Taurine 8 pp 269-283 | Cite as

Influence of Taurine Haloamines (TauCl and TauBr) on the Development of Pseudomonas aeruginosa Biofilm: A Preliminary Study

  • Janusz MarcinkiewiczEmail author
  • Magdalena Strus
  • Maria Walczewska
  • Agnieszka Machul
  • Diana Mikołajczyk
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 775)


Biofilms are consortia of microorganisms (sessile cells) that form on various surfaces including mucosal membranes or teeth. Bacterial biofilms cause many human infections such as chronic sinusitis, acne vulgaris, periodontal diseases, and chronic wounds. These infections are persistent as they show increased resistance to antibiotics and host defense system. Taurine chloramine (TauCl) and taurine bromamine (TauBr) are the physiological products of activated neutrophils, resulting from the reaction between taurine with hypochlorous acid (HOCl) and hypobromous acid (HOBr), respectively. It has been shown in vitro that taurine haloamines exert antimicrobial properties against various pathogenic bacteria. Moreover, clinical studies have shown that both haloamines are effective in the local treatment of skin and mucose infections, including biofilm-related infections. Nevertheless, it has been not tested yet whether they can kill bacteria hidden in biofilm or disrupt biofilm structure. In this study we have investigated the capacity of TauCl and TauBr to inhibit in vitro the formation of P. aeruginosa biofilm. We have also tested their ability to destroy the mature biofilm. Our results suggest that TauBr is able to inhibit in vitro the formation of P. aeruginosa biofilm but cannot destroy the mature biofilm and effectively killed hidden bacteria. In further studies, the combined effect of TauBr and DNase, one of suggested biofilm inhibitors, was tested. Together, we conclude that TauBr is a better than TauCl candidate for local therapy of biofilm-related infections. However, a combined therapy, an application of TauBr together with other anti-biofilm agents (e.g., DNase), seems to be more promising.


Extracellular Polymeric Substance Planktonic Form Sessile Cell Taurine Chloramine Hypobromous Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





Taurine chloramine


Taurine bromamine

P. aeruginosa

Pseudomonas aeruginosa


Colony forming units



We want to thank Prof. Waldemar Gottardi and Prof. Marcus Nagl from the Division of Hygiene and Medical Microbiology, Innsbruck Medical University, Austria, for giving us N-chlorotaurine sodium salt. This paper was supported by Jagiellonian University Medical College grant No K/ZDS/002964, grant No K/ZDS/002861 and grant N N 401 547 040.


  1. Allesen-Holm M, Barken KB, Yang L, Klausen M, Webb JS, Kjelleberg S, Molin S, Givskov M, Tolker-Nielsen T (2006) A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol 59(4):1114–1128PubMedCrossRefGoogle Scholar
  2. Bjarnsholt T, Kirketerp-Møller K, Jensen PØ, Madsen KG, Phipps R, Krogfelt K, Høiby N, Givskov M (2008) Why chronic wounds will not heal: a novel hypothesis. Wound Repair Regen 16(1):2–10PubMedCrossRefGoogle Scholar
  3. Burkhart CG, Burkhart CN, Lehmann PF (1999) Acne: a review of immunologic and microbiologic factors. Postgrad Med J 75:328–331PubMedGoogle Scholar
  4. Costerton JW (2002) Anaerobic biofilm infections in cystic fibrosis. Mol Cell 10(4):699–700PubMedCrossRefGoogle Scholar
  5. Fazli M, Bjarnsholt T, Kirketerp-Møller K (2009) Nonrandom distribution of Pseudomonas aeruginosa and Staphylococcus aureus in chronic wounds. J Clin Microbiol 47:4084–4089PubMedCrossRefGoogle Scholar
  6. Fux CA, Costerton JW, Stewart PS, Stoodley P (2005) Survival strategies of infectious biofilms. Trends Microbiol 13(1):34–40PubMedCrossRefGoogle Scholar
  7. Fuxman Bass JI, Russo DM, Gabelloni ML, Geffner JR, Giordano M, Catalano M, Zorreguieta A, Trevani AS (2010) Extracellular DNA: a major proinflammatory component of Pseudomonas aeruginosa biofilms. J Immunol 1(184(11)):6386–6395CrossRefGoogle Scholar
  8. Gaut JP, Yeh GC, Tran DH, Byun J, Henderson JP, Richter GM, Brennan ML, Lusis AJ, Belaaouaj A, Hotchkiss RS, Heinecke JW (2001) Neutrophils employ the myeloperoxidase system to generate antimicrobial brominating and chlorinating oxidants during sepsis. Proc Natl Acad Sci 98:11961–11966PubMedCrossRefGoogle Scholar
  9. Ghafoor A, Hay ID, Rehm BH (2011) Role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture. Appl Environ Microbiol 77(15):5238–5246PubMedCrossRefGoogle Scholar
  10. Gottardi W, Nagl M (2002) Chemical properties of N-chlorotaurine sodium, a key compound in the human defence system. Arch Pharm 335(9):411–421CrossRefGoogle Scholar
  11. Gottardi W, Nagl M (2010) N-chlorotaurine, a natural antiseptic with outstanding tolerability. J Antimicrob Chemother 65:399–409PubMedCrossRefGoogle Scholar
  12. Gstöttner M, Nagl M, Pototschnig C, Neher A (2003) Refractory rhinosinusitis complicating immunosuppression: application of N-chlorotaurine, a novel endogenous antiseptic agent. ORL J Otorhinolaryngol Relat Spec 65(5):303–305PubMedCrossRefGoogle Scholar
  13. Hall-Stoodley L, Nistico L, Sambanthamoorthy K, Dice B, Nguyen D, Mershon WJ, Johnson C, Hu FZ, Stoodley P, Ehrlich GD, Post JC (2008) Characterization of biofilm matrix, degradation by DNase treatment and evidence of capsule downregulation in Streptococcus pneumoniae clinical isolates. BMC Microbiol 8:173PubMedCrossRefGoogle Scholar
  14. Holmberg A, Lood R, Mörgelin M, Söderquist B, Holst E, Collin M, Christensson B, Rasmussen M (2009) Biofilm formation by Propionibacterium acnes is a characteristic of invasive isolates. Clin Microbiol Infect 15(8):787–795PubMedCrossRefGoogle Scholar
  15. Leid JG, Willson CJ, Shirtliff ME, Hassett DJ, Parsek MR, Jeffers AK (2005) The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-gamma-mediated macrophage killing. J Immunol 175(11):7512–7518PubMedGoogle Scholar
  16. Mah TF, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39PubMedCrossRefGoogle Scholar
  17. Mann EE, Wozniak DJ (2011) Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiol Rev. doi:10.1111/j.1574-6976.2011.00322.xGoogle Scholar
  18. Marcinkiewicz J (2009) Taurine bromamine: a new therapeutic option in inflammatory skin diseases. Pol Arch Med Wewn 119:673–675PubMedGoogle Scholar
  19. Marcinkiewicz J, Mak M, Bobek M, Biedroń R, Białecka A, Koprowski M, Kontny E, Maśliński W (2005) Is there a role of taurine bromamine in inflammation? Interactive effects with nitrite and hydrogen peroxide. Inflamm Res 54(1):42–49PubMedCrossRefGoogle Scholar
  20. Marcinkiewicz J, Chain B, Nowak B et al (2000) Antimicrobial and cytotoxic activity of hypochlorous acid: interactions with taurine and nitrite. Inflamm Res 49:280–289PubMedCrossRefGoogle Scholar
  21. Marcinkiewicz J, Biedroń R, Białecka A et al (2006) Susceptibility of Propionibacterium acnes and Staphylococcus epidermidis to killing by MPO-halide system products. Implication for taurine bromamine as a new candidate for topical therapy in treating acne vulgaris. Arch Immunol Ther Exp 54(1):61–68CrossRefGoogle Scholar
  22. Marcinkiewicz J, Wojas-Pelc A, Walczewska M, Lipko-Godlewska S, Jachowicz R, Maciejewska A, Białecka A, Kasprowicz A (2008) Topical taurine bromamine, a new candidate in the treatment of moderate inflammatory acne vulgaris. Eur J Dermatol 18:433–439PubMedGoogle Scholar
  23. Martins M, Henriques M, Lopez-Ribot JL, Oliveira R (2012) Addition of DNase improves the in vitro activity of antifungal drugs against Candida albicans biofilms. Mycoses 55(1):80–85PubMedCrossRefGoogle Scholar
  24. Montanaro L, Poggi A, Visai L, Ravaioli S, Campoccia D, Speziale P, Arciola CR (2011) Extracellular DNA in biofilms. Int J Artif Organs 34(9):824–831. doi:10.5301/ijao.5000051PubMedCrossRefGoogle Scholar
  25. Nagl M, Nguyen VA, Gottardi W et al (2003) Tolerability and efficacy of N-chlorotaurine in comparison with chloramine T for treatment of chronic leg ulcers with a purulent coating: a randomized phase II study. Br J Dermatol 149:590–597PubMedCrossRefGoogle Scholar
  26. Nagl M, Teuchner B, Pöttinger E, Ulmer H, Gottardi W (2000a) Tolerance of N-chlorotaurine, a new antimicrobial agent, in infectious conjunctivitis – a phase II pilot study. Ophthalmologica 214(2):111–114PubMedCrossRefGoogle Scholar
  27. Nagl M, Hess MW, Pfaller K, Hengster P, Gottardi W (2000b) Bactericidal activity of micromolar N-chlorotaurine: evidence for its antimicrobial function in the human defense system. Antimicrob Agents Chemother 44:2507–2513PubMedCrossRefGoogle Scholar
  28. O’Toole GA, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79PubMedCrossRefGoogle Scholar
  29. Reuter M, Mallett A, Pearson BM, van Vliet AHM (2010) Biofilm formation by Campylobacter jejuni is increased under aerobic conditions. Appl Environ Microbiol 76(7):2122–2128PubMedCrossRefGoogle Scholar
  30. Ryder C, Byrd M, Wozniak DJ (2007) Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Curr Opin Microbiol 10(6):644–648PubMedCrossRefGoogle Scholar
  31. Sutherland IW (2001) The biofilm matrix – an immobilized but dynamic microbial environment. Trends Microbiol 9(5):222–227PubMedCrossRefGoogle Scholar
  32. Tascini C, Gemignani G, Palumbo F, Leonildi A, Tedeschi A, Lambelet P, Lucarini A, Piaggesi A, Menichetti F (2006) Clinical and microbiological efficacy of colistin therapy alone or in combination as treatment for multidrug resistant Pseudomonas aeruginosa diabetic foot infections with or without osteomyelitis. J Chemother 18:648–651PubMedGoogle Scholar
  33. Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS (2002) Extracellular DNA required for bacterial biofilm formation. Science 295(5559):1487PubMedCrossRefGoogle Scholar
  34. Zhao G, Hochwalt PC, Usui ML, Underwood RA, Singh PK, James GA, Stewart PS, Fleckman P, Olerud JE (2010) Delayed wound healing in diabetic (db/db) mice with Pseudomonas aeruginosa biofilm challenge: a model for the study of chronic wounds. Wound Repair Regen 18(5):467–477PubMedCrossRefGoogle Scholar
  35. Yang L, Barken KB, Skindersoe ME, Christensen AB, Givskov M, Tolker-Nielsen T (2007) Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa. Microbiology 153(Pt 5):1318–1328PubMedCrossRefGoogle Scholar
  36. Yazdanbakhsh M, Eckmann CM, Roos D (1987) Killing of schistosomula by taurine chloramine and taurine bromamine. Am J Trop Med Hyg 37:106–110PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Janusz Marcinkiewicz
    • 1
    Email author
  • Magdalena Strus
    • 2
  • Maria Walczewska
    • 1
  • Agnieszka Machul
    • 2
  • Diana Mikołajczyk
    • 2
  1. 1.Department of ImmunologyJagiellonian University Medical CollegeCracowPoland
  2. 2.Department of MicrobiologyJagiellonian University Medical CollegeCracowPoland

Personalised recommendations