Advertisement

Taurine 8 pp 311-320 | Cite as

Antidiabetic Effect of Taurine in Cultured Rat Skeletal L6 Myotubes

  • Sun Hee Cheong
  • Kyung Ja ChangEmail author
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 775)

Abstract

Taurine (2-aminoethanesulfonic acid), a sulfur-containing β-amino acid, is found in all animal cells at millimolar concentrations and has been reported to show various health promoting activities including antidiabetic properties. The beneficial effects of taurine in diabetes mellitus have been known. However, the exact mechanism of hypoglycemic action of taurine is not properly defined. In this study, we investigated antidiabetic effect of taurine in the cell culture system using rat skeletal muscle cells. In cultured rat skeletal L6 myotubes, we studied the effect of taurine (0–100 μM) on glucose uptake to plasma membrane from the aspects of AMP-activated protein kinase (AMPK) signaling. Taurine stimulated glucose uptake in a dose-dependent manner by activating AMPK signaling. From these results, it may suggest that taurine show antidiabetic effect by stimulating insulin-independent glucose uptake in rat skeletal muscle.

Keywords

Glucose Uptake Wako Pure Chemical Industry Antidiabetic Effect Increase Glucose Uptake Stimulate Glucose Uptake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

AMPK

AMP-activated protein kinase

PI3K

Phosphatidylinositol-3 kinase

GLUT4

Glucose transporter 4

References

  1. Aerts L, Van Assche FA (2002) Taurine and taurine-deficiency in the perinatal period. J Perinat Med 30:281–286. doi: 10.1515/JPM.2002.040 PubMedCrossRefGoogle Scholar
  2. Brons C, Spohr C, Storgaard H, Dyerberg J, Vaag A (2004) Effect of taurine treatment on insulin secretion and action on serum lipid levels in overweighted men with genetic predisposition for type II diabetes mellitus. Eur J Clin Nutr 58:1239–1247. doi: 10.1038/sj.ejcn.1601955 PubMedCrossRefGoogle Scholar
  3. Brosnan JT, Brosnan ME (2006) The sulfur-containing amino acids: an overview. J Nutr 136: 1636S–1640SPubMedGoogle Scholar
  4. Carneiro EM, Latorraca MQ, Araujo E, Beltrá M, Oliveras MJ, Navarro M, Berná G, Bedoya FJ, Velloso LA, Soria B, Martin F (2009) Taurine supplementation modulates glucose homeostasis and islet function. J Nutr Biochem 20:503–511. doi: 10.1016/j.jnutbio.2008.05.00810.1016/j.jnutbio. 2008.05.008 PubMedCrossRefGoogle Scholar
  5. Chang KJ (2000) Effect of taurine and β-alanine on morphological changes of pancreas in streptozotocin-induced rats. Adv Exp Med Biol 483:571–577. doi: 10.1007/0-306-46838-7_61 PubMedCrossRefGoogle Scholar
  6. Cherif H, Reusens B, Ahn MT, Hoet JJ, Remacle C (1998) Effects of taurine on the insulin secretion of rat fetal islets from dams fed a low-protein diet. J Endocrinol 159:341–348. doi: 10.1677/joe.0.1590341 PubMedCrossRefGoogle Scholar
  7. Colivicchi MA, Raimondi L, Bianchi L, Tipton KF, Pirisino R, Della Corte L (2004) Taurine prevents streptozotocin impairment of hormone-stimulated glucose uptake in rat adipocytes. Eur J Pharmacol 495:209–215. doi: 10.1016/j.ejphar.2004.05.004 PubMedCrossRefGoogle Scholar
  8. Das J, Ghosh J, Manna PM, Sil PC (2008) Taurine provides antioxidant defense against NaF-induced cytotoxicity in murine hepatocytes. Pathophysiology 15:181–190. doi: 10.1016/j.pathophys.2008.06.002 PubMedCrossRefGoogle Scholar
  9. Das J, Ghosh J, Manna P, Sinha M, Sil PC (2009) Taurine protects rat testes against NaAsO2-induced oxidative stress and apoptosis via mitochondrial dependent and independent pathways. Toxicol Lett 187:201–210. doi: 10.1016/j.toxlet.2009.03.001 PubMedCrossRefGoogle Scholar
  10. De la Puerta C, Arrieta FJ, Balsa JA, Botella-Carretero JI, Zamarron I, Vazquez C (2010) Taurine and glucose metabolism: a review. Nutr Hosp 25:910–919. doi: 10.3305/nh.2010.25.6.4815 PubMedGoogle Scholar
  11. Doi M, Yamaoka I, Fukunaga T, Nakayama M (2003) Isoleucine, a potent plasma glucose-lowering amino acid, stimulates glucose uptake in C2C12myotubes. Biochem Biophys Res Commun 312:1111–1117. doi: 10.1016/j.bbrc.2003.11.039 PubMedCrossRefGoogle Scholar
  12. El Idrissi A, Trenkner E (2004) Taurine as a modulator of excitatory and inhibitory neurotransmission. Neurochem Res 1:189–197. doi: 10.1023/B:NERE.0000010448.17740.6e CrossRefGoogle Scholar
  13. Franconi F, Di Leo MA, Bennardini F, Ghirlanda G (2004) Is taurine beneficial in reducing risk factors for diabetes mellitus? Neurochem Res 29:143–150PubMedCrossRefGoogle Scholar
  14. Herman MA, Kahn BB (2006) Glucose transport and sensing in the maintenance of glucose homeostasis and metabolic harmony. J Clin Invest 116:1767–1775. doi: 10.1172/JCI29027 PubMedCrossRefGoogle Scholar
  15. Jessen N, Goodyear LJ (2005) Contraction signaling to glucose transport in skeletal muscle. J Appl Physiol 99:330–337. doi: 10.1152/japplphysiol.00175.2005 PubMedCrossRefGoogle Scholar
  16. Kulakowski EC, Maturo J (1984) Hypoglycemic properties of taurine: not mediated by enhanced insulin release. Biochem Pharmacol 33:2835–2838. doi: 10.1016/0006-2952(84)90204-1 PubMedCrossRefGoogle Scholar
  17. Lampson WG, Kramer JH, Schaffer SW (1983) Potentiation of the actions of insulin by taurine. Can J Physiol Pharmacol 61:457–463. doi: 10.1139/y83-070 PubMedCrossRefGoogle Scholar
  18. Magnoni LJ, Vraskou Y, Palstra AP, Planas JV (2012) AMP-activated protein kinase plays an important evolutionary conserved role in the regulation of glucose metabolism in fish skeletal muscle cells. PLoS One 7:e31219. doi: 10.1371/journal.pone.0031219 PubMedCrossRefGoogle Scholar
  19. Manna P, Das J, Ghosh J, Sil PC (2010) Contribution of type 1 diabetes to rat liver dysfunction and cellular damage via activation of NOS, PARP, IκBα/NF-κB, MAPKs, and mitochondria-dependent pathways: prophylactic role of arjunolic acid. Free Radic Biol Med 48:1465–1484. doi: 10.1016/j.freeradbiomed.2010.02.025 PubMedCrossRefGoogle Scholar
  20. Maturo J, Kulakowski EC (1988) Taurine binding to the purified insulin receptor. Biochem Pharmacol 37:3755–3760. doi: 10.1016/0006-2952(88)90411-X PubMedCrossRefGoogle Scholar
  21. Moller DE (2001) New drug targets for type 2 diabetes and the metabolic syndrome. Nature 414:821–827. doi: 10.1038/414821a PubMedCrossRefGoogle Scholar
  22. Pasantes-Morales H, Wright CE, Gaull GE (1985) Taurine protection of lymphoblastoid cells from iron-ascorbate-induced damage. Biochem Pharmacol 34:2205–2207. doi: 10.1016/0006-2952(85)90419-8 PubMedCrossRefGoogle Scholar
  23. Racasan S, Braam B, van der Giezen DM, Goldschmeding R, Boer P, Koomans HA (2004) Perinatal L-arginine and antioxidant supplements reduce adult blood pressure in spontaneously hypertensive rats. Hypertension 44:83–88. doi: 10.1161/01.HYP.0000133251.40322.20 PubMedCrossRefGoogle Scholar
  24. Ribeiro RA, Bonfleur ML, Amaral AG, Vanzela EC, Rocco SA, Boschero AC, Carneiro EM (2009) Taurine supplementation enhances nutrient-induced insulin secretion in pancreatic mice islets. Diabetes Metab Res Rev 25:370–379. doi: 10.1002/dmrr.959 PubMedCrossRefGoogle Scholar
  25. Saltiel AR, Kahn CR (2001) Insulin signaling and the regulation of glucose and lipid metabolism. Nature 414:799–806. doi: 10.1038/414799a PubMedCrossRefGoogle Scholar
  26. Schaffer SW, Azuma J, Mozaffari M (2009) Role of antioxidant activity of taurine in diabetes. Can J Physiol Pharmacol 87:91–99. doi: 10.1139/Y08-110 PubMedCrossRefGoogle Scholar
  27. Sinha M, Manna P, Sil PC (2007) Taurine, a conditionally essential amino acid, ameliorates arsenic-induced cytotoxicity in murine hepatocytes. Toxicol In Vitro 21:1419–1428. doi: 10.1016/j.tiv.2007.05.010 PubMedCrossRefGoogle Scholar
  28. Solon CS, Franci D, Ignacio-Souza LM, Romanatto T, Roman EA, Arruda AP, Morari J, Torsoni AS, Carneiro EM, Velloso LA (2011) Taurine enhances the anorexigenic effects of insulin in the hypothalamus of rats. Amino Acids. doi: 10.1007/s00726-011-1045-5
  29. Thurston JH, Hauhart RE, Dirgo JA (1980) Taurine: a role in osmotic regulation of mammalian brain and possible clinical significance. Life Sci 26:1561–1568. doi: 10.1016/0024-3205(80)90358-6 PubMedCrossRefGoogle Scholar
  30. Towler MC, Hardie DG (2007) AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res 100:328–341. doi: 10.1161/01.RES.0000256090.42690.05 PubMedCrossRefGoogle Scholar
  31. Zou MH, Kirkpatrick SS, Davis BJ, Nelson JS, Wiles WG IV, Schlattner U, Neumann D, Brownlee M, Freeman MB, Goldman MH (2004) Activation of the AMP-activated protein kinase by the anti-diabetic drug metformin in vivo. Role of mitochondrial reactive nitrogen species. J Biol Chem 279:43940–43951. doi: 10.1074/jbc.M404421200 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Applied Biological ChemistryTokyo University of Agriculture and TechnologyFuchuJapan
  2. 2.Department of Food and NutritionInha UniversityIncheonKorea

Personalised recommendations