Skip to main content

Electrochemistry of Adhesion and Spreading of Lipid Vesicles on Electrodes

  • Chapter
  • First Online:
Applications of Electrochemistry in Medicine

Part of the book series: Modern Aspects of Electrochemistry ((MAOE,volume 56))

Abstract

Biological membranes have developed to separate different compartments of organisms and cells. There is a large number of rather different functions which membranes have to fulfil: (1) they control the material and energy fluxes of metabolic processes, (2) they provide a wrapping protecting the compartments from chemical and physical attacks of the environment, (3) they provide interfaces at which specific biochemical machineries can operate (e.g., membrane bound enzymes), (4) they are equipped for signal transduction, (5) they possess the necessary stability and flexibility to allow cell division, and endo- and exocytosis as well as migration, (6) they present anchoring structures that enable cell-to-cell and cell-to-matrix physical interactions and intercellular communication. These are certainly not all functions of membranes as new functionalities are continuously reported. Since the biological membranes separate essentially aqueous solutions, such separating borders—if they should possess a reasonable stability and also flexibility combined with selective permeability—have to be built up of hydrophobic molecules exposing to both sides a similar interface. It was one of the most crucial and most lucky circumstances for the development and existence of life that certain amphiphilic molecules are able to assemble in bilayer structures (membranes), which—on one side—possess a rather high physical and chemical stability, and—on the other side—are able to incorporate foreign molecules for modifying both the physical properties as well as the permeability of the membranes for defined chemical species. The importance of the chemical function of membranes and all its constituents, e.g., ion channels, pore peptides, transport peptides, etc., is generally accepted. The fluid-mosaic model proposed by Singer and Nicolson [1] is still the basis to understand the biological, chemical, and physical properties of biological membranes. The importance of the purely mechanical properties of membranes came much later into the focus of research. The reasons are probably the dominance of biochemical thinking and biochemical models among biologists and medical researchers, as well as a certain lack of appropriate methods to probe mechanical properties of membranes. The last decades have changed that situation due to the development of techniques like the Atomic Force Microscopy, Fluorescence Microscopy, Micropipette Aspiration, Raman Microspectroscopy, advanced Calorimetry, etc. This chapter is aimed at elucidating how the properties of membranes can be investigated by studying the interaction of vesicles with a very hydrophobic surface, i.e., with the surface of a mercury electrode. This interaction is unique as it results in a complete disintegration of the bilayer membrane of the vesicles and the formation of an island of adsorbed lipid molecules, i.e., a monolayer island. This process can be followed by current-time measurements (chronoamperometry), which allow studying the complete disintegration process in all its details: the different steps of that disintegration can be resolved on the time scale and the activation parameters can be determined. Most interestingly, the kinetics of vesicle disintegration on mercury share important features with the process of vesicle fusion and, thus, sheds light also on mechanisms of endocytosis and exocytosis. Most importantly, not only artificial vesicles (liposomes) can be studied with this approach, but also reconstituted plasma membrane vesicles and even intact mitochondria. Hence, one can expect that the method may provide in future studies also information on the membrane properties of various other vesicles, including exosomes, and may allow investigating various aspects of drug action in relation to membrane properties (transmembrane transport, tissue targeting, bioavailability, etc.), and also the impact of pathophysiological conditions (e.g., oxidative modification) on membrane properties, on a hitherto not or only hardly accessible level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

     Whether smooth, clean gold is hydrophilic or hydrophobic is a matter of ­discussion since the 1930s. Arguments have been presented supporting both hypotheses. However, for the purposes of this discussion, it has been clearly demonstrated in the cited references (among others), that the interaction of liposomes with atomically smooth gold {111} can only be understood if the gold substrate is considered hydrophobic.

References

  1. Singer SJ, Nicolson GL. Fluid mosaic model of structure of cell-membranes. Science. 1972;175:720–31.

    CAS  Google Scholar 

  2. Tanford C. The hydrophobic effect: formation of micelles and biological membranes. New York: Wiley; 1980.

    Google Scholar 

  3. Hunter CA. Quantifying intermolecular interactions: guidelines for the molecular recognition toolbox. Angew Chem Int Ed. 2004;43:5310–24.

    CAS  Google Scholar 

  4. Gill SJ, Wadso I. Equation of state describing hydrophobic interactions. Proc Natl Acad Sci USA. 1976;73:2955–8.

    CAS  Google Scholar 

  5. Dimitrov DS, Jain RK. Membrane stability. Biochim Biophys Acta. 1984;779:437–68.

    CAS  Google Scholar 

  6. Espinosa G, Lopez-Montero I, Monroy F, Langevin D. Shear rheology of lipid monolayers and insights on membrane fluidity. Proc Natl Acad Sci USA. 2011;108:6008–13.

    CAS  Google Scholar 

  7. Goldstein DB. The effects of drugs on membrane fluidity. Annu Rev Pharmacol. 1984;24:43–64.

    CAS  Google Scholar 

  8. Kuhry JG, Duportail G, Bronner C, Laustriat G. Plasma-membrane fluidity measurements on whole living cells by fluorescence anisotropy of trimethylammoniumdiphenylhexatriene. Biochim Biophys Acta. 1985;845:60–7.

    CAS  Google Scholar 

  9. Kubina M, Lanza F, Cazenave JP, Laustriat G, Kuhry JG. Parallel investigation of exocytosis kinetics and membrane fluidity changes in human-platelets with the fluorescent-probe, trimethylammonio-diphenylhexatriene. Biochim Biophys Acta. 1987;901:138–46.

    CAS  Google Scholar 

  10. Feijge MAH, Heemskerk JWM, Hornstra G. Membrane fluidity of nonactivated and activated human blood-platelets. Biochim Biophys Acta. 1990;1025:173–9.

    CAS  Google Scholar 

  11. Fajardo VA, McMeekin L, LeBlanc PJ. Influence of phospholipid species on membrane fluidity: a meta-analysis for a novel phospholipid fluidity index. J Membr Biol. 2011;244:97–103.

    CAS  Google Scholar 

  12. Levitan I, Fang Y, Rosenhouse-Dantsker A, Romanenko V. Cholesterol and ion channels. In: Harris JR, editor. Cholesterol binding and cholesterol transport proteins: structure and function in health and disease. New York: Springer; 2010.

    Google Scholar 

  13. Hermes M, Scholz F, Hardtner C, Walther R, Schild L, Wolke C, et al. Electrochemical signals of mitochondria: a new probe of their membrane properties. Angew Chem Int Ed. 2011;50:6872–5.

    CAS  Google Scholar 

  14. Montero J, Mari M, Colell A, Morales A, Basanez G, Garcia-Ruiz C, et al. Cholesterol and peroxidized cardiolipin in mitochondrial membrane properties, permeabilization and cell death. Biochim Biophys Acta. 2010;1797:1217–24.

    CAS  Google Scholar 

  15. Brian AA, McConnell HM. Allogeneic stimulation of cyto-toxic t-cells by supported planar membranes. Proc Natl Acad Sci USA. 1984;81:6159–63.

    CAS  Google Scholar 

  16. Sackmann E. Supported membranes: scientific and practical applications. Science. 1996;271:43–8.

    CAS  Google Scholar 

  17. Stauffer V, Stoodley R, Agak JO, Bizzotto D. Adsorption of DOPC onto Hg from the G vertical bar S interface and from a liposomal suspension. J Electroanal Chem. 2001;516:73–82.

    CAS  Google Scholar 

  18. Richter RP, Bérat R, Brisson AR. Formation of solid-supported lipid bilayers: an integrated view. Langmuir. 2006;22:3497–505.

    CAS  Google Scholar 

  19. Keller CA, Kasemo B. Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal microbalance. Biophys J. 1998;75:1397–402.

    CAS  Google Scholar 

  20. Lüthgens E, Herrig A, Kastl K, Steinem C, Reiss B, Wegener J, et al. Adhesion of liposomes: a quartz crystal microbalance study. Meas Sci Technol. 2003;14:1865–75.

    Google Scholar 

  21. Reiss B, Janshoff A, Steinem C, Seebach J, Wegener J. Adhesion kinetics of functionalized vesicles and mammalian cells: a comparative study. Langmuir. 2003;19:1816–23.

    CAS  Google Scholar 

  22. Rodahl M, Hook F, Fredriksson C, Keller CA, Krozer A, Brzezinski P, et al. Simultaneous frequency and dissipation factor qcm measurements of biomolecular adsorption and cell adhesion. Faraday Discuss. 1997;107:229–46.

    CAS  Google Scholar 

  23. Keller CA, Glasmastar K, Zhdanov VP, Kasemo B. Formation of supported membranes from vesicles. Phys Rev Lett. 2000;84:5443–6.

    CAS  Google Scholar 

  24. Jass J, Tjärnhage T, Puu G. From liposomes to supported, planar bilayer structures onn hydrophilic and hydrophobic surfaces: an atomic force microscopy study. Biophys J. 2000;79:3153–63.

    CAS  Google Scholar 

  25. Jenkins ATA, Bushby RJ, Evans SD, Knoll W, Offenhäusser A, Ogier SO. Lipid vesicle fusion on μCP patterned self-assembled monolayers: effect of pattern geometry on bilayer formation. Langmuir. 2002;18:3176–80.

    CAS  Google Scholar 

  26. Liang XM, Mao GZ, Ng KYS. Mechanical properties and stability measurement of cholesterol-containing liposome on mica by atomic force microscopy. J Colloid Interface Sci. 2004;278:53–62.

    CAS  Google Scholar 

  27. Liang XM, Mao GZ, Ng KYS. Probing small unilamellar eggPC vesicles on mica surface by atomic force microscopy. Colloids Surf B. 2004;34:41–51.

    CAS  Google Scholar 

  28. Tero R, Watanabe H, Urisu T. Supported phospholipid bilayer formation on hydrophilicity-controlled silicon dioxide surfaces. Phys Chem Chem Phys. 2006;8:3885–94.

    CAS  Google Scholar 

  29. Teschke O, de Souza EF. Liposome structure imaging by atomic force microscopy: verification of improved liposome stability during adsorption of multiple aggregated vesicles. Langmuir. 2002;18:6513–20.

    CAS  Google Scholar 

  30. Winger TM, Chaikof EL. Synthesis and characterization of supported phospholipid monolayers: a correlative investigation by radiochemical titration and atomic force microscopy. Langmuir. 1998;14:4148–55.

    CAS  Google Scholar 

  31. Kunneke S, Kruger D, Janshoff A. Scrutiny of the failure of lipid membranes as a function of headgroups, chain length, and lamellarity measured by scanning force microscopy. Biophys J. 2004;86:1545–53.

    Google Scholar 

  32. Wong JY, Park CK, Seitz M, Israelachvili J. Polymer-cushioned bilayers. II. An investigation of interaction forces and fusion using the surface forces apparatus. Biophys J. 1999;77:1458–68.

    CAS  Google Scholar 

  33. Nissen J, Gritsch S, Wiegand G, Radler JO. Wetting of phospholipid membranes on hydrophilic surfaces—concepts towards self-healing membranes. Eur Phys J B. 1999;10:335–44.

    CAS  Google Scholar 

  34. Yuan J, Parker ER, Hirst LS. Cationic lipid absorption on titanium: a counterion-mediated bilayer-to-lipid-tubule-network transition. Langmuir. 2007;23:7462–5.

    CAS  Google Scholar 

  35. Liu KW, Biswal SL. Using microcantilevers to study the interactions of lipid bilayers with solid surfaces. Anal Chem. 2010;82:7527–32.

    CAS  Google Scholar 

  36. Hubbard JB, Silin V, Plant AL. Self assembly driven by hydrophobic interactions at alkanethiol monolayers: mechanism of formation of hybrid bilayer membranes. Biophys Chem. 1998;75:163–76.

    CAS  Google Scholar 

  37. Silin VI, Wieder H, Woodward JT, Valincius G, Offenhausser A, Plant AL. The role of surface free energy on the formation of hybrid bilayer membranes. J Am Chem Soc. 2002;124:14676–83.

    CAS  Google Scholar 

  38. Tawa K, Morigaki K. Substrate-supported phospholipid membranes studied by surface plasmon resonance and surface plasmon fluorescence spectroscopy. Biophys J. 2005;89:2750–8.

    CAS  Google Scholar 

  39. Agmo Hernández V, Scholz F. The electrochemistry of liposomes. Isr J Chem. 2008;48:169–84.

    Google Scholar 

  40. Radler J, Strey H, Sackmann E. Phenomenology and kinetics of lipid bilayer spreading on hydrophilic surfaces. Langmuir. 1995;11:4539–48.

    Google Scholar 

  41. Williams LM, Evans SD, Flynn TM, Marsh A, Knowles PF, Bushby RJ, et al. Kinetics of the unrolling of small unilamellar phospholipid vesicles onto self-assembled monolayers. Langmuir. 1997;13:751–7.

    CAS  Google Scholar 

  42. Seifert U, Lipowsky R. Adhesion of vesicles. Phys Rev A. 1990;42:4768–71.

    CAS  Google Scholar 

  43. Castellana ET, Cremer PS. Solid supported lipid bilayers: from biophysical studies to sensor design. Surf Sci Rep. 2006;61:429–44.

    CAS  Google Scholar 

  44. Johnson JM, Ha T, Chu S, Boxer SG. Early steps of supported bilayer formation probed by single vesicle fluorescence assays. Biophys J. 2002;83:3371–9.

    CAS  Google Scholar 

  45. Lipkowski J. Building biomimetic membrane at a gold electrode surface. Phys Chem Chem Phys. 2010;12:13874–87.

    CAS  Google Scholar 

  46. Li M, Chen M, Sheepwash E, Brosseau CL, Li H, Pettinger B, et al. AFM studies of solid-supported lipid bilayers formed at a Au(111) electrode surface using vesicle fusion and a combination of Langmuir-Blodgett and Langmuir-Schaefer techniques. Langmuir. 2008;24:10313–23.

    CAS  Google Scholar 

  47. Agmo Hernández V, Scholz F. Kinetics of the adhesion of DMPC liposomes on a mercury electrode. Effect of lamellarity, phase composition, size and curvature of liposomes, and presence of the pore forming peptide mastoparan X. Langmuir. 2006;22:10723–31.

    Google Scholar 

  48. Agmo Hernández V, Scholz F. The lipid composition determines the kinetics of adhesion and spreading of liposomes on mercury electrodes. Bioelectrochemistry. 2008;74:149–56.

    Google Scholar 

  49. Sek S, Xu S, Chen M, Szymanski G, Lipkowski J. STM studies of fusion of cholesterol suspensions and mixed 1,2-dimyritoyl-sn-glycero-3-phosphocholine (DMPC)/cholesterol vesicles onto a Au(111) electrode surface. J Am Chem Soc. 2008;130:5736–43.

    CAS  Google Scholar 

  50. Hellberg D, Scholz F, Schubert F, Lovric M, Omanovic D, Agmo Hernández V, et al. Kinetics of liposome adhesion on a mercury electrode. J Phys Chem B. 2005;109:14715–26.

    CAS  Google Scholar 

  51. Agmo Hernández V, Milchev A, Scholz F. Study of the temporal distribution of the adhesion-spreading events of liposomes on a mercury electrode. J Solid State Electr. 2009;13:1111–4.

    Google Scholar 

  52. Agmo Hernández V, Hermes M, Milchev A, Scholz F. The overall adhesion-spreading process of liposomes on a mercury electrode is controlled by a mixed diffusion and reaction kinetics mechanism. J Solid State Electr. 2009;13:639–49.

    Google Scholar 

  53. Agmo Hernández V, Karlsson G, Edwards K. Intrinsic heterogeneity in liposome suspensions caused by the dynamic spontaneous formation of hydrophobic active sites in lipid membranes. Langmuir. 2011;27:4873–83.

    Google Scholar 

  54. Burgess I, Li M, Horswell SL, Szymanski G, Lipkowski J, Majewski J, et al. Electric field-driven transformations of a supported model biological membrane—an electrochemical and neutron reflectivity study. Biophys J. 2004;86:1763–76.

    CAS  Google Scholar 

  55. Whitehouse C, O’Flanagan R, Lindholm-Sethson B, Movaghar B, Nelson A. Application of electrochemical impedance spectroscopy to the study of dioleoyl phosphatidylcholine monolayers on mercury. Langmuir. 2004;20:136–44.

    CAS  Google Scholar 

  56. Nelson A. Electrochemistry of mercury supported phospholipid monolayers and bilayers. Curr Opin Colloid Interface Sci. 2010;15:455–66.

    CAS  Google Scholar 

  57. Valincius G, Meškauskas T, Ivanauskas F. Electrochemical impedance spectroscopy of tethered bilayer membranes. Langmuir. 2011;28:977–90.

    Google Scholar 

  58. Jeuken LJC, Connell SD, Nurnabi M, O’Reilly J, Henderson PJF, Evans SD, et al. Direct electrochemical interaction between a modified gold electrode and a bacterial membrane extract. Langmuir. 2005;21:1481–8.

    CAS  Google Scholar 

  59. Jeuken LJC. AFM study on the electric-field effects on supported bilayer lipid membranes. Biophys J. 2008;94:4711–7.

    CAS  Google Scholar 

  60. Du L, Liu X, Huang W, Wang E. A study on the interaction between ibuprofen and bilayer lipid membrane. Electrochim Acta. 2006;51:5754–60.

    CAS  Google Scholar 

  61. Vakurov A, Brydson R, Nelson A. Electrochemical modeling of the silica nanoparticle–biomembrane interaction. Langmuir. 2011;28:1246–55.

    Google Scholar 

  62. Shirai O, Yamana H, Ohnuki T, Yoshida Y, Kihara S. Ion transport across a bilayer lipid membrane facilitated by valinomycin. J Electroanal Chem. 2004;570:219–26.

    CAS  Google Scholar 

  63. Shirai O, Yoshida Y, Kihara S, Ohnuki T, Uehara A, Yamana H. Ion transport across a bilayer lipid membrane facilitated by gramicidin A—effect of counter anions on the cation transport. J Electroanal Chem. 2006;595:53–9.

    CAS  Google Scholar 

  64. Lundgren A, Hedlund J, Andersson O, Brändén M, Kunze A, Elwing H, et al. Resonance-mode electrochemical impedance measurements of silicon dioxide supported lipid bilayer formation and ion channel mediated charge transport. Anal Chem. 2011;83:7800–6.

    CAS  Google Scholar 

  65. Laredo T, Dutcher JR, Lipkowski J. Electric field driven changes of a gramicidin containing lipid bilayer supported on a Au(111) surface. Langmuir. 2011;27:10072–87.

    CAS  Google Scholar 

  66. Haller M, Heinemann C, Chow RH, Heidelberger R, Neher E. Comparison of secretory responses as measured by membrane capacitance and by amperometry. Biophys J. 1998;74:2100–13.

    CAS  Google Scholar 

  67. Neher E, Marty A. Discrete changes of cell-membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc Natl Acad Sci USA. 1982;79:6712–6.

    CAS  Google Scholar 

  68. Neher E. Ion channels for communication between and within cells. Science. 1992;256:498–502.

    CAS  Google Scholar 

  69. Dernick G, de Toledo GA, Lindau M. Exocytosis of single chromaffin granules in cell-free inside-out membrane patches. Nat Cell Biol. 2003;5:358–62.

    CAS  Google Scholar 

  70. Sakmann B. Elementary steps in synaptic transmission revealed by currents through single ion channels. Science. 1992;256:503–12.

    CAS  Google Scholar 

  71. Amatore C, Arbault S, Bonifas I, Bouret Y, Erard M, Ewing AG, et al. Correlation between vesicle quantal size and fusion pore release in chromaffin cell exocytosis. Biophys J. 2005;88:4411–20.

    CAS  Google Scholar 

  72. Hafez I, Kisler K, Berberian K, Dernick G, Valero V, Yong MG, et al. Electrochemical imaging of fusion pore openings by electrochemical detector arrays. Proc Natl Acad Sci USA. 2005;102:13879–84.

    CAS  Google Scholar 

  73. Leszczyszyn DJ, Jankowski JA, Viveros OH, Diliberto EJ, Near JA, Wightman RM. Secretion of catecholamines from individual adrenal-medullary chromaffin cells. J Neurochem. 1991;56:1855–63.

    CAS  Google Scholar 

  74. Wightman RM, Jankowski JA, Kennedy RT, Kawagoe KT, Schroeder TJ, Leszczyszyn DJ, et al. Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells. Proc Natl Acad Sci USA. 1991;88:10754–8.

    CAS  Google Scholar 

  75. Chow RH, Vonruden L, Neher E. Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells. Nature. 1992;356:60–3.

    CAS  Google Scholar 

  76. Marchal D, Boireau W, Laval JM, Moiroux J, Bourdillon C. An electrochemical approach of the redox behavior of water insoluble ubiquinones or plastiquinones incorporated in supported phospholipid layers. Biophys J. 1997;72:2679–87.

    CAS  Google Scholar 

  77. Gordillo GJ, Schiffrin DJ. The electrochemistry of ubiquinone-10 in a phospholipid model membrane. Faraday Discuss. 2000;116:89–107.

    CAS  Google Scholar 

  78. Laval JM, Majda M. Electrochemical investigations of the structure and electron-transfer properties of phospholipid-bilayers incorporating ubiquinone. Thin Solid Films. 1994;244:836–40.

    CAS  Google Scholar 

  79. Moncelli MR, Herrero R, Becucci L, Guidelli R. Kinetics of electron and proton transfer to ubiquinone-10 and from ubiquinol-10 in a self-assembled phophatidylcholine monolayer. Biochim Biophys Acta. 1998;1364:373–84.

    CAS  Google Scholar 

  80. Mårtensson C, Agmo Hernández V. Ubiquinone-10 in gold-immobilized lipid membrane structures acts as a sensor for acetylcholine and other tetraalkylammonium cations. Bioelectrochemistry. 2012;88:171–80.

    Google Scholar 

  81. Largueze JB, El Kirat K, Morandat S. Preparation of an electrochemical biosensor based on lipid membranes in nanoporous alumina. Colloids Surf B. 2010;79:33–40.

    CAS  Google Scholar 

  82. Yao WW, Lau C, Hui YL, Poh HL, Webster RD. Electrode-supported biomembrane for examining electron-transfer and ion-transfer reactions of encapsulated low molecular weight biological molecules. J Phys Chem C. 2011;115:2100–13.

    CAS  Google Scholar 

  83. Hosseini A, Collman JP, Devadoss A, Williams GY, Barile CJ, Eberspacher TA. Ferrocene embedded in an electrode-supported hybrid lipid bilayer membrane: a model system for electrocatalysis in a biomimetic environment. Langmuir. 2010;26:17674–8.

    CAS  Google Scholar 

  84. Correia-Ledo D, Arnold AA, Mauzeroll J. Synthesis of redox active ferrocene-modified phospholipids by transphosphatidylation reaction and chronoamperometry study of the corresponding redox sensitive liposome. J Am Chem Soc. 2010;132:15120–3.

    CAS  Google Scholar 

  85. Lingler S, Rubinstein I, Knoll W, Offenhäusser A. Fusion of small unilamellar lipid vesicles to alkanethiol and thiolipid self-assembled monolazers on gold. Langmuir. 1997;13:7085–91.

    CAS  Google Scholar 

  86. Horswell SL, Zamlynny V, Li H, Merrill AR, Lipkowski J. Electrochemical and PM-IRRAS studies of potential controlled transformations of phospholipid layers on Au(111) electrodes. Faraday Discuss. 2002;121:405–22.

    CAS  Google Scholar 

  87. Agmo Hernández V, Scholz F. Reply to the comment on kinetics of the adhesion of DMPC liposomes on a mercury electrode. Effect of lamellarity, phase composition, size and curvature of liposomes, and presence of the pore forming peptide mastoparan X. Langmuir. 2007;23:8650.

    Google Scholar 

  88. Scholz F, Hellberg D, Harnisch F, Hummel A, Hasse U. Detection of the adhesion events of dispersed single montmorillonite particles at a static mercury drop electrode. Electrochem Commun. 2004;6:929–33.

    CAS  Google Scholar 

  89. Ivosevic N, Zutic V. Spreading and detachment of organic droplets at an electrified interface. Langmuir. 1998;14:231–4.

    CAS  Google Scholar 

  90. Tsekov R, Kovac S, Zutic V. Attachment of oil droplets and cells on dropping mercury electrode. Langmuir. 1999;15:5649–53.

    CAS  Google Scholar 

  91. Zutic V, Kovac S, Tomaic J, Svetlicic V. Heterocoalescence between dispersed organic microdroplets and a charged conductive interface. J Electroanal Chem. 1993;349:173–86.

    CAS  Google Scholar 

  92. Banks CE, Rees NV, Compton RG. Sonoelectrochernistry understood via nanosecond voltammetry: Sono-emulsions and the measurement of the potential of zero charge of a solid electrode. J Phys Chem B. 2002;106:5810–3.

    CAS  Google Scholar 

  93. Kovac S, Svetlicic V, Zutic V. Molecular adsorption vs. cell adhesion at an electrified aqueous interface. Colloids Surf A. 1999;149:481–9.

    CAS  Google Scholar 

  94. Zutic V, Ivosevic N, Svetlicic V, Long RA, Azam F. Film formation by marine bacteria at a model fluid interface. Aquat Microb Ecol. 1999;17:231–8.

    Google Scholar 

  95. Hellberg D (2002) Untersuchungen von mikroorganismen an elektrodenoberflächen. Diplom, Universität Greifswald, Greifswald

    Google Scholar 

  96. Agmo Hernández V, Niessen J, Harnisch F, Block S, Greinacher A, Kroemer HK, et al. The adhesion and spreading of thrombocyte vesicles on electrode surfaces. Bioelectrochemistry. 2008;74:210–6.

    Google Scholar 

  97. Cutress IJ, Rees NV, Zhou Y-G, Compton RG. Nanoparticle-electrode collision processes: investigating the contact time required for the diffusion-controlled monolayer underpotential deposition on impacting nanoparticles. Chem Phys Lett. 2011;514:58–61.

    CAS  Google Scholar 

  98. Maisonhaute E, White PC, Compton RG. Surface acoustic cavitation understood via nanosecond electrochemistry. J Phys Chem B. 2001;105:12087–91.

    CAS  Google Scholar 

  99. Maisonhaute E, Brookes BA, Compton RG. Surface acoustic cavitation understood via nanosecond electrochemistry. 2. The motion of acoustic bubbles. J Phys Chem B. 2002;106:3166–72.

    CAS  Google Scholar 

  100. Rees NV, Banks CE, Compton RG. Ultrafast chronoamperometry of acoustically agitated solid particulate suspensions: nonfaradaic and faradaic processes at a polycrystalline gold electrode. J Phys Chem B. 2004;108:18391–4.

    CAS  Google Scholar 

  101. Rees NV, Zhou Y-G, Compton RG. The aggregation of silver nanoparticles in aqueous solution investigated via anodic particle coulometry. Chemphyschem. 2011;12:1645–7.

    CAS  Google Scholar 

  102. Rees NV, Zhou Y-G, Compton RG. Making contact: charge transfer during particle-electrode collisions. RSC Advances. 2012;2:379–84.

    CAS  Google Scholar 

  103. Zhou Y-G, Rees NV, Compton RG. Electrode-nanoparticle collisions: the measurement of the sticking coefficient of silver nanoparticles on a glassy carbon electrode. Chem Phys Lett. 2011;514:291–3.

    CAS  Google Scholar 

  104. Zhou Y-G, Rees NV, Compton RG. Nanoparticle-electrode collision processes: the underpotential deposition of thallium on silver nanoparticles in aqueous solution. Chemphyschem. 2011;12:2085–7.

    CAS  Google Scholar 

  105. Zhou Y-G, Rees NV, Compton RG. The electrochemical detection and characterization of silver nanoparticles in aqueous solution. Angew Chem Int Ed. 2011;50:4219–21.

    CAS  Google Scholar 

  106. Hellberg D, Scholz F, Schauer F, Weitschies W. Bursting and spreading of liposomes on the surface of a static mercury drop electrode. Electrochem Commun. 2002;4:305–9.

    CAS  Google Scholar 

  107. Hellberg D (2006) Elektrochemische charakterisierung von liposomen. Dissertation, Universität Greifswald, Greifswald

    Google Scholar 

  108. Moscho A, Orwar O, Chiu DT, Modi BP, Zare RN. Rapid preparation of giant unilamellar vesicles. Proc Natl Acad Sci USA. 1996;93:11443–7.

    CAS  Google Scholar 

  109. Saff EB, Kuijlaars ABJ. Distributing many points on a sphere. Math Intell. 1997;19:5–11.

    Google Scholar 

  110. Agmo Hernández V (2008) The mechanism of adhesion-spreading of lipo­somes on a mercury electrode. Dissertation, Greifswald Universität, Greifswald

    Google Scholar 

  111. Milchev A. Electrocrystallization: nucleation and growth of nano-clusters on solid surfaces. Russ J Electrochem. 2008;44:619–45.

    CAS  Google Scholar 

  112. Milchev A. Electrocrystallization. Fundamentals of nucleation and growth. Boston: Kluwer Academic; 2002.

    Google Scholar 

  113. Sens P, Safran SA. Pore formation and area exchange in tense membranes. Europhys Lett. 1998;43:95–100.

    CAS  Google Scholar 

  114. Kornberg RD, McConnell HM. Inside-outside transitions of phospholipids in vesicle membranes. Biochemistry. 1971;10:1111–20.

    CAS  Google Scholar 

  115. Abreu MSC, Moreno MJ, Vaz WLC. Kinetics and thermodynamics of association of a phospholipid derivative with lipid bilayers in liquid-disordered and liquid-ordered phases. Biophys J. 2004;87:353–65.

    CAS  Google Scholar 

  116. Rivas L, Luque-Ortega J, Fernández-Reyes M, Andreu D. Membrane-active peptides as anti-infectious agents. J Appl Biomed. 2010;8:159–67.

    CAS  Google Scholar 

  117. Zetterberg MM, Reijmar K, Pränting M, Engström Å, Andersson DI, Edwards K. PEG-stabilized lipid disks as carriers for amphiphilic antimicrobial peptides. J Control Release. 2011;156:323–8.

    CAS  Google Scholar 

  118. Hancock REW, Sahl H-G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol. 2006;24:1551–7.

    CAS  Google Scholar 

  119. Lien S, Lowman HB. Therapeutic peptides. Trends Biotechnol. 2003;21:556–62.

    CAS  Google Scholar 

  120. Nomura F, Nagata M, Inaba T, Hiramatsu H, Hotani H, Takiguchi K. Capabilities of liposomes for topological transformation. Proc Natl Acad Sci USA. 2001;98:2340–5.

    CAS  Google Scholar 

  121. Vist MR, Davis JH. Phase-equilibria of cholesterol dipalmitoylphosphatidylcholine mixtures—H-2 nuclear magnetic-resonance and differential scanning calorimetry. Biochemistry. 1990;29:451–64.

    CAS  Google Scholar 

  122. Gaber BP, Peticolas WL. Quantitative interpretation of biomembrane structure by Raman-spectroscopy. Biochim Biophys Acta. 1977;465:260–74.

    CAS  Google Scholar 

  123. Daly TA, Wang M, Regen SL. The origin of cholesterol’s condensing effect. Langmuir. 2011;27:2159–61.

    CAS  Google Scholar 

  124. Liu J, Conboy JC. 1,2-diacyl-phosphatidylcholine flip-flop measured directly by sum-frequency vibrational spectroscopy. Biophys J. 2005;89:2522–32.

    CAS  Google Scholar 

  125. Hermes M, Czesnick C, Stremlau S, Stöhr C, Scholz F. Effect of NO on the adhesion–spreading of DMPC and DOPC liposomes on electrodes, and the partition of NO between an aqueous phase and DMPC liposomes. J Electroanal Chem. 2012;671:33–7.

    CAS  Google Scholar 

  126. Zander S, Hermes M, Scholz F, Gröning A, Helm CA, Vollmer D, et al. Membrane fluidity of tetramyristoyl cardiolipin (TMCL) liposomes studied by chronoamperometric monitoring of their adhesion and spreading at the surface of a mercury electrode. J Solid State Electr. 2012;16:2391–7.

    CAS  Google Scholar 

  127. Tsuda K, Kimura K, Nishio I. Leptin improves membrane fluidity of erythrocytes in humans via a nitric oxide-dependent mechanism—an electron paramagnetic resonance investigation. Biochem Biophys Res Commun. 2002;297:672–81.

    CAS  Google Scholar 

  128. Tsuda K. Association between homocysteine and membrane fluidity of red blood cells in hypertensive and normotensive men. CVD Prev Control. 2009;4:S153.

    Google Scholar 

  129. Tsuda K. Benidipine, a long-acting calcium channel blocker, improves membrane fluidity of erythrocytes in essential hypertension. CVD Prev Control. 2009;4:S160.

    Google Scholar 

  130. Mouritsen OG, Jorgensen K. Dynamical order and disorder in lipid bilayers. Chem Phys Lipids. 1994;73:3–25.

    CAS  Google Scholar 

  131. Loura LMS, de Almeida RFM, Silva LC, Prieto M. FRET analysis of domain formation and properties in complex membrane systems. Biochim Biophys Acta. 2009;1788:209–24.

    CAS  Google Scholar 

  132. Niemela PS, Hyvonen MT, Vattulainen I. Atom-scale molecular interactions in lipid raft mixtures. Biochim Biophys Acta. 2009;1788:122–35.

    Google Scholar 

  133. Somerharju P, Virtanen JA, Cheng KH, Hermansson M. The superlattice model of lateral organization of membranes and its implications on membrane lipid homeostasis. Biochim Biophys Acta. 2009;1788:12–23.

    CAS  Google Scholar 

  134. Scott HL. Modeling the lipid component of membranes. Curr Opin Struct Biol. 2002;12:495–502.

    CAS  Google Scholar 

  135. Bloom M, Thewalt J. Spectroscopic determination of lipid dynamics in membranes. Chem Phys Lipids. 1994;73:27–38.

    CAS  Google Scholar 

  136. Chiantia S, Ries J, Schwille P. Fluorescence correlation spectroscopy in membrane structure elucidation. Biochim Biophys Acta. 2009;1788:225–33.

    CAS  Google Scholar 

  137. Day CA, Kenworthy AK. Fluorescence correlation spectroscopy in membrane structure elucidation. Biochim Biophys Acta. 2009;1788:245–53.

    CAS  Google Scholar 

  138. Perez-Rojas JM, Muriel P. Inhibition of mitochondrial respiration by nitric oxide is independent of membrane fluidity modulation or oxidation of sulfhydryl groups. J Appl Toxicol. 2005;25:522–6.

    CAS  Google Scholar 

  139. Mesquita R, Picarra B, Saldanha C, Silva JME. Nitric oxide effects on human erythrocytes structural and functional properties—an in vitro study. Clin Hemorheol Microcirc. 2002;27:137–47.

    CAS  Google Scholar 

  140. Tsyganov I, Maitz MF, Wieser E, Richter E, Reuther H. Correlation between blood compatibility and physical surface properties of titanium-based coatings. Surf Coat Tech. 2005;200:1041–4.

    CAS  Google Scholar 

  141. Vasilets VN, Kuznetsov AV, Sevastyanov VI. Regulation of the biological properties of medical polymer materials with the use of a gas-discharge plasma and vacuum ultraviolet radiation. High Energ Chem. 2006;40:79–85.

    CAS  Google Scholar 

  142. Taylor RG, Lewis JC. Microfilament reorganization in normal and cytochalasin-b treated adherent thrombocytes. J Supramol Struct Cell Biochem. 1981;16:209–20.

    CAS  Google Scholar 

  143. Mikhalovska LI, Santin M, Denyer SP, Lloyd AW, Teer DG, Field S, et al. Fibrinogen adsorption and platelet adhesion to metal and carbon coatings. Thromb Haemost. 2004;92:1032–9.

    CAS  Google Scholar 

  144. Larsson N, Linder LE, Curelaru I, Buscemi P, Sherman R, Eriksson E. Initial platelet-adhesion and platelet shape on polymer surfaces with different carbon bonding characteristics (an in vitro study of teflon, pellethane and xlon intravenous cannulae). J Mater Sci Mater Med. 1990;1:157–62.

    CAS  Google Scholar 

  145. Enyedi A, Sarkadi B, Foldespapp Z, Monostory S, Gardos G. Demonstration of 2 distinct calcium pumps in human-platelet membrane-vesicles. J Biol Chem. 1986;261:9558–63.

    CAS  Google Scholar 

  146. Barber AJ, Jamieson GA. Isolation and characterization of plasma membranes from human blood platelets. J Biol Chem. 1970;245:6357–65.

    CAS  Google Scholar 

  147. Slayman CL. Electrical properties of neurospora crassa respiration and intracellular potential. J Gen Physiol. 1965;49:93–116.

    CAS  Google Scholar 

  148. Katyare SS, Satav JG. Altered kinetic-properties of liver mitochondrial membrane-bound enzyme-activities following paracetamol hepatotoxicity in the rat. J Biosci. 1991;16:71–9.

    CAS  Google Scholar 

  149. Corkery RW. The anti-parallel, extended or splayed-chain conformation of amphiphilic lipids. Colloids Surf B. 2002;26:3–20.

    CAS  Google Scholar 

  150. Smirnova YG, Marrink S-J, Lipowsky R, Knecht V. Solvent-exposed tails as prestalk transition states for membrane fusion at low hydration. J Am Chem Soc. 2010;132:6710–8.

    CAS  Google Scholar 

  151. Kasson PM, Lindahl E, Pande VS. Water ordering at membrane interfaces controls fusion dynamics. J Am Chem Soc. 2011;133:3812–5.

    CAS  Google Scholar 

  152. Smeijers AF, Markvoort AJ, Pieterse K, Hilbers PAJ. A detailed look at vesicle fusion. J Phys Chem B. 2006;110:13212–9.

    CAS  Google Scholar 

  153. Lee J, Lentz BR. Secretory and viral fusion may share mechanistic events with fusion between curved lipid bilayers. Proc Natl Acad Sci USA. 1998;95:9274–9.

    CAS  Google Scholar 

  154. Scholz F. Mercury electrodes are indispensable tools for membrane research. Rev Polarogr. 2010;56:63–5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Agmo Hernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hernández, V.A., Lendeckel, U., Scholz, F. (2013). Electrochemistry of Adhesion and Spreading of Lipid Vesicles on Electrodes. In: Schlesinger, M. (eds) Applications of Electrochemistry in Medicine. Modern Aspects of Electrochemistry, vol 56. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-6148-7_6

Download citation

Publish with us

Policies and ethics