Skip to main content

Taurine’s Effects on the Neuroendocrine Functions of Pancreatic β Cells

  • Conference paper
  • First Online:
Taurine 8

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 775))

Abstract

Taurine plays significant physiological roles, including those involved in neurotransmission. Taurine is a potent γ-aminobutyric acid (GABA) agonist and alters cellular events via GABAA receptors. Alternately, taurine is transported into cells via the high affinity taurine transporter (TauT), where it may also play a regulatory role. We have previously demonstrated that treatment of Hit-T15 cells with 1 mM taurine for 24 h significantly decreases insulin and GABA levels. We have also demonstrated that chronic in vivo administration of taurine results in an up-regulation of glutamic acid decarboxylase (GAD), the key enzyme in GABA synthesis. Here, we wished to test if administration of 1 mM taurine for 24 h may increase release of another β cell neurotransmitter somatostatin (SST) and also directly impact up-regulation of GAD synthesis. Treatment with taurine did not significantly alter levels of SST (p > 0.05) or GAD67 (p > 0.05). This suggests that taurine does not directly affect SST release, nor does it directly affect GAD synthesis. Taken together with our observation that taurine does promote GABA release via large dense-core vesicles, the data suggest that taurine may alter membrane potential, which in turn would affect calcium flux. We show here that 1 mM taurine does not alter intracellular Ca2+ concentrations from 20 to 80 s post treatment (p > 0.05), but does increase Ca2+ flux between 80 and 200 s post-treatment (p < 0.005). This suggests that taurine may induce a biphasic response in β cells. The initial response of taurine via GABAA receptors hyperpolarizes β cell and sequesters Ca2+. Subsequently, taurine may affect Ca2+ flux in long term via interaction with KATP channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

GABA:

γ-Aminobutyric acid

Tau:

Taurine

GAD:

Glutamic acid decarboxylase

TauT:

Taurine transporter

LDCV:

Large dense-core vesicles

SLMV:

Synapse-like microvesicles

SST:

Somatostatin

References

  • Agrawal HC, Davison AN, Kaczmarek LK (1971) Subcellular distribution of taurine and ­cysteinesulphinate decarboxylase in developing rat brain. Biochem J 122:759–763

    PubMed  CAS  Google Scholar 

  • Aguila MC, McCann SM (1985) Stimulation of somatostatin release from median eminence tissue incubated in vitro by taurine and related amino acids. Endocrinology 116:1158–1162

    Article  PubMed  CAS  Google Scholar 

  • Ahren B (2009) Islet G protein-coupled receptors as potential targets for treatment of type 2 diabetes. Nat Rev Drug Discov 8:369–385

    Article  PubMed  CAS  Google Scholar 

  • Braun M, Ramracheya R, Bengtsson M, Clark A, Walker JN, Johnson PR, Rorsman P (2010) Gamma-aminobutyric acid (GABA) is an autocrine excitatory transmitter in human pancreatic beta-cells. Diabetes 59:1694–1701

    Article  PubMed  CAS  Google Scholar 

  • Braun M, Wendt A, Birnir B, Broman J, Eliasson L, Galvanovskis J, Gromada J, Mulder H, Rorsman P (2004) Regulated exocytosis of GABA-containing synaptic-like microvesicles in pancreatic beta-cells. J Gen Physiol 123:191–204

    Article  PubMed  CAS  Google Scholar 

  • Braun M, Wendt A, Karanauskaite J, Galvanovskis J, Clark A, MacDonald PE, Rorsman P (2007) Corelease and differential exit via the fusion pore of GABA, serotonin, and ATP from LDCV in rat pancreatic beta cells. J Gen Physiol 129:221–231

    Article  PubMed  CAS  Google Scholar 

  • Cheng H, Yibchok-anun S, Coy DH, Hsu WH (2002) SSTR2 mediates the somatostatin-induced increase in intracellular Ca(2+) concentration and insulin secretion in the presence of arginine vasopressin in clonal beta-cell HIT-T15. Life Sci 71:927–936

    Article  PubMed  CAS  Google Scholar 

  • Cho JH, Chen L, Kim MH, Chow RH, Hille B, Koh DS (2010) Characteristics and functions of {alpha}-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors expressed in mouse pancreatic {alpha}-cells. Endocrinology 151:1541–1550

    Article  PubMed  CAS  Google Scholar 

  • Doyle ME, Egan JM (2003) Pharmacological agents that directly modulate insulin secretion. Pharmacol Rev 55:105–131

    Article  PubMed  CAS  Google Scholar 

  • Efendic S, Enzmann F, Nylen A, Uvnas-Wallensten K, Luft R (1979) Effect of glucose/sulfonylurea interaction on release of insulin, glucagon, and somatostatin from isolated perfused rat pancreas. Proc Natl Acad Sci U S A 76:5901–5904

    Article  PubMed  CAS  Google Scholar 

  • Efendic S, Enzmann F, Nylen A, Uvnas-Wallensten K, Luft R (1980) Sulphonylurea (glubenclamide) enhances somatostatin and inhibits glucagon release induced by arginine. Acta Physiol Scand 108:231–233

    Article  PubMed  CAS  Google Scholar 

  • El Idrissi A (2008) Taurine increases mitochondrial buffering of calcium: role in neuroprotection. Amino Acids 34:321–328

    Article  PubMed  CAS  Google Scholar 

  • El Idrissi A, Boukarrou L, L’Amoreaux W (2009a) Taurine supplementation and pancreatic remodeling. Adv Exp Med Biol 643:353–358

    Article  PubMed  CAS  Google Scholar 

  • El Idrissi A, Boukarrou L, Splavnyk K, Zavyalova E, Meehan EF, L’Amoreaux W (2009b) Functional implication of taurine in aging. Adv Exp Med Biol 643:199–206

    Article  PubMed  CAS  Google Scholar 

  • El Idrissi A, Trenkner E (2003) Taurine regulates mitochondrial calcium homeostasis. Adv Exp Med Biol 526:527–536

    Article  PubMed  CAS  Google Scholar 

  • El Idrissi A, Yan X, L’Amoreaux W, Brown WT, Dobkin C (2012) Neuroendocrine alterations in the fragile X mouse. Results Probl Cell Differ 54:201–221

    Article  PubMed  CAS  Google Scholar 

  • El Idrissi A, Yan X, Sidime F, L’Amoreaux W (2010) Neuro-endocrine basis for altered plasma glucose homeostasis in the Fragile X mouse. J Biomed Sci 17 Suppl 1:S8

    Google Scholar 

  • Gilon P, Bertrand G, Loubatieres-Mariani MM, Remacle C, Henquin JC (1991) The influence of gamma-aminobutyric acid on hormone release by the mouse and rat endocrine pancreas. Endocrinology 129:2521–2529

    Article  PubMed  CAS  Google Scholar 

  • Goldsmith PC, Rose JC, Arimura A, Ganong WF (1975) Ultrastructural localization of somatostatin in pancreatic islets of the rat. Endocrinology 97:1061–1064

    Article  PubMed  CAS  Google Scholar 

  • Gu XH, Kurose T, Kato S, Masuda K, Tsuda K, Ishida H, Seino Y (1993) Suppressive effect of GABA on insulin secretion from the pancreatic beta-cells in the rat. Life Sci 52:687–694

    Article  PubMed  CAS  Google Scholar 

  • Han J, Bae JH, Kim SY, Lee HY, Jang BC, Lee IK, Cho CH, Lim JG, Suh SI, Kwon TK, Park JW, Ryu SY, Ho WK, Earm YE, Song DK (2004) Taurine increases glucose sensitivity of UCP2-overexpressing beta-cells by ameliorating mitochondrial metabolism. Am J Physiol Endocrinol Metab 287:E1008–E1018

    Article  PubMed  CAS  Google Scholar 

  • Hayashi M, Yamada H, Uehara S, Morimoto R, Muroyama A, Yatsushiro S, Takeda J, Yamamoto A, Moriyama Y (2003) Secretory granule-mediated co-secretion of L-glutamate and glucagon triggers glutamatergic signal transmission in islets of Langerhans. J Biol Chem 278: 1966–1974

    Article  PubMed  CAS  Google Scholar 

  • Kawai, Unger RH (1983) Effects of gamma-aminobutyric acid on insulin, glucagon, and somatostatin release from isolated perfused dog pancreas. Endocrinology 113:111–113

    Article  PubMed  CAS  Google Scholar 

  • Koh DS, Cho JH, Chen L (2012) Paracrine interactions within islets of Langerhans. J Mol Neurosci 48(2):429–440

    Article  PubMed  CAS  Google Scholar 

  • L’Amoreaux WJ, Cuttitta C, Santora A, Blaize JF, Tachjadi J, El Idrissi A (2010) Taurine regulates insulin release from pancreatic beta cell lines. J Biomed Sci 17(Suppl 1):S11

    Article  PubMed  Google Scholar 

  • McDermott AM, Sharp GW (1993) Inhibition of insulin secretion: a fail-safe system. Cell Signal 5:229–234

    Article  PubMed  CAS  Google Scholar 

  • Muroyama A, Uehara S, Yatsushiro S, Echigo N, Morimoto R, Morita M, Hayashi M, Yamamoto A, Koh DS, Moriyama Y (2004) A novel variant of ionotropic glutamate receptor regulates somatostatin secretion from delta-cells of islets of Langerhans. Diabetes 53:1743–1753

    Article  PubMed  CAS  Google Scholar 

  • Nathan B, Floor E, Kuo CY, Wu JY (1995) Synaptic vesicle-associated glutamate decarboxylase: identification and relationship to insulin-dependent diabetes mellitus. J Neurosci Res 40:134–137

    Article  PubMed  CAS  Google Scholar 

  • Rorsman P, Berggren PO, Bokvist K, Ericson H, Mohler H, Ostenson CG, Smith PA (1989) Glucose-inhibition of glucagon secretion involves activation of GABAA-receptor chloride channels. Nature 341:233–236

    Article  PubMed  CAS  Google Scholar 

  • Satin LS, Kinard TA (1998) Neurotransmitters and their receptors in the islets of Langerhans of the pancreas: what messages do acetylcholine, glutamate, and GABA transmit? Endocrine 8:213–223

    Article  PubMed  CAS  Google Scholar 

  • Schaffer SW, Jong CJ, Ramila KC, Azuma J (2010) Physiological roles of taurine in heart and muscle. J Biomed Sci 17 Suppl 1:S2

    Google Scholar 

  • Seaquist ER, Armstrong MB, Gettys TW, Walseth TF (1995) Somatostatin selectively couples to G(o) alpha in HIT-T15 cells. Diabetes 44:85–89

    Article  PubMed  CAS  Google Scholar 

  • Sorenson RL, Garry DG, Brelje TC (1991) Structural and functional considerations of GABA in islets of Langerhans. Beta-cells and nerves. Diabetes 40:1365–1374

    Article  PubMed  CAS  Google Scholar 

  • Suckale J, Solimena M (2010) The insulin secretory granule as a signaling hub. Trends Endocrinol Metab 21:599–609

    Article  PubMed  CAS  Google Scholar 

  • Taborsky GJ Jr (1983) Evidence of a paracrine role for pancreatic somatostatin in vivo. Am J Physiol 245:E598–E603

    PubMed  CAS  Google Scholar 

  • Thermos K, Meglasson MD, Nelson J, Lounsbury KM, Reisine T (1990) Pancreatic beta-cell somatostatin receptors. Am J Physiol 259:E216–E224

    PubMed  CAS  Google Scholar 

  • Tricarico D, Barbieri M, Camerino DC (2000) Taurine blocks ATP-sensitive potassium channels of rat skeletal muscle fibres interfering with the sulphonylurea receptor. Br J Pharmacol 130:827–834

    Article  PubMed  CAS  Google Scholar 

  • Wu JY, Prentice H (2010) Role of taurine in the central nervous system. J Biomed Sci 17 Suppl 1:S1

    Google Scholar 

  • Yao CY, Gill M, Martens CA, Coy DH, Hsu WH (2005) Somatostatin inhibits insulin release via SSTR2 in hamster clonal beta-cells and pancreatic islets. Regul Pept 129:79–84

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Jonathan Blaize and Janto Tachjadi for assistance with the confocal microscopy. Support for the confocal microscope comes from the National Science Foundation (DBI 0421046). Support also from the Professional Staff Congress of the City University of New York. We would also like to thank the Organizing Committee of the 18th International Taurine Meeting for the scientific and social programs and the participants that made this a memorable conference.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina M. Cuttitta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Cuttitta, C.M., Guariglia, S.R., Idrissi, A.E., L’Amoreaux, W.J. (2013). Taurine’s Effects on the Neuroendocrine Functions of Pancreatic β Cells. In: El Idrissi, A., L'Amoreaux, W. (eds) Taurine 8. Advances in Experimental Medicine and Biology, vol 775. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6130-2_25

Download citation

Publish with us

Policies and ethics