Skip to main content

Simulation of Human Erythrocyte Metabolism

  • Chapter
E-Cell System

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

Since a mature mammalian erythrocyte is enucleated and it is void of mitochondria, gene expression does not take place, while glycolysis is the only mechanism to produce ATP. This simplicity makes its metabolism unique from other cells. Due to its simple structure and the traceability of the cell, erythrocyte metabolism and enzymology have been well studied over the last three to four decades. Although vast amounts of erythrocyte component information is available, the quantitative and physiological role of the metabolism is still an open question because the nature of the cellular function is the complex dynamics of components. Mathematical models for biochemical pathways comprising complex networks are of particular interest in order to identify the features of biological systems that cannot be investigated by the analysis of their individual components alone. Because of its simplicity, the robustness of the erythrocyte that enables the cell to circulate in the body for about 120 days and the abundance of knowledge, erythrocytes have been a good subject for numerous modeling and simulation studies. There is a long history of detailed metabolic models of erythrocyte metabolism with differential equations. The first mathematical models of erythrocyte metabolism were developed by Rapoport et al and the model by Heinrich et al, which only included the glycolytic pathway.13 Ataullakhanov et al expanded the glycolytic model to represent the pentose phosphate pathway.4 Subsequently, adenine nucleotide metabolism was first considered by Schauer et al.5 The comprehensive biochemical network, which has been widely accepted as the complete network of the metabolic system in erythrocytes, was reconstructed by Joshi and Palsson in 1989–1990, involving membrane transports, the Na+/K+ pump and osmotic pressure.69

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rapoport TA, Otto M, Heinrich R. An extended model of the glycolysis in erythrocytes. Acta Biol Med Ger 1997; 36:461–8.

    Google Scholar 

  2. Heinrich R, Rapoport SM, Rapoport TA. Metabolic regulation and mathematical models. Prog Biophys Mol Biol 1977; 32:1–82.

    Article  PubMed  CAS  Google Scholar 

  3. Rapoport TA, Heinrich R, Rapoport SM. The regulatory principles of glycolysis in erythrocytes in vivo and in vitro. A minimal comprehensive model describing steady states, quasi-steady states and time-dependent processes. Biochem J 1976; 154:449–69.

    PubMed  CAS  Google Scholar 

  4. Ataullakhanov FI, Vitvitsky VM, Zhabotinsky AM et al. The regulation of glycolysis in human erythrocytes. The dependence of the glycolytic flux on the ATP concentration. Eur J Biochem 1981; 115:359–65.

    Article  PubMed  CAS  Google Scholar 

  5. Schauer M, Heinrich R, Rapoport SM. [Mathematical modelling of glycolysis and adenine nucleotide metabolism of human erythrocytes. I. Reaction-kinetic statements, analysis of in vivo state and determination of starting conditions for in vitro experiments]. Acta Biol Med Ger 1981; 40:1659–82.

    PubMed  CAS  Google Scholar 

  6. Joshi A, Palsson BO. Metabolic dynamics in the human red cell. Part I—A comprehensive kinetic model. J Theor Biol 1989; 141:515–28.

    Google Scholar 

  7. Joshi A, Palsson BO. Metabolic dynamics in the human red cell. Part II—Interactions with the environment. J Theor Biol 1989; 141:529–45.

    Article  PubMed  CAS  Google Scholar 

  8. Joshi A, Palsson BO. Metabolic dynamics in the human red cell. Part III—Metabolic reaction rates. J Theor Biol 1990; 142:41–68.

    Article  PubMed  CAS  Google Scholar 

  9. Joshi A, Palsson BO. Metabolic dynamics in the human red cell. Part IV—Data prediction and some model computations. J Theor Biol 1990; 142:69–85.

    Article  PubMed  CAS  Google Scholar 

  10. Mulquiney PJ, Bubb WA, Kuchel PW. Model of 2,3-bisphosphoglycerate metabolism in the human erythrocyte based on detailed enzyme kinetic equations: in vivo kinetic characterization of 2,3-bisphosphoglycerate synthase/phosphatase using 13C and 31P NMR. Biochem J 1999; 342 Pt 3: 567–80.

    Article  PubMed  CAS  Google Scholar 

  11. Mulquiney PJ, Kuchel PW. Model of 2,3-bisphosphoglycerate metabolism in the human erythrocyte based on detailed enzyme kinetic equations: equations and parameter refinement. Biochem J 1999; 342 Pt 3:581–96.

    Article  PubMed  CAS  Google Scholar 

  12. Nakayama Y, Kinoshita A, Tomita M. Dynamic simulation of red blood cell metabolism and its application to the analysis of a pathological condition. Theor Biol Med Model 2005; 2:18.

    Article  PubMed  Google Scholar 

  13. Kinoshita A, Nakayama Y, Kitayama T et al. Simulation study of methemoglobin reduction in erythrocytes. Differential contributions of two pathways to tolerance to oxidative stress. Febs J 2007; 274:1449–58.

    Article  PubMed  CAS  Google Scholar 

  14. Kinoshita A, Tsukada K, Soga T et al. Roles of hemoglobin Allostery in hypoxia-induced metabolic alterations in erythrocytes: simulation and its verification by metabolome analysis. J Biol Chem 2007; 282:10731–41.

    Article  PubMed  CAS  Google Scholar 

  15. Ferretti A, Bozzi A, Di Vito M et al. 13C and 31P NMR studies of glucose and 2-deoxyglucose metabolism in normal and enzyme-deficient human erythrocytes. Clin Chim Acta 1992; 208:39–61.

    Article  PubMed  CAS  Google Scholar 

  16. Meister A. Glutathione, metabolism and function via the gamma-glutamyl cycle. Life Sci 1974; 15:177–90.

    Article  PubMed  CAS  Google Scholar 

  17. Srivastava SK, Beutler E. The transport of oxidized glutathione from human erythrocytes. J Biol Chem 1969; 244:9–16.

    PubMed  CAS  Google Scholar 

  18. Kondo T, Beutler E. Developmental changes in glucose transport of guinea pig erythrocytes. J Clin Invest 1980; 65:1–4.

    Article  PubMed  CAS  Google Scholar 

  19. Hebbel RP. Erythrocyte antioxidants and membrane vulnerability. J Lab Clin Med 1986; 107:401–4.

    PubMed  CAS  Google Scholar 

  20. Rice-Evans C, Omorphos SC, Baysal E. Sickle cell membranes and oxidative damage. Biochem J 1986; 237:265–9.

    PubMed  CAS  Google Scholar 

  21. Jaffe ER. Methaemoglobinaemia. Clin Haematol 1981; 10:99–122.

    PubMed  CAS  Google Scholar 

  22. Mansouri A, Lurie AA. Concise review: methemoglobinemia. Am J Hematol 1993; 42:7–12.

    Article  PubMed  CAS  Google Scholar 

  23. Yubisui T, Takeshita M. Purification and properties of soluble NADH-cytochrome b5 reductase of rabbit erythrocytes. J Biochem (Tokyo) 1982; 91:1467–77.

    CAS  Google Scholar 

  24. Yubisui T, Murakami K, Shirabe K et al. Structural analysis of NADH-cytochrome b5 reductase in relation to hereditary methemoglobinemia. Prog Clin Biol Res 1989; 319:107–19; discussion 120–1.

    PubMed  CAS  Google Scholar 

  25. Yubisui T, Takeshita M, Yoneyama Y. Reduction of methemoglobin through flavin at the physiological concentration by NADPH-flavin reductase of human erythrocytes. J Biochem (Tokyo) 1980; 87:1715–20.

    CAS  Google Scholar 

  26. Hultquist DE, Passon PG. Catalysis of methaemoglobin reduction by erythrocyte cytochrome B5 and cytochrome B5 reductase. Nat New Biol 1971; 229:252–4.

    Article  PubMed  CAS  Google Scholar 

  27. Wang Y, Wu YS, Zheng PZ et al. A novel mutation in the NADH-cytochrome b5 reductase gene of a Chinese patient with recessive congenital methemoglobinemia. Blood 2000; 95:3250–5.

    PubMed  CAS  Google Scholar 

  28. Yubisui T, Matsuki T, Takeshita M et al. Characterization of the purified NADPH-flavin reductase of human erythrocytes. J Biochem (Tokyo) 1979; 85:719–28.

    CAS  Google Scholar 

  29. Quandt KS, Hultquist DE. Flavin reductase: sequence of cDNA from bovine liver and tissue distribution. Proc Natl Acad Sci U S A 1994; 91:9322–6.

    Article  PubMed  CAS  Google Scholar 

  30. Zhu H, Qiu H, Yoon HW et al. Identification of a cytochrome b-type NAD(P)H oxidoreductase ubiquitously expressed in human cells. Proc Natl Acad Sci U S A 1999; 96:14742–7.

    Article  PubMed  CAS  Google Scholar 

  31. Salvador A, Savageau MA. Quantitative evolutionary design of glucose 6-phosphate dehydrogenase expression in human erythrocytes. Proc Natl Acad Sci U S A 2003; 100:14463–8.

    Article  PubMed  CAS  Google Scholar 

  32. Salvador A, Savageau MA. Evolution of enzymes in a series is driven by dissimilar functional demands. Proc Natl Acad Sci U S A 2006; 103:2226–31.

    Article  PubMed  CAS  Google Scholar 

  33. Higasa K, Manabe JI, Yubisui T et al. Molecular basis of hereditary methaemoglobinaemia, types I and II: two novel mutations in the NADH-cytochrome b5 reductase gene. Br J Haematol 1998; 103:922–30.

    Article  PubMed  CAS  Google Scholar 

  34. Kuma F. Properties of methemoglobin reductase and kinetic study of methemoglobin reduction. J Biol Chem 1981; 256:5518–23.

    PubMed  CAS  Google Scholar 

  35. Abe K, Sugita Y. Properties of cytochrome b5 and methemoglobin reduction in human erythrocytes. Eur J Biochem 1979; 101:423–8.

    Article  PubMed  CAS  Google Scholar 

  36. Cunningham O, Gore MG, Mantle TJ. Initial-rate kinetics of the flavin reductase reaction catalysed by human biliverdin-IXbeta reductase (BVR-B). Biochem J 2000; 345 Pt 2:393–9.

    Article  PubMed  CAS  Google Scholar 

  37. Kuma F, Inomata H. Studies on methemoglobin reductase. II. The purification and molecular properties of reduced nicotinamide adenine dinucleotide-dependent methemoglobin reductase. J Biol Chem 1972; 247:556–60.

    PubMed  CAS  Google Scholar 

  38. Yubisui T, Matsukawa S, Yoneyama Y. Stopped flow studies on the nonenzymatic reduction of methemoglobin by reduced flavin mononucleotide. J Biol Chem 1980; 255:11694–7.

    PubMed  CAS  Google Scholar 

  39. Curry S. Methemoglobinemia. Ann Emerg Med 1982; 11:214–21.

    Article  PubMed  CAS  Google Scholar 

  40. Grimes A. Human Red Cell Metabolism. In: Blackwell Scientific Publications, Oxford: 1980.

    Google Scholar 

  41. Nagababu E, Rifkind JM. Reaction of hydrogen peroxide with ferrylhemoglobin: superoxide production and heme degradation. Biochemistry 2000; 39:12503–11.

    Article  PubMed  CAS  Google Scholar 

  42. Bulbarelli A, Valentini A, DeSilvestris M et al. An erythroid-specific transcript generates the soluble form of NADH-cytochrome b5 reductase in humans. Blood 1998; 92:310–9.

    PubMed  CAS  Google Scholar 

  43. Board PG, Agar NS, Gruca M et al. Methaemoglobin and its reduction in nucleated erythrocytes from reptiles and birds. Comp Biochem Physiol B 1977; 57:265–7.

    Article  PubMed  CAS  Google Scholar 

  44. Sullivan SG, Stern A. Glucose metabolism of oxidatively stressed human red blood cells incubated in plasma or medium containing physiologic concentrations of lactate, pyruvate and ascorbate. Biochem Pharmacol 1984; 33:1417–21.

    Article  PubMed  CAS  Google Scholar 

  45. Zerez CR, Lachant NA, Tanaka KR. Impaired erythrocyte methemoglobin reduction in sickle cell disease: dependence of methemoglobin reduction on reduced nicotinamide adenine dinucleotide content. Blood 1990; 76:1008–14.

    PubMed  CAS  Google Scholar 

  46. Desagher S, Glowinski J, Premont J. Pyruvate protects neurons against hydrogen peroxide-induced toxicity. J Neurosci 1997; 17:9060–7.

    PubMed  CAS  Google Scholar 

  47. Lee YJ, Kang IJ, Bunger R et al. Enhanced survival effect of pyruvate correlates MAPK and NF-kappaB activation in hydrogen peroxide-treated human endothelial cells. J Appl Physiol 2004; 96:793–801; discussion 792.

    Article  PubMed  CAS  Google Scholar 

  48. Cerdan S, Rodrigues TB, Sierra A, Benito M et al. The redox switch/redox coupling hypothesis. Neurochem Int 2006; 48:523–30.

    Article  PubMed  CAS  Google Scholar 

  49. Murphy JR. Erythrocyte metabolism. II. Glucose metabolism and pathways. J Lab Clin Med 1960; 55:286–302.

    PubMed  CAS  Google Scholar 

  50. Ellsworth ML, Forrester T, Ellis CG et al. The erythrocyte as a regulator of vascular tone. Am J Physiol 1995; 269:H2155–61.

    PubMed  CAS  Google Scholar 

  51. Tsuneshige A, Imai K, Tyuma I. The binding of hemoglobin to red cell membrane lowers its oxygen affinity. J Biochem (Tokyo) 1987; 101:695–704.

    Article  CAS  Google Scholar 

  52. Campanella ME, Chu H, Low PS. Assembly and regulation of a glycolytic enzyme complex on the human erythrocyte membrane. Proc Natl Acad Sci U S A 2005; 102:2402–7.

    Article  PubMed  CAS  Google Scholar 

  53. Dash RK, Bassingthwaighte JB. Blood HbO2 and HbCO2 dissociation curves at varied O2, CO2, pH, 2,3-DPG and temperature levels. Ann Biomed Eng 2004; 32:1676–93.

    Article  PubMed  Google Scholar 

  54. Suganuma K, Tsukada K, Kashiba M et al. Erythrocytes with T-state-stabilized hemoglobin as a therapeutic tool for postischemic liver dysfunction. Antioxid Redox Signal 2006; 8:1847–55.

    Article  PubMed  CAS  Google Scholar 

  55. Tsai AG, Johnson PC, Intaglietta M. Oxygen gradients in the microcirculation. Physiol Rev 2003; 83:933–63.

    PubMed  CAS  Google Scholar 

  56. Soga T, Baran R, Suematsu M et al. Differential metabolomics reveals ophthalmic acid as an oxidative stress biomarker indicating hepatic glutathione consumption. J Biol Chem 2006; 281:16768–76.

    Article  PubMed  CAS  Google Scholar 

  57. Kuchel PW. Current status and challenges in connecting models of erythrocyte metabolism to experimental reality. Prog Biophys Mol Biol 2004; 85:325–42.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Landes Bioscience and Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kinoshita, A. (2013). Simulation of Human Erythrocyte Metabolism. In: E-Cell System. Molecular Biology Intelligence Unit. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6157-9_7

Download citation

Publish with us

Policies and ethics