Advertisement

Taurine 8 pp 69-83 | Cite as

Taurine Is a Crucial Factor to Preserve Retinal Ganglion Cell Survival

  • Nicolas FrogerEmail author
  • Firas Jammoul
  • David Gaucher
  • Lucia Cadetti
  • Henri Lorach
  • Julie Degardin
  • Dorothée Pain
  • Elisabeth Dubus
  • Valérie Forster
  • Ivana Ivkovic
  • Manuel Simonutti
  • José-Alain Sahel
  • Serge Picaud
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 775)

Abstract

Retinal ganglion cells (RGCs) are spiking neurons, which send visual information to the brain, through the optic nerve. RGC degeneration occurs in retinal diseases, either as a primary process or secondary to photoreceptor loss. Mechanisms involved in this neuronal degeneration are still unclear and no drugs directly targeting RGC neuroprotection are yet available. Here, we show that taurine is one factor involved in preserving the RGC survival. Indeed, a taurine depletion induced by the antiepileptic drug, vigabatrin, was incriminated in its retinal toxicity leading to the RGC loss. Similarly, we showed that RGC degeneration can be induced by pharmacologically blocking the taurine-transporter with the chronic administration of a selective inhibitor, which results in a decrease in the taurine levels both in the plasma and in the retinal tissue. Finally, we found that taurine can directly prevent RGC degeneration, occurring either in serum-deprived pure RGC cultures or in animal models presenting an RGC loss (glaucomatous rats and the P23H rats, a model for retinitis pigmentosa). These data suggest that the retinal taurine level is a crucial marker to prevent RGC damage in major retinal diseases.

Keywords

Retinal Ganglion Cell Retinitis Pigmentosa Taurine Supplementation Retinal Toxicity Taurine Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

RGC(s)

Retinal ganglion cell(s)

GES

Guanidinoethane sulfonate

IOP

Intraocular pressure

VGB

Vigabatrin

Tau-T

Taurine-transporter

DAPI

4′,6-Diamidino-2-phenylindole

DIV

Days in vitro

Notes

Acknowledgments

We would like to thank Bernard Gilly, Pierre Belichard, Didier Pruneau, Annabelle Amiard, Marie-Laure Bouttier (Fovea Pharma), Olivier Lorentz, Katia Marazova (Fondation voir et Entendre), Gordon Fain (University of California Los Angeles), Alain Bron (Ophthalmology department, Dijon) and Jean-François Legargasson (Hôpital Lariboisière) for help and comments. We are grateful to Dr Matthew Lavail for providing the P23H rat line. This work was supported by INSERM, Université Pierre et Marie Curie (Paris VI), Fondation Ophtalmologique A. de Rothschild (Paris), Agence Nationale pour la Recherche (ANR: GLAUCOME), European Community (contrat TREATRUSH no HEALTH-F2-2010-242013), Fédération des Aveugles de France, IRRP, the city of Paris and the Regional Council of Ile-de-France. LC and NF received fellowships from the Fondation pour la Recherche Médicale and Fondation Bailly.

References

  1. Araie M, Crowston J, Iwase A, Tomidokoro A, Leung C, Zeitz O, Vingris A, Schmetterer L, Ritch R, Kook M, Erlich R, Gherghel D, Graham S, Pillunat L, Aung T, Hafez A, Liu J, Harris A (2009) Clinical relevance of ocular blood flow (OBF) measurements including effects of general medications or specific glaucoma treatment. Kugler Publications, Amsterdam, The NetherlandsGoogle Scholar
  2. Barres BA, Silverstein BE, Corey DP, Chun LL (1988) Immunological, morphological, and electrophysiological variation among retinal ganglion cells purified by panning. Neuron 1:791–803PubMedCrossRefGoogle Scholar
  3. Ben-Menachem E, Persson LI, Schechter PJ, Haegele KD, Huebert N, Hardenberg J, Dahlgren L, Mumford JP (1989) The effect of different vigabatrin treatment regimens on CSF biochemistry and seizure control in epileptic patients. Br J Clin Pharmacol 27(Suppl 1):79S–85SPubMedCrossRefGoogle Scholar
  4. Brosnan JT, Brosnan ME (2006) The sulfur-containing amino acids: an overview. J Nutr 136: 1636S–1640SPubMedGoogle Scholar
  5. Buncic JR, Westall CA, Panton CM, Munn JR, MacKeen LD, Logan WJ (2004) Characteristic retinal atrophy with secondary “inverse” optic atrophy identifies vigabatrin toxicity in children. Ophthalmology 111:1935–1942PubMedCrossRefGoogle Scholar
  6. Butler WH, Ford GP, Newberne JW (1987) A study of the effects of vigabatrin on the central nervous system and retina of Sprague Dawley and Lister-Hooded rats. Toxicol Pathol 15:143–148PubMedCrossRefGoogle Scholar
  7. Chen K, Zhang Q, Wang J, Liu F, Mi M, Xu H, Chen F, Zeng K (2009) Taurine protects transformed rat retinal ganglion cells from hypoxia-induced apoptosis by preventing mitochondrial dysfunction. Brain Res 1279:131–138PubMedCrossRefGoogle Scholar
  8. Curatolo P, Bombardieri R, Cerminara C (2006) Current management for epilepsy in tuberous sclerosis complex. Curr Opin Neurol 19:119–123PubMedCrossRefGoogle Scholar
  9. Duboc A, Hanoteau N, Simonutti M, Rudolf G, Nehlig A, Sahel JA, Picaud S (2004) Vigabatrin, the GABA-transaminase inhibitor, damages cone photoreceptors in rats. Ann Neurol 55:695–705PubMedCrossRefGoogle Scholar
  10. El Idrissi A (2008) Taurine increases mitochondrial buffering of calcium: role in neuroprotection. Amino Acids 34:321–328PubMedCrossRefGoogle Scholar
  11. Flammer J, Orgul S, Costa VP, Orzalesi N, Krieglstein GK, Serra LM, Renard JP, Stefansson E (2002) The impact of ocular blood flow in glaucoma. Prog Retin Eye Res 21:359–393PubMedCrossRefGoogle Scholar
  12. Frisen L, Malmgren K (2003) Characterization of vigabatrin-associated optic atrophy. Acta Ophthalmol Scand 81:466–473PubMedCrossRefGoogle Scholar
  13. Froger N, Cadetti L, Lorach H, Martins J, Bemelmans AP, Dubus E, Degardin J, Pain D, Forster V, Chicaud L, Ivkovic I, Simonutti M, Fouquet S, Jammoul F, Leveillard T, Benosman R, Sahel J-A, Picaud S (2012) Taurine provides neuroprotection against retinal ganglion cell degeneration. PLoS One 7(10):e42017Google Scholar
  14. Garcia-Ayuso D, Salinas-Navarro M, Agudo M, Cuenca N, Pinilla I, Vidal-Sanz M, Villegas-Perez MP (2010) Retinal ganglion cell numbers and delayed retinal ganglion cell death in the P23H rat retina. Exp Eye Res 91:800–810PubMedCrossRefGoogle Scholar
  15. Gaucher D, Arnault E, Husson Z, Froger N, Dubus E, Gondouin P, Dherbecourt D, Degardin J, Simonutti M, Fouquet S, Benahmed MA, Elbayed K, Namer IJ, Massin P, Sahel JA, Picaud S (2012) Taurine deficiency damages retinal neurones: cone photoreceptors and retinal ganglion cells. Amino Acids 43:1979–1993PubMedCrossRefGoogle Scholar
  16. Hayes KC, Carey RE, Schmidt SY (1975) Retinal degeneration associated with taurine deficiency in the cat. Science 188:949–951PubMedCrossRefGoogle Scholar
  17. Heller-Stilb B, van Roeyen C, Rascher K, Hartwig HG, Huth A, Seeliger MW, Warskulat U, Haussinger D (2002) Disruption of the taurine transporter gene (taut) leads to retinal degeneration in mice. FASEB J 16:231–233PubMedGoogle Scholar
  18. Humayun MS, Prince M, de Juan E Jr, Barron Y, Moskowitz M, Klock IB, Milam AH (1999) Morphometric analysis of the extramacular retina from postmortem eyes with retinitis pigmentosa. Invest Ophthalmol Vis Sci 40:143–148PubMedGoogle Scholar
  19. Imaki H, Moretz R, Wisniewski H, Neuringer M, Sturman J (1987) Retinal degeneration in 3-month-old rhesus monkey infants fed a taurine-free human infant formula. J Neurosci Res 18:602–614PubMedCrossRefGoogle Scholar
  20. Ito T, Kimura Y, Uozumi Y, Takai M, Muraoka S, Matsuda T, Ueki K, Yoshiyama M, Ikawa M, Okabe M, Schaffer SW, Fujio Y, Azuma J (2008) Taurine depletion caused by knocking out the taurine transporter gene leads to cardiomyopathy with cardiac atrophy. J Mol Cell Cardiol 44:927–937PubMedCrossRefGoogle Scholar
  21. Jammoul F, Degardin J, Pain D, Gondouin P, Simonutti M, Dubus E, Caplette R, Fouquet S, Craft CM, Sahel JA, Picaud S (2010) Taurine deficiency damages photoreceptors and retinal ganglion cells in vigabatrin-treated neonatal rats. Mol Cell Neurosci 43:414–421PubMedCrossRefGoogle Scholar
  22. Jammoul F, Wang Q, Nabbout R, Coriat C, Duboc A, Simonutti M, Dubus E, Craft CM, Ye W, Collins SD, Dulac O, Chiron C, Sahel JA, Picaud S (2009) Taurine deficiency is a cause of vigabatrin-induced retinal phototoxicity. Ann Neurol 65:98–107PubMedCrossRefGoogle Scholar
  23. Kilic U, Kilic E, Jarve A, Guo Z, Spudich A, Bieber K, Barzena U, Bassetti CL, Marti HH, Hermann DM (2006) Human vascular endothelial growth factor protects axotomized retinal ganglion cells in vivo by activating ERK-1/2 and Akt pathways. J Neurosci 26:12439–12446PubMedCrossRefGoogle Scholar
  24. Kolomiets B, Sahel JA, Picaud S (2006) Single-unit activity and visual response characteristics in retinal ganglion cells of ex vivo retina recorded using 3D MEA microelectrode array recordings in mice. University College London, LondonGoogle Scholar
  25. Kolomiets B, Dubus E, Simonutti M, Rosolen S, Sahel JA, Picaud S (2010) Late histological and functional changes in the P23H rat retina after photoreceptor loss. Neurobiol Dis 38:47–58PubMedCrossRefGoogle Scholar
  26. Krauss GL, Johnson MA, Miller NR (1998) Vigabatrin-associated retinal cone system dysfunction: electroretinogram and ophthalmologic findings. Neurology 50:614–618PubMedCrossRefGoogle Scholar
  27. Leske MC (2009) Ocular perfusion pressure and glaucoma: clinical trial and epidemiologic findings. Curr Opin Ophthalmol 20:73–78PubMedCrossRefGoogle Scholar
  28. Macaione S, Ruggeri P, De Luca F, Tucci G (1974) Free amino acids in developing rat retina. J Neurochem 22:887–891PubMedCrossRefGoogle Scholar
  29. MacDonald ML, Rogers QR, Morris JG (1984) Nutrition of the domestic cat, a mammalian carnivore. Annu Rev Nutr 4:521–562PubMedCrossRefGoogle Scholar
  30. Miller NR, Johnson MA, Paul SR, Girkin CA, Perry JD, Endres M, Krauss GL (1999) Visual dysfunction in patients receiving vigabatrin: clinical and electrophysiologic findings. Neurology 53:2082–2087PubMedCrossRefGoogle Scholar
  31. Mittag TW, Danias J, Pohorenec G, Yuan HM, Burakgazi E, Chalmers-Redman R, Podos SM, Tatton WG (2000) Retinal damage after 3 to 4 months of elevated intraocular pressure in a rat glaucoma model. Invest Ophthalmol Vis Sci 41:3451–3459PubMedGoogle Scholar
  32. Pasantes-Morales H, Quiroz H, Quesada O (2002) Treatment with taurine, diltiazem, and vitamin E retards the progressive visual field reduction in retinitis pigmentosa: a 3-year follow-up study. Metab Brain Dis 17:183–197PubMedCrossRefGoogle Scholar
  33. Pasantes-Morales H, Quesada O, Carabez A, Huxtable RJ (1983) Effects of the taurine transport antagonist, guanidinoethane sulfonate, and beta-alanine on the morphology of rat retina. J Neurosci Res 9:135–143PubMedCrossRefGoogle Scholar
  34. Pennesi ME, Nishikawa S, Matthes MT, Yasumura D, LaVail MM (2008) The relationship of photoreceptor degeneration to retinal vascular development and loss in mutant rhodopsin transgenic and RCS rats. Exp Eye Res 87:561–570PubMedCrossRefGoogle Scholar
  35. Quigley HA (1999) Neuronal death in glaucoma. Prog Retin Eye Res 18:39–57PubMedCrossRefGoogle Scholar
  36. Rascher K, Servos G, Berthold G, Hartwig HG, Warskulat U, Heller-Stilb B, Haussinger D (2004) Light deprivation slows but does not prevent the loss of photoreceptors in taurine transporter knockout mice. Vision Res 44:2091–2100PubMedCrossRefGoogle Scholar
  37. Ravindran J, Blumbergs P, Crompton J, Pietris G, Waddy H (2001) Visual field loss associated with vigabatrin: pathological correlations. J Neurol Neurosurg Psychiatry 70:787–789PubMedCrossRefGoogle Scholar
  38. Roska B, Werblin F (2001) Vertical interactions across ten parallel, stacked representations in the mammalian retina. Nature 410:583–587PubMedCrossRefGoogle Scholar
  39. Satsu H, Watanabe H, Arai S, Shimizu M (1997) Characterization and regulation of taurine transport in Caco-2, human intestinal cells. J Biochem 121:1082–1087PubMedCrossRefGoogle Scholar
  40. Schaffer SW, Azuma J, Mozaffari M (2009) Role of antioxidant activity of taurine in diabetes. Can J Physiol Pharmacol 87:91–99PubMedCrossRefGoogle Scholar
  41. Schmidt SY, Aguirre GD (1985) Reductions in taurine secondary to photoreceptor loss in Irish setters with rod-cone dysplasia. Invest Ophthalmol Vis Sci 26:679–683PubMedGoogle Scholar
  42. Shareef SR, Garcia-Valenzuela E, Salierno A, Walsh J, Sharma SC (1995) Chronic ocular hypertension following episcleral venous occlusion in rats. Exp Eye Res 61:379–382PubMedCrossRefGoogle Scholar
  43. Tezel G (2006) Oxidative stress in glaucomatous neurodegeneration: mechanisms and consequences. Prog Retin Eye Res 25:490–513PubMedCrossRefGoogle Scholar
  44. Tomi M, Tajima A, Tachikawa M, Hosoya KI (2008) Function of taurine transporter (Slc6a6/TauT) as a GABA transporting protein and its relevance to GABA transport in rat retinal capillary endothelial cells. Biochim Biophys Acta 1778:2138–2142PubMedCrossRefGoogle Scholar
  45. van der Torren K, Graniewski-Wijnands HS, Polak BC (2002) Visual field and electrophysiological abnormalities due to vigabatrin. Doc Ophthalmol 104:181–188PubMedCrossRefGoogle Scholar
  46. Voaden MJ, Lake N, Marshall J, Morjaria B (1977) Studies on the distribution of taurine and other neuroactive amino acids in the retina. Exp Eye Res 25:249–257PubMedCrossRefGoogle Scholar
  47. Wang QP, Jammoul F, Duboc A, Gong J, Simonutti M, Dubus E, Craft CM, Ye W, Sahel JA, Picaud S (2008) Treatment of epilepsy: the GABA-transaminase inhibitor, vigabatrin, induces neuronal plasticity in the mouse retina. Eur J Neurosci 27:2177–2187PubMedCrossRefGoogle Scholar
  48. Westall CA, Nobile R, Morong S, Buncic JR, Logan WJ, Panton CM (2003) Changes in the electroretinogram resulting from discontinuation of vigabatrin in children. Doc Ophthalmol 107: 299–309PubMedCrossRefGoogle Scholar
  49. Wu JY, Prentice H (2010) Role of taurine in the central nervous system. J Biomed Sci 17(Suppl 1):S1PubMedCrossRefGoogle Scholar
  50. Yamori Y, Liu L, Mizushima S, Ikeda K, Nara Y (2006) Male cardiovascular mortality and dietary markers in 25 population samples of 16 countries. J Hypertens 24:1499–1505PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Nicolas Froger
    • 1
    • 2
    • 3
    Email author
  • Firas Jammoul
    • 1
    • 2
    • 3
  • David Gaucher
    • 1
    • 2
    • 3
  • Lucia Cadetti
    • 1
    • 2
    • 3
  • Henri Lorach
    • 1
    • 2
    • 3
  • Julie Degardin
    • 1
    • 2
    • 3
  • Dorothée Pain
    • 1
    • 2
    • 3
  • Elisabeth Dubus
    • 1
    • 2
    • 3
  • Valérie Forster
    • 1
    • 2
    • 3
  • Ivana Ivkovic
    • 1
    • 2
    • 3
  • Manuel Simonutti
    • 1
    • 2
    • 3
  • José-Alain Sahel
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
  • Serge Picaud
    • 1
    • 2
    • 3
    • 6
  1. 1.INSERM, U968, Institut de la VisionParisFrance
  2. 2.UPMC Université Paris 06, UMR_S 968, Institut de la VisionParisFrance
  3. 3.CNRS, UMR 7210, Institut de la VisionParisFrance
  4. 4.Centre Hospitalier National d’Ophtalmologie des Quinze-VingtsParisFrance
  5. 5.Institute of OphthalmologyUniversity College of LondonLondonUK
  6. 6.Fondation Ophtalmologique Adolphe de RothschildParisFrance
  7. 7.French Academy of SciencesParisFrance

Personalised recommendations