Skip to main content

Experimental and Theoretical Issues of Nanoplasmonics in Medicine

  • Chapter
  • First Online:
Applications of Electrochemistry in Medicine

Part of the book series: Modern Aspects of Electrochemistry ((MAOE,volume 56))

Abstract

Biodiversity is one of the most important issues discussed worldwide, and each country has various policy measures to preserve its diversity. Efforts to preserve and improve our ecosystems have been an important issue in the agricultural sector. Especially, rice paddies are recognized in the scientific community as an important wetland system globally by the Ramsar convention. Rice paddies have formed a typical agricultural landscape for centuries in many areas including Asia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramoff MD, Magalhes PJ, Ram SJ. Image processing with ImageJ. Biophoton Int. 2004;11(7):36–42.

    Google Scholar 

  2. Alivisatos AP. Science. 1996;271:933.

    Article  CAS  Google Scholar 

  3. Aliganga AKA, Duwez AS, Mittler S. Binary mixtures of self-assembled monolayers of 1,8-octanedithiol and 1-octanethiol for a controlled growth of gold nanoparticles. Org Electron. 2006;7(5):337–50.

    Article  CAS  Google Scholar 

  4. Aliganga AKA, Lieberwirth I, Glasser G, Duwez A-S, Sun Y, Mittler S. Fabrication of equally oriented pancake shaped gold nanoparticles by SAM templated OMCVD and their optical response. Org Electron. 2007;8:161–74.

    Article  CAS  Google Scholar 

  5. Bedeaux D, Vlieger J. Optical properties of surfaces. 2nd ed. Singapore: World Scientific; 2004.

    Book  Google Scholar 

  6. Bharathi S, Fishelson N, Lev O. Direct synthesis and characterization of gold and other noble metal nanodispersions in sol-gel-derived organically modified silicates. Langmuir. 1999;15(6):1929–37.

    Article  CAS  Google Scholar 

  7. Bohren CF, Huffman DR. Absorption and scattering of light by small particles. New York: Wiley Interscience; 1983.

    Google Scholar 

  8. Chen C-D, Cheng S-F, Chau L-K, Wang CRC. Sensing capability of the localized surface plasmon resonance of gold nanorods. Biosensors Bioelectron. 2007;22:926–32.

    Article  CAS  Google Scholar 

  9. Cheng T, Rangan C, Sipe JE. Metallic nanoparticles on waveguide structures: effects on waveguide mode properties, and the promise of sensing applications (manuscript); Journal of the Optical Society of America B (in press).

    Google Scholar 

  10. Daniel M, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 2004;104:293–346.

    Article  CAS  Google Scholar 

  11. Doyle WT. Optical properties of a suspension of metal spheres. Phys Rev B. 1989;39(14):9852–8.

    Article  Google Scholar 

  12. Draine BT, Flatau PJ. J Opt Soc Am A. 1973;11:1491.

    Article  Google Scholar 

  13. Draine BT, Goodman JJ. ApJ. 1993;485:685.

    Article  Google Scholar 

  14. Fischer RA, Weckenmann U, Winter C, Kshammer J, Scheumann V, Mittler S. Area selective OMCVD of gold and palladium on self-assembled organic monolayers: control of nucleation sites. J Phys IV France. 2001;11(PR3):Pr3-1183–Pr3-1190.

    Google Scholar 

  15. Frederix F, Bonroy K, Laureyn W, Reekmans G, Campitelli A, Dehaen W, Maes G. Enhanced performance of an affinity biosensor interface based on mixed self-assembled monolayers of thiols on gold. Langmuir. 2003;19(10):4351–7.

    Article  CAS  Google Scholar 

  16. Hampden-Smith MJ, Kodas TT. Chemical vapor deposition of metals: Part 1. An overview of CVD processes. Chem Vapor Deposition. 1995;1(1):8–23.

    Article  CAS  Google Scholar 

  17. Haynes CL, McFarland AD, Zhao L, Van Duyne RP, Schatz GC. Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays. J Phys Chem B. 2003;107:7337–42.

    Article  CAS  Google Scholar 

  18. Jensen T, Kelly L, Lazarides A, Schatz GC. Electrodynamics of noble metal nanoparticles and nanoparticle clusters. J Cluster Sci. 1999;10:295–317.

    Article  CAS  Google Scholar 

  19. Johnson PB, Christy RW. Optical constants of the noble metals. Phys Rev B. 1972;6:4370–9.

    Article  CAS  Google Scholar 

  20. Käshammer J, Wohlfart P, Wei J, Winter C, Fischer R, Mittler-Neher S. Selective gold deposition via CVD onto self-assembled organic monolayers. Opt Mater. 1998;9:406–10.

    Article  Google Scholar 

  21. Kreibig U, Vollmer M. Optical properties of metal clusters. Berlin: Springer; 1995.

    Google Scholar 

  22. Lazzari R, Simonsen I. GRANFILM: a software for calculating thin-layer dielectric properties and Fresnel coefficients. Thin Solid Films. 2002;419(1–2):124–36.

    Article  CAS  Google Scholar 

  23. Lazzari R, Simonsen I, Bedeaux D, Vlieger J, Jupille J. Eur Phys J B. 2001;24:267.

    Article  CAS  Google Scholar 

  24. Link S, El-Sayed MA. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chen B. 1999;103:4212–7.

    Article  CAS  Google Scholar 

  25. Maier SA. Guiding of electromagnetic energy in subwavelength periodic metal structures. Ph.D. Thesis, California Institute of Technology, Pasadena; 2003.

    Google Scholar 

  26. Manifar T, Rezaee A, Sheikhzadeh M, Mittler S. Formation of uniform self-assembly monolayers by choosing the right solvent: OTS on silicon wafer, a case study. Appl Surface Sci. 2008;254(15):4611–9.

    Article  CAS  Google Scholar 

  27. Marton P, Schlesinger M. J Electrochem Soc. 1968;115:16.

    Article  CAS  Google Scholar 

  28. Maxwell-Garnett JC. Philos Trans R Soc Lond. 1904;203:385; Ser A 1906;205:237.

    Google Scholar 

  29. Mie G. Beitrge zur Optik trber Medien speziell kolloidaler Goldlsungen. Ann Phys. 1908;25:377–445.

    Article  CAS  Google Scholar 

  30. Miller MM, Lazarides AA. Sensitivity of metal nanoparticle plasmon resonance band position to the dielectric environment as observed in scattering. J Opt A: Pure Appl Opt. 2006;8:239–49.

    Article  Google Scholar 

  31. Nicolas S, Dufour-Gergam E, Bosseboeuf A, Bourouina T, Gilles J-P, Grandchamp J-P. Fabrication of a gray-tone mask and pattern transfer in thick photoresists. J Micromech Microeng. 1998;8:95.

    Article  CAS  Google Scholar 

  32. Noguez C. Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J Phys Chem C. 2007;111:3806–19.

    Article  CAS  Google Scholar 

  33. Weaver JH, Frederikse HPR. Optical Properties of Metals and Semiconductors, CRC Handbook of Chemistry and Physics, 74th Edition and subsequent printings (CRC Press, Boca Raton, Florida) pp. 12–109, 12–131.

    Google Scholar 

  34. Palik E. Handbook of optical constants of solids I–III. San Diego: Academic; 1998.

    Google Scholar 

  35. Rafsanjani SMH, Cheng T, Mittler S, Rangan C. Theoretical proposal for a biosensing approach based on a linear array of immobilized gold nanoparticles. J Appl Phys. 2010;107:094303.

    Article  Google Scholar 

  36. Rooney P, Xu S, Rezaee A, Manifar T, Hassanzadeh A, Podoprygorina G, Bhmer V, Rangan C, Mittler S. Control of surface plasmon resonances in dielectrically-coated proximate gold nanoparticles immobilized on a substrate. Phys Rev B. 2008;77(23):235446.

    Article  Google Scholar 

  37. Schott AG, 2007, Data Sheet N-BK7 [Online] Mainz, Germany: Schott. Available at http://www.schott.com/advanced_optics/english/abbe_data­sheets/schott_datasheet_n-bk7.pdf. [Accessed 03 January 2013].

  38. Spinke J, Liley M, Schmitt F-J, Guder H-J, Angermaier L, Knoll W. Molecular recognition at self-assembled monolayers: optimization of surface functionalization. J Chem Phys. 1993;99(9):7012–19.

    Article  CAS  Google Scholar 

  39. Taflove A, Hagness SC. Computational electrodynamics: the finite-difference time-domain method. 2nd ed. Boston: Artech House; 2005.

    Google Scholar 

  40. Thoma F, Langbein U, Mittler-Neher S. Waveguide scattering microscopy. Opt Commun. 1997;134:16–20.

    Article  CAS  Google Scholar 

  41. Ulman A. An introduction to ultrathin organic films: from Langmuir-Blodgett to self-assembly, vol Xxiii. London: Academic; 1991. p. 442.

    Google Scholar 

  42. Weisser M, Thoma F, Menges B, Langbein U, Mittler-Neher S. Fluorescence in ion exchanged BK7 glass slab waveguides and its use for scattering free loss measurements. Opt Commun. 1998;153:27–31.

    Article  CAS  Google Scholar 

  43. Wiscombe WJ. Improved Mie scattering algorithms. Appl Opt. 1980;19(9):1505–9.

    Article  CAS  Google Scholar 

  44. Wohlfart P, Wei J, Kshammer J, Winter C, Scheumann V, Fischer R, Mittler-Neher S. Selective ultrathin gold deposition by organometallic chemical vapor deposition onto organic self-assembled monolayers (SAMs). Thin Solid Films. 1999;340:274–9.

    Article  CAS  Google Scholar 

  45. Yee K. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans Antenn Propag. 1966;14:302–7.

    Google Scholar 

  46. Yu-lin Xu. Electromagnetic scattering by an aggregate of spheres. Appl Opt. 1995;34(21):4573–88.

    Article  Google Scholar 

  47. Zou S, Janel N, Schatz GC. Silver nanoparticles array structures that produce remarkably narrow plasmon lineshapes. J Chem Phys. 2004;120(23):10871–5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research support by the Natural Sciences and Engineering Research Council of Canada (Discovery Grants and NSERC Strategic Network on Bioplasmonic Systems) and Canada Foundation for Innovation is gratefully appreciated. Computations were done on the SharcNet (Compute Canada) supercomputing network. Silvia Mittler thanks the Canada Research Chairs program of the Canadian government. Ertorer was partly supported by the Ontario Graduate Scholarship and the Ontario Graduate Scholarship for Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chitra Rangan or Silvia Mittler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Travo, D.A., Huang, R., Cheng, T., Rangan, C., Ertorer, E., Mittler, S. (2013). Experimental and Theoretical Issues of Nanoplasmonics in Medicine. In: Schlesinger, M. (eds) Applications of Electrochemistry in Medicine. Modern Aspects of Electrochemistry, vol 56. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-6148-7_9

Download citation

Publish with us

Policies and ethics