Surgical Site Infections

  • Vanessa P. Ho
  • Soumitra R. Eachempati
  • Philip S. Barie
Chapter

Abstract

Infections of surgical incisions are a common complication of surgery, occurring in about 3 % of all surgical procedures and in up to 20 % of patients who undergo emergency intra-abdominal operations [1]. In 1992, the US Centers for Disease Control and Prevention (CDC) changed the terminology from wound infection to surgical site infection (SSI) to differentiate infections of surgical incisions from infections of traumatic wounds [2]. Surgical site infections can cause substantial morbidity to patients by failure of incisions to heal, incisional hernias, fistulae, recurrent pain, and disfiguring scars; additionally, SSIs may bring about further infectious complications such as bacteremia. This morbidity also creates a substantial financial burden to hospitals and patients [3]. The development of SSIs is also used increasingly as a performance measure in recent government and insurance “pay for performance” initiatives, such that surgeons and hospitals with higher rates of SSI will be receiving lower reimbursements. For all of these reasons, surgeons must be aware of all measures to prevent and treat SSI effectively.

Keywords

Obesity Ischemia Iodine Bacillus Microbe 

References

  1. 1.
    Barie PS. Surgical site infections: epidemiology and prevention. Surg Infect (Larchmt). 2002;3 Suppl 1:S9–21.CrossRefGoogle Scholar
  2. 2.
    Horan TC, Gaynes RP, Martone WJ, Jarvis WR, Emori TG. CDC definitions of nosocomial surgical site infections, 1992: a modification of CDC definitions of surgical wound infections. Infect Control Hosp Epidemiol. 1992;13(10):606–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Fry DE. The economic costs of surgical site infection. Surg Infect (Larchmt). 2002;3 Suppl 1:S37–43.CrossRefGoogle Scholar
  4. 4.
    Turina M, Cheadle WG. Management of established surgical site infections. Surg Infect (Larchmt). 2006;7 Suppl 3:s33–41.Google Scholar
  5. 5.
    Altemeier WA. Sepsis in surgery. Presidential address. Arch Surg. 1982;117(2):107–12.PubMedCrossRefGoogle Scholar
  6. 6.
    Cheadle WG. Risk factors for surgical site infection. Surg Infect (Larchmt). 2006;7 Suppl 1:S7–11.CrossRefGoogle Scholar
  7. 7.
    Robson MC, Krizek TJ, Heggers JP. Biology of surgical infection. Curr Probl Surg. 1973:1–62.Google Scholar
  8. 8.
    Velmahos GC, Vassiliu P, Demetriades D, et al. Wound management after colon injury: open or closed? A prospective randomized trial. Am Surg. 2002;68(9):795–801.PubMedGoogle Scholar
  9. 9.
    Duttaroy DD, Jitendra J, Duttaroy B, et al. Management strategy for dirty abdominal incisions: primary or delayed primary closure? A randomized trial. Surg Infect (Larchmt). 2009;10(2):129–36.CrossRefGoogle Scholar
  10. 10.
    Cohn SM, Giannotti G, Ong AW, et al. Prospective randomized trial of two wound management strategies for dirty abdominal wounds. Ann Surg. 2001;233(3):409–13.PubMedCrossRefGoogle Scholar
  11. 11.
    National Nosocomial Infections Surveillance (NNIS) report, data summary from October 1986–April 1996, issued May 1996. A report from the National Nosocomial Infections Surveillance (NNIS) System. Am J Infect Control. 1996;24(5):380–8.Google Scholar
  12. 12.
    Wertheim HF, Melles DC, Vos MC, et al. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis. 2005;5(12):751–62.PubMedCrossRefGoogle Scholar
  13. 13.
    Graham III PL, Lin SX, Larson EL. A U.S. population-based survey of Staphylococcus aureus colonization. Ann Intern Med. 2006;144(5):318–25.PubMedGoogle Scholar
  14. 14.
    Perl TM, Cullen JJ, Wenzel RP, et al. Intranasal mupirocin to prevent postoperative Staphylococcus aureus infections. N Engl J Med. 2002;346(24):1871–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Segers P, Speekenbrink RG, Ubbink DT, van Ogtrop ML, de Mol BA. Prevention of nosocomial infection in cardiac surgery by decontamination of the nasopharynx and oropharynx with chlorhexidine gluconate: a randomized controlled trial. JAMA. 2006;296(20):2460–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Trent MS, Stead CM, Tran AX, Hankins JV. Diversity of endotoxin and its impact on pathogenesis. J Endotoxin Res. 2006;12(4):205–23.PubMedCrossRefGoogle Scholar
  17. 17.
    Courtney HS, Hasty DL, Dale JB. Molecular mechanisms of adhesion, colonization, and invasion of group A streptococci. Ann Med. 2002;34(2):77–87.PubMedCrossRefGoogle Scholar
  18. 18.
    Bessen DE, Veasy LG, Hill HR, Augustine NH, Fischetti VA. Serologic evidence for a class I group A streptococcal infection among rheumatic fever patients. J Infect Dis. 1995;172(6):1608–11.PubMedCrossRefGoogle Scholar
  19. 19.
    Onderdonk AB, Kasper DL, Cisneros RL, Bartlett JG. The capsular polysaccharide of Bacteroides fragilis as a virulence factor: comparison of the pathogenic potential of encapsulated and unencapsulated strains. J Infect Dis. 1977;136(1):82–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Kawabata S, Morita T, Iwanaga S, Igarashi H. Enzymatic properties of staphylothrombin, an active molecular complex formed between staphylocoagulase and human prothrombin. J Biochem (Tokyo). 1985;98(6):1603–14.Google Scholar
  21. 21.
    Melles DC, van Leeuwen WB, Boelens HA, Peeters JK, Verbrugh HA, van Belkum A. Panton-Valentine leukocidin genes in Staphylococcus aureus. Emerg Infect Dis. 2006;12(7):1174–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Fridkin SK, Hageman JC, Morrison M, et al. Methicillin-resistant Staphylococcus aureus disease in three communities. N Engl J Med. 2005;352(14):1436–44.PubMedCrossRefGoogle Scholar
  23. 23.
    Proft T, Sriskandan S, Yang L, Fraser JD. Superantigens and streptococcal toxic shock syndrome. Emerg Infect Dis. 2003;9(10):1211–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Fry D. Toxic shock syndromne. In: Fry D, editor. Surgical infections. Boston: Little, Brown and Co.; 1995:569–75.Google Scholar
  25. 25.
    Chevalier J, Pages JM, Mallea M. In vivo modification of porin activity conferring antibiotic resistance to Enterobacter aerogenes. Biochem Biophys Res Commun. 1999;266(1):248–51.PubMedCrossRefGoogle Scholar
  26. 26.
    Liu C, Bayer A, Cosgrove SE, et al. Clinical practice guidelines by the infectious diseases society of america for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children: executive summary. Clin Infect Dis. 2001;52(3):285–92.CrossRefGoogle Scholar
  27. 27.
    Rybak MJ, Lomaestro BM, Rotschafer JC, et al. Vancomycin therapeutic guidelines: a summary of consensus recommendations from the infectious diseases Society of America, the American Society of Health-System Pharmacists, and the Society of Infectious Diseases Pharmacists. Clin Infect Dis. 2009;49(3):325–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Barie PS, Eachempati SR. Surgical site infections. Surg Clin North Am. 2005;85(6):1115–35. viii–ix.PubMedCrossRefGoogle Scholar
  29. 29.
    Turina M, Cheadle W. Clinical challenges and unmet needs in the management of complicated skin and soft tissue infections. Surg Infect. 2005;6:s23–36.CrossRefGoogle Scholar
  30. 30.
    DiNubile MJ, Lipsky BA. Complicated infections of skin and skin structures: when the infection is more than skin deep. J Antimicrob Chemother. 2004;53 Suppl 2:ii37–50.Google Scholar
  31. 31.
    Tanner J, Woodings D, Moncaster K. Preoperative hair removal to reduce surgical site infection. Cochrane Database Syst Rev. 2006;3:CD004122.Google Scholar
  32. 32.
    Hayek LJ, Emerson JM, Gardner AM. A placebo-controlled trial of the effect of two preoperative baths or showers with chlorhexidine detergent on postoperative wound infection rates. J Hosp Infect. 1987;10(2):165–72.PubMedCrossRefGoogle Scholar
  33. 33.
    Rotter ML, Larsen SO, Cooke EM, et al. A comparison of the effects of preoperative whole-body bathing with detergent alone and with detergent containing chlorhexidine gluconate on the frequency of wound infections after clean surgery. The European Working Party on Control of Hospital Infections. J Hosp Infect. 1988;11(4):310–20.PubMedCrossRefGoogle Scholar
  34. 34.
    Tanner J, Swarbrook S, Stuart J. Surgical hand antisepsis to reduce surgical site infection. Cochrane Database Syst Rev. 2008(1):CD004288.Google Scholar
  35. 35.
    Parienti JJ, Thibon P, Heller R, et al. Hand-rubbing with an aqueous alcoholic solution vs traditional surgical hand-scrubbing and 30-day surgical site infection rates: a randomized equivalence study. JAMA. 2002;288(6):722–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Weight CJ, Lee MC, Palmer JS. Avagard hand antisepsis vs. traditional scrub in 3600 pediatric urologic procedures. Urology. 2010;76(1):15–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Darouiche RO, Wall Jr MJ, Itani KM, et al. Chlorhexidine-alcohol versus povidone-iodine for surgical-site antisepsis. N Engl J Med. 2010;362(1):18–26.PubMedCrossRefGoogle Scholar
  38. 38.
    Lee I, Agarwal RK, Lee BY, Fishman NO, Umscheid CA. Systematic review and cost analysis comparing use of chlorhexidine with use of iodine for preoperative skin antisepsis to prevent surgical site infection. Infect Control Hosp Epidemiol. 2010;31(12):1219–29.PubMedCrossRefGoogle Scholar
  39. 39.
    Polk Jr HC, Miles AA. Enhancement of bacterial infection by ferric iron: kinetics, mechanisms, and surgical significance. Surgery. 1971;70(1):71–7.PubMedGoogle Scholar
  40. 40.
    Elek SD, Conen PE. The virulence of Staphylococcus pyogenes for man; a study of the problems of wound infection. Br J Exp Pathol. 1957;38(6):573–86.PubMedGoogle Scholar
  41. 41.
    Polk Jr HC, Lopez-Mayor JF. Postoperative wound infection: a prospective study of determinant factors and prevention. Surgery. 1969;66(1):97–103.PubMedGoogle Scholar
  42. 42.
    Bratzler DW, Houck PM. Antimicrobial prophylaxis for surgery: an advisory statement from the National Surgical Infection Prevention Project. Am J Surg. 2005;189(4):395–404.PubMedCrossRefGoogle Scholar
  43. 43.
    Hawn MT, Gray SH, Vick CC, et al. Timely administration of prophylactic antibiotics for major surgical procedures. J Am Coll Surg. 2006;203(6):803–11.PubMedCrossRefGoogle Scholar
  44. 44.
    Al-Ghnaniem R, Benjamin IS, Patel AG. Meta-analysis suggests antibiotic prophylaxis is not warranted in low-risk patients undergoing laparoscopic cholecystectomy. Br J Surg. 2003;90(3):365–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Choudhary A, Bechtold ML, Puli SR, Othman MO, Roy PK. Role of prophylactic antibiotics in laparoscopic cholecystectomy: a meta-analysis. J Gastrointest Surg. 2008;12(11):1847–53. discussion 1853.PubMedCrossRefGoogle Scholar
  46. 46.
    Sanabria A, Dominguez LC, Valdivieso E, Gomez G. Antibiotic prophylaxis for patients undergoing elective laparoscopic cholecystectomy. Cochrane Database Syst Rev. 2010(12):CD005265.Google Scholar
  47. 47.
    Bodden C. SDPS memorandum: Center for Medicare and Medicaid Services; 2006.Google Scholar
  48. 48.
    Lewis RT. Oral versus systemic antibiotic prophylaxis in elective colon surgery: a randomized study and meta-analysis send a message from the 1990s. Can J Surg. 2002;45(3):173–80.PubMedGoogle Scholar
  49. 49.
    Bernard HR, Cole WR. The prophylaxis of surgical infection: the effect of prophylactic antimicrobial drugs on the incidence of infection following potentially contaminated operations. Surgery. 1964;56:151–7.PubMedGoogle Scholar
  50. 50.
    Coppa GF, Eng K, Gouge TH, Ranson JH, Localio SA. Parenteral and oral antibiotics in elective colon and rectal surgery. A prospective, randomized trial. Am J Surg. 1983;145(1):62–5.PubMedCrossRefGoogle Scholar
  51. 51.
    Fry DE. Preventive systemic antibiotics in colorectal surgery. Surg Infect (Larchmt). 2008;9(6):547–52.CrossRefGoogle Scholar
  52. 52.
    Stone HH, Hooper CA, Kolb LD, Geheber CE, Dawkins EJ. Antibiotic prophylaxis in gastric, biliary and colonic surgery. Ann Surg. 1976;184(4):443–52.PubMedCrossRefGoogle Scholar
  53. 53.
    Nelson RL, Glenny AM, Song F. Antimicrobial prophylaxis for colorectal surgery. Cochrane Database Syst Rev. 2009(1):CD001181.Google Scholar
  54. 54.
    Song F, Glenny AM. Antimicrobial prophylaxis in colorectal surgery: a systematic review of randomized controlled trials. Br J Surg. 1998;85(9):1232–41.PubMedCrossRefGoogle Scholar
  55. 55.
    Guenaga KK, Matos D, Wille-Jorgensen P. Mechanical bowel preparation for elective colorectal surgery. Cochrane Database Syst Rev. 2009(1):CD001544.Google Scholar
  56. 56.
    Cunningham M, Bunn F, Handscomb K. Prophylactic antibiotics to prevent surgical site infection after breast cancer surgery. Cochrane Database Syst Rev. 2006(2):CD005360.Google Scholar
  57. 57.
    Tejirian T, DiFronzo LA, Haigh PI. Antibiotic prophylaxis for preventing wound infection after breast surgery: a systematic review and metaanalysis. J Am Coll Surg. 2006;203(5):729–34.PubMedCrossRefGoogle Scholar
  58. 58.
    Othman I. Prospective randomized evaluation of prophylactic antibiotic usage in patients undergoing tension free inguinal hernioplasty. Hernia. 2011;15(3):309–13.PubMedCrossRefGoogle Scholar
  59. 59.
    Perez AR, Roxas MF, Hilvano SS. A randomized, double-blind, placebo-controlled trial to determine effectiveness of antibiotic prophylaxis for tension-free mesh herniorrhaphy. J Am Coll Surg. 2005;200(3):393–7. discussion 397–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Sanabria A, Dominguez LC, Valdivieso E, Gomez G. Prophylactic antibiotics for mesh inguinal hernioplasty: a meta-analysis. Ann Surg. 2007;245(3):392–6.PubMedCrossRefGoogle Scholar
  61. 61.
    Sanchez-Manuel FJ, Lozano-Garcia J, Seco-Gil JL. Antibiotic prophylaxis for hernia repair. Cochrane Database Syst Rev. 2007(3):CD003769.Google Scholar
  62. 62.
    Stewart A, Eyers PS, Earnshaw JJ. Prevention of infection in arterial reconstruction. Cochrane Database Syst Rev. 2006;3:CD003073.Google Scholar
  63. 63.
    Stewart AH, Eyers PS, Earnshaw JJ. Prevention of infection in peripheral arterial reconstruction: a systematic review and meta-analysis. J Vasc Surg. 2007;46(1):148–55.PubMedCrossRefGoogle Scholar
  64. 64.
    Classen DC, Evans RS, Pestotnik SL, Horn SD, Menlove RL, Burke JP. The timing of prophylactic administration of antibiotics and the risk of surgical-wound infection. N Engl J Med. 1992;326(5):281–6.PubMedCrossRefGoogle Scholar
  65. 65.
    McDonald M, Grabsch E, Marshall C, Forbes A. Single-versus multiple-dose antimicrobial prophylaxis for major surgery: a systematic review. Aust N Z J Surg. 1998;68(6):388–96.PubMedCrossRefGoogle Scholar
  66. 66.
    Zanetti G, Giardina R, Platt R. Intraoperative redosing of cefazolin and risk for surgical site infection in cardiac surgery. Emerg Infect Dis. 2001;7(5):828–31.PubMedGoogle Scholar
  67. 67.
    Magann EF, Chauhan SP, Rodts-Palenik S, Bufkin L, Martin Jr JN, Morrison JC. Subcutaneous stitch closure versus subcutaneous drain to prevent wound disruption after cesarean delivery: a randomized clinical trial. Am J Obstet Gynecol. 2002;186(6):1119–23.PubMedCrossRefGoogle Scholar
  68. 68.
    Fukatsu K, Saito H, Matsuda T, Ikeda S, Furukawa S, Muto T. Influences of type and duration of antimicrobial prophylaxis on an outbreak of methicillin-resistant Staphylococcus aureus and on the incidence of wound infection. Arch Surg. 1997;132(12):1320–5.PubMedCrossRefGoogle Scholar
  69. 69.
    Namias N, Harvill S, Ball S, McKenney MG, Salomone JP, Civetta JM. Cost and morbidity associated with antibiotic prophylaxis in the ICU. J Am Coll Surg. 1999;188(3):225–30.PubMedCrossRefGoogle Scholar
  70. 70.
    Manian FA, Meyer PL, Setzer J, Senkel D. Surgical site infections associated with methicillin-resistant Staphylococcus aureus: do postoperative factors play a role? Clin Infect Dis. 2003;36(7):863–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Banbury MK, Brizzio ME, Rajeswaran J, Lytle BW, Blackstone EH. Transfusion increases the risk of postoperative infection after cardiovascular surgery. J Am Coll Surg. 2006;202(1):131–8.PubMedCrossRefGoogle Scholar
  72. 72.
    de Oliveira AC, Ciosak SI, Ferraz EM, Grinbaum RS. Surgical site infection in patients submitted to digestive surgery: risk prediction and the NNIS risk index. Am J Infect Control. 2006;34(4):201–7.PubMedCrossRefGoogle Scholar
  73. 73.
    Dunne JR, Malone DL, Tracy JK, Napolitano LM. Abdominal wall hernias: risk factors for infection and resource utilization. J Surg Res. 2003;111(1):78–84.PubMedCrossRefGoogle Scholar
  74. 74.
    Furnary AP, Zerr KJ, Grunkemeier GL, Starr A. Continuous intravenous insulin infusion reduces the incidence of deep sternal wound infection in diabetic patients after cardiac surgical procedures. Ann Thorac Surg. 1999;67(2):352–60. discussion 360-2.PubMedCrossRefGoogle Scholar
  75. 75.
    Greif R, Akca O, Horn EP, Kurz A, Sessler DI, Outcomes Research Group. Supplemental perioperative oxygen to reduce the incidence of surgical-wound infection. N Engl J Med. 2000;342(3):161–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Imperatori A, Rovera F, Rotolo N, Nardecchia E, Conti V, Dominioni L. Prospective study of infection risk factors in 988 lung resections. Surg Infect (Larchmt). 2006;7 Suppl 2:S57–60.Google Scholar
  77. 77.
    Kaye KS, Sloane R, Sexton DJ, Schmader KA. Risk factors for surgical site infections in older people. J Am Geriatr Soc. 2006;54(3):391–6.PubMedCrossRefGoogle Scholar
  78. 78.
    Kurz A, Sessler DI, Lenhardt R. Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. Study of Wound Infection and Temperature Group. N Engl J Med. 1996;334(19):1209–15.PubMedCrossRefGoogle Scholar
  79. 79.
    Schwartz SR, Yueh B, Maynard C, Daley J, Henderson W, Khuri SF. Predictors of wound complications after laryngectomy: a study of over 2000 patients. Otolaryngol Head Neck Surg. 2004;131(1):61–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Scott NB, Turfrey DJ, Ray DA, et al. A prospective randomized study of the potential benefits of thoracic epidural anesthesia and analgesia in patients undergoing coronary artery bypass grafting. Anesth Analg. 2001;93(3):528–35.PubMedCrossRefGoogle Scholar
  81. 81.
    Perioperative total parenteral nutrition in surgical patients. The Veterans Affairs Total Parenteral Nutrition Cooperative Study Group. N Engl J Med. 1991;325(8):525–32.Google Scholar
  82. 82.
    Gianotti L, Braga M, Nespoli L, Radaelli G, Beneduce A, Di Carlo V. A randomized controlled trial of preoperative oral supplementation with a specialized diet in patients with gastrointestinal cancer. Gastroenterology. 2002;122(7):1763–70.PubMedCrossRefGoogle Scholar
  83. 83.
    Tepaske R, Velthuis H, Oudemans-van Straaten HM, et al. Effect of preoperative oral immune-enhancing nutritional supplement on patients at high risk of infection after cardiac surgery: a randomised placebo-controlled trial. Lancet. 2001;358(9283):696–701.PubMedCrossRefGoogle Scholar
  84. 84.
    Mangram AJ, Horan TC, Pearson ML, Silver LC, Jarvis WR. Guideline for prevention of surgical site infection, 1999. Hospital Infection Control Practices Advisory Committee. Infect Control Hosp Epidemiol. 1999;20(4):250–78.PubMedCrossRefGoogle Scholar
  85. 85.
    Hughes JM. Study on the efficacy of nosocomial infection control (SENIC Project): results and implications for the future. Chemotherapy. 1988;34(6):553–61.PubMedCrossRefGoogle Scholar
  86. 86.
    National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control. 2004;32(8):470–85.Google Scholar
  87. 87.
    Culver DH, Horan TC, Gaynes RP, et al. Surgical wound infection rates by wound class, operative procedure, and patient risk index. National Nosocomial Infections Surveillance System. Am J Med. 1991;91(3B):152S–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Horan TC, Culver DH, Gaynes RP, Jarvis WR, Edwards JR, Reid CR. Nosocomial infections in surgical patients in the United States, January 1986-June 1992. National Nosocomial Infections Surveillance (NNIS) System. Infect Control Hosp Epidemiol. 1993;14(2):73–80.PubMedCrossRefGoogle Scholar
  89. 89.
    Gaynes RP, Culver DH, Horan TC, Edwards JR, Richards C, Tolson JS. Surgical site infection (SSI) rates in the United States, 1992-1998: the National Nosocomial Infections Surveillance System basic SSI risk index. Clin Infect Dis. 2001;33 Suppl 2:S69–77.PubMedCrossRefGoogle Scholar
  90. 90.
    Fry D. Infections of the skin and soft tissues. In: Chorpenning N, editor. Surgical infections. Boston/New York/Toronto/London: Little, Brown and Co.; 1994. p. 145–226.Google Scholar
  91. 91.
    Moore TJ, Mauney C, Barron J. The use of quantitative bacterial counts in open fractures. Clin Orthop Relat Res. 1989;248:227–30.PubMedGoogle Scholar
  92. 92.
    Houang ET, Ahmet Z. Intraoperative wound contamination during abdominal hysterectomy. J Hosp Infect. 1991;19(3):181–9.PubMedCrossRefGoogle Scholar
  93. 93.
    Lewis RT. Soft tissue infections. World J Surg. 1998;22(2):146–51.PubMedCrossRefGoogle Scholar
  94. 94.
    Wall DB, Klein SR, Black S, de Virgilio C. A simple model to help distinguish necrotizing fasciitis from nonnecrotizing soft tissue infection. J Am Coll Surg. 2000;191(3):227–31.PubMedCrossRefGoogle Scholar
  95. 95.
    Ahrenholz DH. Necrotizing soft-tissue infections. Surg Clin North Am. 1988;68(1):199–214.PubMedGoogle Scholar
  96. 96.
    Anaya DA, McMahon K, Nathens AB, Sullivan SR, Foy H, Bulger E. Predictors of mortality and limb loss in necrotizing soft tissue infections. Arch Surg. 2005;140(2):151–7. discussion 158.PubMedCrossRefGoogle Scholar
  97. 97.
    Raghavan M, Linden PK. Newer treatment options for skin and soft tissue infections. Drugs. 2004;64(15):1621–42.PubMedCrossRefGoogle Scholar
  98. 98.
    Franklin GA, Moore KB, Snyder JW, Polk Jr HC, Cheadle WG. Emergence of resistant microbes in critical care units is transient, despite an unrestricted formulary and multiple antibiotic trials. Surg Infect (Larchmt). 2002;3(2):135–44.CrossRefGoogle Scholar
  99. 99.
    Seal DV. Necrotizing fasciitis. Curr Opin Infect Dis. 2001;14(2):127–32.PubMedCrossRefGoogle Scholar
  100. 100.
    Freischlag JA, Ajalat G, Busuttil RW. Treatment of necrotizing soft tissue infections. The need for a new approach. Am J Surg. 1985;149(6):751–5.PubMedCrossRefGoogle Scholar
  101. 101.
    Jallali N, Withey S, Butler PE. Hyperbaric oxygen as adjuvant therapy in the management of necrotizing fasciitis. Am J Surg. 2005;189(4):462–6.PubMedCrossRefGoogle Scholar
  102. 102.
    Morykwas MJ, Simpson J, Punger K, Argenta A, Kremers L, Argenta J. Vacuum-assisted closure: state of basic research and physiologic foundation. Plast Reconstr Surg. 2006;117(7 Suppl):121S–6.PubMedGoogle Scholar
  103. 103.
    Venturi ML, Attinger CE, Mesbahi AN, Hess CL, Graw KS. Mechanisms and clinical applications of the vacuum-assisted closure (VAC) device: a review. Am J Clin Dermatol. 2005;6(3):185–94.PubMedCrossRefGoogle Scholar
  104. 104.
    Heller L, Levin SL, Butler CE. Management of abdominal wound dehiscence using vacuum assisted closure in patients with compromised healing. Am J Surg. 2006;191(2):165–72.PubMedCrossRefGoogle Scholar
  105. 105.
    Schaffzin DM, Douglas JM, Stahl TJ, Smith LE. Vacuum-assisted closure of complex perineal wounds. Dis Colon Rectum. 2004;47(10):1745–8.PubMedCrossRefGoogle Scholar
  106. 106.
    Burger JW, Luijendijk RW, Hop WC, Halm JA, Verdaasdonk EG, Jeekel J. Long-term follow-up of a randomized controlled trial of suture versus mesh repair of incisional hernia. Ann Surg. 2004;240(4):578–83. discussion 583–5.PubMedGoogle Scholar
  107. 107.
    Luijendijk RW, Hop WC, van den Tol MP, et al. A comparison of suture repair with mesh repair for incisional hernia. N Engl J Med. 2000;343(6):392–8.PubMedCrossRefGoogle Scholar
  108. 108.
    Whitehouse JD, Friedman ND, Kirkland KB, Richardson WJ, Sexton DJ. The impact of surgical-site infections following orthopedic surgery at a community hospital and a university hospital: adverse quality of life, excess length of stay, and extra cost. Infect Control Hosp Epidemiol. 2002;23(4):183–9.PubMedCrossRefGoogle Scholar
  109. 109.
    Kirkland KB, Briggs JP, Trivette SL, Wilkinson WE, Sexton DJ. The impact of surgical-site infections in the 1990s: attributable mortality, excess length of hospitalization, and extra costs. Infect Control Hosp Epidemiol. 1999;20(11):725–30.PubMedCrossRefGoogle Scholar
  110. 110.
    Broex EC, van Asselt AD, Bruggeman CA, van Tiel FH. Surgical site infections: how high are the costs? J Hosp Infect. 2009;72(3):193–201.PubMedCrossRefGoogle Scholar
  111. 111.
    Urban JA. Cost analysis of surgical site infections. Surg Infect (Larchmt). 2006;7 Suppl 1:S19–22.CrossRefGoogle Scholar
  112. 112.
    de Lissovoy G, Fraeman K, Hutchins V, Murphy D, Song D, Vaughn BB. Surgical site infection: incidence and impact on hospital utilization and treatment costs. Am J Infect Control. 2009;37(5):387–97.PubMedCrossRefGoogle Scholar
  113. 113.
    Dellinger EP, Hausmann SM, Bratzler DW, et al. Hospitals collaborate to decrease surgical site infections. Am J Surg. 2005;190(1):9–15.PubMedCrossRefGoogle Scholar
  114. 114.
    Thompson KM, Oldenburg WA, Deschamps C, Rupp WC, Smith CD. Chasing zero: the drive to eliminate surgical site infections. Ann Surg. 2011;254(3):430–6. discussion 436–7.PubMedCrossRefGoogle Scholar
  115. 115.
    Haynes AB, Weiser TG, Berry WR, et al. A surgical safety checklist to reduce morbidity and mortality in a global population. N Engl J Med. 2009;360(5):491–9.PubMedCrossRefGoogle Scholar
  116. 116.
    Bratzler DW, Houck PM, Richards C, et al. Use of antimicrobial prophylaxis for major surgery: baseline results from the National Surgical Infection Prevention Project. Arch Surg. 2005;140(2):174–82.PubMedCrossRefGoogle Scholar
  117. 117.
    Fry DE. Surgical site infections and the surgical care improvement project (SCIP): evolution of national quality measures. Surg Infect (Larchmt). 2008;9(6):579–84.CrossRefGoogle Scholar
  118. 118.
    Barie PS. No pay for no performance. Surg Infect (Larchmt). 2007;8(4):421–33.CrossRefGoogle Scholar
  119. 119.
    Federal Register: Fiscal Year 2011, final rule. http://www.gpo.gov/fdsys/pkg/FR-2010-08-16/pdf/2010-19092.pdf. Accessed 10 Aug 2011.
  120. 120.
    Federal Register: Fiscal Year 2009, final rule. http://edocket.access.gpo.gov/2008/pdf/E8-17914. Accessed 10 Aug 2011.
  121. 121.
    Federal Register: Fiscal Year 2010, final rule. http://edocket.access.gpo.gov/2009/pdf/E9-18663.pdf. Accessed 10 Aug 2011.
  122. 122.
    Ingraham AM, Cohen ME, Bilimoria KY, et al. Association of surgical care improvement project infection-related process measure compliance with risk-adjusted outcomes: implications for quality measurement. J Am Coll Surg. 2010;211(6):705–14.PubMedCrossRefGoogle Scholar
  123. 123.
    Stulberg JJ, Delaney CP, Neuhauser DV, Aron DC, Fu P, Koroukian SM. Adherence to surgical care improvement project measures and the association with postoperative infections. JAMA. 2010;303(24):2479–85.PubMedCrossRefGoogle Scholar
  124. 124.
    Nicholas LH, Osborne NH, Birkmeyer JD, Dimick JB. Hospital process compliance and surgical outcomes in medicare beneficiaries. Arch Surg. 2010;145(10):999–1004.PubMedCrossRefGoogle Scholar
  125. 125.
    Anthony T, Murray BW, Sum-Ping JT, et al. Evaluating an evidence-based bundle for preventing surgical site infection: a randomized trial. Arch Surg. 2011;146(3):263–9.PubMedCrossRefGoogle Scholar
  126. 126.
    Hawn MT, Vick CC, Richman J, et al. Surgical site infection prevention: time to move beyond the surgical care improvement program. Ann Surg. 2011;254(3):494–501.PubMedCrossRefGoogle Scholar
  127. 127.
    Patterson P. SCIP measures to weigh in Medicare pay starting in 2013. OR Manager. 2011;27(3):1, 7–10.Google Scholar
  128. 128.
    Hospital-Acquired Conditions (HAC) in Acute Inpatient Prospective Payment System (IPPS) Hospitals. https://www.cms.gov/HospitalAcqCond/downloads/HACFactsheet.pdf. 2010. Accessed 7 Aug 2011.

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Vanessa P. Ho
    • 1
  • Soumitra R. Eachempati
    • 1
  • Philip S. Barie
    • 1
  1. 1.Department of SurgeryNewYork-Presbyterian Hospital-Weill Cornell Medical CenterNew YorkUSA

Personalised recommendations