Skip to main content

Protection by Taurine and Thiotaurine Against Biochemical and Cellular Alterations Induced by Diabetes in a Rat Model

  • Conference paper
  • First Online:
Taurine 8

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 775))

Abstract

In this study, the actions of taurine (TAU), a sulfonate, and thiotaurine (TTAU), a thiosulfonate, on diabetes-mediated biochemical alterations in red blood cells (RBCs) and plasma and on the RBC membrane, morphology and spectrin distribution were examined in rats. Diabetes was induced in male Sprague–Dawley rats with streptozotocin (60 mg/kg i.p.) and allowed to progress for 14 days. From days to 56, the rats received a daily, 2.4 mmol/kg, oral dose of TAU or TTAU, 2 mL oral dose of physiological saline or 4 U/kg subcutaneous dose of isophane insulin (INS). Naive rats served as the control group. The rats were sacrificed on day 57 and their blood was collected to measure HbA1c, to isolate intact RBCs, and to obtain plasma. A 6-weeks treatment with INS effectively lowered the elevations in plasma glucose, cholesterol, triglycerides, and plasma and RBC malondialdehyde and glutathione disulfide while effectively counteracting the decreases in plasma INS, plasma and RBC glutathione redox status, and plasma and RBC activities of antioxidant enzymes caused by diabetes. Also, INS returned the echynocytic appearance and peripheral location of spectrin seen in RBCs from diabetic rats to the normal discocytic shape and uniform distribution. TAU and TTAU were as effective as INS in inhibiting malondialdehyde formation, changes in redox status and oxidative stress in both the plasma and RBC, but were much less effective in controlling hyperglycemia and hypoinsulinemia. Furthermore TTAU was more effective than INS or TAU in lowering the increase in cholesterol to phospholipids ratio in the RBC membrane and, unlike TAU, it was able to normalize the RBC morphology and spectrin distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

TAU:

Taurine

TTAU:

Thiotaurine

INS:

Insulin

STZ:

Streptozotocin

RBCs:

Red blood cells

GLC:

Glucose

HbA1c :

Glycated hemoglobin

LPO:

Lipid peroxidation

MDA:

Malondialdehyde

CHOL:

Cholesterol

TGs:

Triglycerides

PLPs:

Phospholipids

GSG:

Reduced glutathione

GSSG:

Glutathione disulfide

CAT:

Catalase

GPx:

Glutathione peroxidase

SOD:

Superoxide dismutase

References

  • Acharya M, Lau-Cam CA (2010) Comparison of the protective actions of N-acetylcysteine, hypotaurine and taurine against acetaminophen-induced hepatotoxicity in the rat. J Biomed Sci 17:S35

    Article  PubMed  CAS  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Alciguzel Y, Ozen I, Aslan M, Karayalcin U (2003) Activities of xanthine oxidoreductase and antioxidant enzymes in different tissues of diabetic rats. J Lab Clin Med 142:172–177

    Article  CAS  Google Scholar 

  • Arora S, Ojha SK, Vohora D (2009) Characterisation of streptozotocin induced diabetes mellitus in Swiss albino mice. Global J Pharmacol 3:81–84

    Google Scholar 

  • Baynes JW, Thorpe SR (1999) Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 48:1–9

    Article  CAS  PubMed  Google Scholar 

  • Beard KM, Shangari N, Wu B, O’Brien PJ (2003) Metabolism, not autoxidation, plays a role in α-oxoaldehyde- and reducing sugar-induced erythrocyte GSH depletion: relevance for diabetes mellitus. Mol Cell Biochem 252:331–338

    Article  CAS  PubMed  Google Scholar 

  • Bhor VM, Raghuram N, Sivakami S (2004) Oxidative damage and altered antioxidant enzyme activities in the small intestine of streptozotocin-induced diabetic rats. Int J Biochem Cell Biol 36:89–97

    Article  CAS  PubMed  Google Scholar 

  • Brøns C, Spohr C, Storgaard H, Dyerberg J, Vaag A (2004) Effect of taurine treatment on insulin secretion and action, and on serum lipid levels in overweight men with a genetic predisposition for type II diabetes mellitus. Eur J Clin Nutr 58:1239–1247

    Article  PubMed  CAS  Google Scholar 

  • Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820

    Article  CAS  PubMed  Google Scholar 

  • Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54:1615–1625

    Article  CAS  PubMed  Google Scholar 

  • Ceriello A (2005) Postprandial hyperglycemia and diabetes complications: is it time to treat? Diabetes 54:1–7

    Article  CAS  PubMed  Google Scholar 

  • Chauncey KB, Tenner TE Jr, Lombardini JB et al (2003) The effect of taurine supplementation on patients with type 2 diabetes mellitus. Adv Exp Med Biol 526:91–96

    Article  CAS  PubMed  Google Scholar 

  • Cherif H, Reusens B, Ahn MT, Hoet JJ, Remacle C (1998) Effects of taurine on the insulin secretion of rat fetal islets from dams fed a low-protein diet. J Endocrinol 159:341–348

    Article  CAS  PubMed  Google Scholar 

  • Costagliola C (1990) Oxidative state of glutathione in red blood cells and plasma of diabetic patients: in vivo and in vitro study. Clin Physiol Biochem 8:204–210

    CAS  PubMed  Google Scholar 

  • Darmaun D, Smith SD, Sweeten S, Sager BK, Welch S, Mauras N (2005) Evidence for accelerated rates of glutathione utilization and glutathione depletion in adolescents with poorly controlled type 1 diabetes. Diabetes 54:190–196

    Article  CAS  PubMed  Google Scholar 

  • Desco MC, Asensi N, Márquez R et al (2002) Xanthine oxidase is involved in free radical production in type 1 diabetes: protection by allopurinol. Diabetes 51:1118–1124

    Article  CAS  PubMed  Google Scholar 

  • Desouky OS (2009) Rheological and electrical behavior of erythrocytes in patients with diabetes mellitus. Rom J Biophys 19:239–250

    Google Scholar 

  • Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  • Fujiwara Y, Kondo T, Murakami K, Kawakami Y (1989) Decrease of the inhibition of lipid peroxidation by glutathione-dependent system in erythrocytes of non-insulin dependent diabetics. J Mol Med 67:336–341

    CAS  Google Scholar 

  • Goodman HO, Shihabi ZK (1990) Supplemental taurine in diabetic rats: effects on plasma glucose and triglycerides. Biochem Med Metab Biol 43:1–9

    Article  CAS  PubMed  Google Scholar 

  • Gossai D, Lau-Cam CA (2009) The effects of taurine, taurine homologs and hypotaurine on cell and membrane antioxidative system alterations caused by type 2 diabetes in rat erythrocytes. Adv Exp Med Biol 643:359–368

    Article  CAS  PubMed  Google Scholar 

  • Günzler WA, Flohé L (1985) Glutathione peroxidase. In: Greenwald RA (ed) CRC handbook of methods for oxygen radical research. CRC, Boca Raton, FL, pp 285–290

    Google Scholar 

  • Guzik TJ, Mussa S, Gastaldi D et al (2002) Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase. Circulation 105:1656–1662

    Article  CAS  PubMed  Google Scholar 

  • Hisalkar PJ, Patne AB, Fawade MM (2012) Assessment of plasma antioxidant levels in type 2 diabetes patients. Int J Biol Med Res 3:1796–1800

    Google Scholar 

  • Hissin PJ, Hilf R (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–226

    Article  CAS  PubMed  Google Scholar 

  • Jain SK (1984) The accumulation of malonyldialdehyde, a product of fatty acid peroxidation, can disturb aminophospholipid organization in the membrane bilayer of human erythrocytes. J Biol Chem 259:3391–3394

    CAS  PubMed  Google Scholar 

  • Jain SK, Levine SN, Duetta J, Hollier B (1990) Elevated lipid peroxidation levels in red blood cells of streptozotocin-treated diabetic rats. Metabolism 39:971–975

    Article  CAS  PubMed  Google Scholar 

  • Jain SK, McVie R, Duett J, Herbst JJ (1989) Erythrocyte membrane lipid peroxidation and glycosylated hemoglobin in diabetes. Diabetes 38:1539–1543

    Article  CAS  PubMed  Google Scholar 

  • Jain SK, McVie R, Smith T (2000) Vitamin E supplementation restores glutathione and malondialdehyde to normal concentrations in erythrocytes of type 1 diabetic children. Diabetes Care 23:1389–1394

    Article  CAS  PubMed  Google Scholar 

  • Järvi AE, Karlström BE, Granfeldt YE et al (1999) Improved glycemic control and lipid profile and normalized fibrinolytic activity on a low-glycemic index diet in type 2 diabetic patients. Diabetes Care 22:10–18

    Article  PubMed  Google Scholar 

  • Kalapos MP, Andrea Littauer A, de Groot H (1993) Has reactive oxygen a role in methylglyoxal toxicity? A study on cultured rat hepatocytes. Arch Toxicol 67:369–372

    Article  CAS  PubMed  Google Scholar 

  • Kędziora-Kornatowska KZ, Luciak M, Blaszczyk J, Pawlak W (1998) Lipid peroxidation and activities of antioxidant enzymes in erythrocytes of patients with non-insulin dependent diabetes with or without diabetic nephropathy. Nephrol Dial Transplant 13:2829–2832

    Article  PubMed  Google Scholar 

  • Lee AY, Chiung SS (1999) Contributions of polyol pathway to oxidative stress in diabetic cataract. FASEB J 13:23–30

    CAS  PubMed  Google Scholar 

  • Likidlilid A, Patchanans N, Peerapatdit T, Sriratanasathavorn C (2010) Lipid peroxidation and antioxidant enzyme activities in erythrocytes of type 2 diabetic patients. J Med Assoc Thai 93:682–693

    PubMed  Google Scholar 

  • Loven D, Schedl H, Wilson H, Daabees TT et al (1986) Effect of insulin and oral glutathione on glutathione levels and superoxide dismutase activities in organs of rats with streptozocin-induced diabetes. Diabetes 35:503–507

    Article  CAS  PubMed  Google Scholar 

  • Maritim AC, Moore BH, Sanders RA, Watkins JB III (1999) Effects of melatonin on oxidative stress in streptozotocin-induced diabetic rats. Int J Toxicol 18:161–166

    Article  CAS  Google Scholar 

  • Maritim AC, Sanders RA, Watkins JB III (2003) Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 17:24–38

    Article  CAS  PubMed  Google Scholar 

  • Maturo J, Kulakowski EC (1988) Taurine binding to the purified insulin receptor. Biochem Pharmacol 37:3755–3760

    Article  CAS  PubMed  Google Scholar 

  • Mayfield J (1998) Diagnosis and classification of diabetes mellitus: new criteria. Am Fam Physician 58:1355–1362

    CAS  PubMed  Google Scholar 

  • Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    CAS  PubMed  Google Scholar 

  • Moller DE (2001) New drug targets for type 2 diabetes and the metabolic syndrome. Nature 414(6865):821–827

    Article  CAS  PubMed  Google Scholar 

  • Monnier L, Colette C (2008) Glycemic variability: should we and can we prevent it? Diabetes Care 31(suppl 2):S150–S154

    Article  CAS  PubMed  Google Scholar 

  • Monnier L, Mas E, Ginet C et al (2006) Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. J Am Med Assoc 295:1681–1687

    Article  CAS  Google Scholar 

  • Murakami K, Takahito K, Ohtsuka Y et al (1989) Impairment of glutathione metabolism in erythrocytes from patients with diabetes mellitus. Metabolism 38:753–758

    Article  CAS  PubMed  Google Scholar 

  • Nandhini ATA, Thirunavukkarasu V, Anuradha CV (2004) Stimulation of glucose utilization and inhibition of protein glycation and AGE products by taurine. Acta Physiol Scand 181:297–303

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa T, Edelstein D, Brownlee M (2000) The missing link: a single unifying mechanism for diabetic complications. Kidney Int 58:S26–S30

    Article  Google Scholar 

  • Obrosova IG, Stavniichuk R, Drel VR (2010) Different roles of 12/15-lipoxygenase in diabetic large and small fiber peripheral and autonomic neuropathies. Am J Pathol 177:1436–1447

    Article  CAS  PubMed  Google Scholar 

  • Oprescu AI, Bikopoulos G, Naassan A et al (2007) Fatty acid–induced reduction in ­glucose-stimulated insulin secretion: evidence for a role of oxidative stress in vitro and in vivo. Diabetes 56:2927–2937

    Article  CAS  PubMed  Google Scholar 

  • Peuchant E, Delmas-Beauvieux MC, Couchouron A et al (1997) Short-term insulin therapy and normoglycemia. Effects on erythrocyte lipid peroxidation in NIDDM patients. Diabetes Care 20:202–207

    Article  CAS  PubMed  Google Scholar 

  • Pieczenik SR, Neustadt J (2007) Mitochondrial dysfunction and molecular pathways of disease. Exp Mol Pathol 83:84–92

    Article  CAS  PubMed  Google Scholar 

  • Rahimi R, Nikfar S, Larijani B, Abdollahi M (2005) A review on the role of antioxidants in the management of diabetes and its complications. Biomed Pharmacother 59:365–373

    Article  CAS  PubMed  Google Scholar 

  • Ricci C, Pastukh V, Leonard J et al (2008) Mitochondrial DNA damage triggers mitochondrial superoxide generation and apoptosis. Am J Physiol Cell Physiol 294:C413–C422

    Article  CAS  PubMed  Google Scholar 

  • Samiec P, Drews-Botsch C, Flagg EF et al (1998) Glutathione in human plasma: decline in association with ageing, age-related macular degeneration and diabetes. Free Radic Biol Med 24:699–704

    Article  CAS  PubMed  Google Scholar 

  • Schaffer SW, Azuma J, Mozaffari M (2009) Role of antioxidant activity of taurine in diabetes. Can J Physiol Pharmacol 87:91–99

    Article  CAS  PubMed  Google Scholar 

  • Sekhar RV, McKay SV, Patel SG et al (2010) Glutathione synthesis is diminished in patients with uncontrolled diabetes and restored by dietary supplementation with cysteine and glycine. Diabetes Care 34:164–167

    Google Scholar 

  • Sharma R, Premachandra BR (1991) Membrane-bound hemoglobin as a marker of oxidative injury in adult and neonatal red blood cells. Biochem Med Metab Biol 46:33–44

    Article  CAS  PubMed  Google Scholar 

  • Stewart JCM (1979) Colorimetric determination of phospholipids with ammonium ferrothiocyanate. Anal Biochem 104:10–14

    Article  Google Scholar 

  • Straface E, Rivabene R, Masella R et al (2002) Structural changes of the erythrocyte as a marker of non-insulin-dependent diabetes: protective effects of N-acetylcysteine. Biochem Biophys Res Commun 290:1393–1398

    Article  CAS  PubMed  Google Scholar 

  • Sundaram RK, Bhaskar A, Vijayalingam S et al (1996) Antioxidant status and lipid peroxidation in type II diabetes mellitus with and without complications. Clin Sci 90:255–260

    CAS  PubMed  Google Scholar 

  • Tenner TE Jr, Zhang XJ, Lombardini JB (2003) Hypoglycemic effects of taurine in the alloxan-treated rabbit: a model for type 1 diabetes. Adv Exp Med Biol 526:97–104

    Article  CAS  PubMed  Google Scholar 

  • Tokunaga H, Yoneda Y, Kuriyama K (1979) Protective actions of taurine against streptozotocin-induced hyperglycemia. Biochem Pharmacol 28:2807–2811

    Article  CAS  PubMed  Google Scholar 

  • Tourrel C, Bailbe D, Lacorne M, Meile MJ, Kergoat M, Portha B (2002) Persistent improvement of type 2 diabetes in the Goto–Kakizaki rat model by expansion of the β-cell mass during the prediabetic period with glucagon-like peptide-1 or exendin-4. Diabetes 51:1443–1452

    Article  CAS  PubMed  Google Scholar 

  • Trachtman H, Futterweit S, Maesaka J, Ma C, Valderrama E, Fuchs A, Tarectecan AA, Rao PS, Sturman JA, Boles TH (1995) Taurine ameliorates chronic streptozotocin-induced diabetic nephropathy in rats. Am J Physiol 269:F429–F438

    Article  CAS  PubMed  Google Scholar 

  • Trocino RA, Akazawa S, Ishibashi M et al (1995) Significance of glutathione depletion and oxidative stress in early embryogenesis in glucose-induced rat embryo culture. Diabetes 44: 992–998

    Article  CAS  PubMed  Google Scholar 

  • Valko M, Leibfritz D, Moncola J et al (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  CAS  PubMed  Google Scholar 

  • Winiarska K, Szymanski K, Gorniak P, Dudziak M, Bryla J (2009) Hypoglycaemic, antioxidative and nephroprotective effects of taurine in alloxan diabetic rabbits. Biochimie 91:261–270

    Article  CAS  PubMed  Google Scholar 

  • Wohaieb SA, Godin DV (1987) Alterations in free radical tissue-defense mechanisms in streptozotocin-induced diabetes in rat. Effects of insulin treatment. Diabetes 36:1014–1018

    Article  CAS  PubMed  Google Scholar 

  • Ziparo E, Lemay A, Marchesi VT (1978) The distribution of spectrin along the membranes of normal and echinocytic human erythrocytes. J Cell Sci 34:91–101

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesar A. Lau-Cam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Budhram, R., Pandya, K.G., Lau-Cam, C.A. (2013). Protection by Taurine and Thiotaurine Against Biochemical and Cellular Alterations Induced by Diabetes in a Rat Model. In: El Idrissi, A., L'Amoreaux, W. (eds) Taurine 8. Advances in Experimental Medicine and Biology, vol 775. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6130-2_27

Download citation

Publish with us

Policies and ethics