van Wijk MJ et al (2004) Accumulation of advanced glycation end products as a molecular mechanism for aging as a risk factor in osteoarthritis. Arthritis Rheum 50(4):1207–1215

    Article  PubMed  CAS  Google Scholar 

  137. Henrotin Y, Deberg M, Dubuc JE, Quettier E, Christgau S, Reginster JY (2004) Type II collagen peptides for measuring cartilage degradation. Biorheology 41(3–4):543–547

    PubMed  CAS  Google Scholar 

  138. Ameye LG, Deberg M, Oliveira M, Labasse A, Aeschlimann JM, Henrotin Y (2007) The chemical biomarkers C2C, Coll2-1, and Coll2-1NO2 provide complementary information on type II collagen catabolism in healthy and osteoarthritic mice. Arthritis Rheum 56(10):3336–3346

    Article  PubMed  CAS  Google Scholar 

  139. Henrotin Y, Martel-Pelletier J, Msika P, Guillou GB, Deberg M (2012) Usefulness of specific OA biomarkers, Coll2-1 and Coll2-1NO(2), in the anterior cruciate ligament OA canine model. Osteoarthritis Cartilage 20(7):787–790

    Article  PubMed  CAS  Google Scholar 

  140. Gangl M, Serteyn D, Lejeune JP, Schneider N, Grulke S, Peters F et al (2007) A type II-collagen derived peptide and its nitrated form as new markers of inflammation and cartilage degradation in equine osteochondral lesions. Res Vet Sci 82(1):68–75

    Article  PubMed  CAS  Google Scholar 

  141. Verwilghen DR, Enzerink E, Martens A et al (2011) Relationship between arthroscopic joint evaluation and the levels of Coll2-1, Coll2-1NO(2), and myeloperoxidase in the blood and synovial fluid of horses affected with osteochondrosis of the tarsocrural joint. Osteoarthritis Cartilage 19(11):1323–1329

    Article  PubMed  CAS  Google Scholar 

  142. Deberg M, Labasse A, Christgau S et al (2005) New serum biochemical markers (Coll 2-1 and Coll 2-1 NO2) for studying oxidative-related type II collagen network degradation in patients with osteoarthritis and rheumatoid arthritis. Osteoarthritis Cartilage 13(3):258–265

    Article  PubMed  Google Scholar 

  143. Deberg MA, Labasse AH, Collette J, Seidel L, Reginster JY, Henrotin YE (2005) One-year increase of Coll 2-1, a new marker of type II collagen degradation, in urine is highly predictive of radiological OA progression. Osteoarthritis Cartilage 13(12):1059–1065

    Article  PubMed  CAS  Google Scholar 

  144. Reginster JY, Deroisy R, Rovati LC et al (2001) Long-term effects of glucosamine sulphate on osteoarthritis progression: a randomised, placebo-controlled clinical trial. Lancet 357(9252):251–256

    Article  PubMed  CAS  Google Scholar 

  145. Glick ID, Janowsky D, Zisook S (2001) On using the ASCP model curriculum for psychopharmacology: comments and an update. Acad Psychiatry 25(4):237–238

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

A. Mobasheri wishes to acknowledge the financial support of the Wellcome Trust, the National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs) (grant number: Mobasheri.A.28102007), the Biotechnology and Biological Sciences Research Council (BBSRC) (grants BBSRC/S/M/2006/13141 and BB/G018030/1), and the Engineering and Physical Sciences Research Council (EPSRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Henrotin .

Editor information

Editors and Affiliations

Additional information

Conflict of Interest

This chapter was written by the authors within the scope of their academic and research positions at their host institutions. None of the authors has a financial or personal relationship with other people or organizations that could inappropriately influence or bias the content of this chapter.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Henrotin, Y., Mobasheri, A. (2013). Soluble Proteomic Biomakers in the Management of Arthritis. In: Alcaraz, M., Gualillo, O., Sánchez-Pernaute, O. (eds) Studies on Arthritis and Joint Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-6166-1_1

Download citation

Publish with us

Policies and ethics