Skip to main content

Sequential Methods for Vaccine Safety Evaluation and Surveillance in Public Health

  • Chapter
  • First Online:
Book cover Sequential Experimentation in Clinical Trials

Part of the book series: Springer Series in Statistics ((SSS,volume 298))

Abstract

In this chapter we describe the applications of sequential testing methodology to the problem of testing the incidence rates of adverse events in vaccine clinical trials and post-marketing safety evaluation. Section 5.1 describes typical design considerations for vaccine safety evaluation and the application of the SPRT and its other sequential tests that have been applied to test vaccine safety.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen PK, Borgan Ø, Gill RD, Keiding N (1993) Statistical models based on counting processes. Springer Series in Statistics, Springer-Verlag, New York, DOI 10.1007/978-1-4612-4348-9

    Google Scholar 

  • Anscombe F (1952) Large-sample theory of sequential estimation. Math Proc Cambridge Philosoph Soc 48(04):600–607

    MathSciNet  MATH  Google Scholar 

  • Armitage P (1960) Sequential medical trials. Charles C. Thomas, Springfield, Ill

    Google Scholar 

  • Armitage P, McPherson CK, Rowe BC (1969) Repeated significance tests on accumulating data. J Roy Statist Soc Ser A 132:235–244

    MathSciNet  Google Scholar 

  • Azriel D (2012) Optimal sequential designs in phase I studies. Comput Stat Data Anal To appear

    Google Scholar 

  • Babb J, Rogatko A, Zacks S (1998) Cancer phase I clinical trials: efficient dose escalation with overdose control. Stat Med 17(10):1103–1120

    Google Scholar 

  • Barnard GA (1959) Control charts and stochastic processes (with discussion). J Roy Statist Soc Ser B 21:239–271

    MATH  Google Scholar 

  • Bartroff J, Lai TL (2008a) Efficient adaptive designs with mid-course sample size adjustment in clinical trials. Stat Med 27(10):1593–1611, DOI 10.1002/sim.3201

    MathSciNet  Google Scholar 

  • Bartroff J, Lai TL (2008b) Generalized likelihood ratio statistics and uncertainty adjustments in efficient adaptive design of clinical trials. Sequent Anal 27(3):254–276

    MathSciNet  MATH  Google Scholar 

  • Bartroff J, Lai TL (2010) Approximate dynamic programming and its applications to the design of phase I cancer trials. Statist Sci 25:245–257

    MathSciNet  Google Scholar 

  • Bartroff J, Lai TL (2011) Incorporating individual and collective ethics into phase I cancer trial designs. Biometrics 67(2):596–603, DOI 10.1111/j.1541-0420.2010.01471.x

    MathSciNet  MATH  Google Scholar 

  • Bauer P (1989) Multistage testing with adaptive designs. Biometrie und Informatik in Medizin und Biologie 20:130–148, with discussion

    Google Scholar 

  • Bauer P, Köhne K (1994) Evaluation of experiments with adaptive interim analyses. Biometrics 50(4):1029–1041, DOI 10.2307/2533441

    MATH  Google Scholar 

  • Bayard DS (1991) A forward method for optimal stochastic nonlinear and adaptive control. IEEE Trans Automat Contrl 36(9):1046–1053, DOI 10.1109/9.83535

    MathSciNet  MATH  Google Scholar 

  • Beal, S.L. and Sheiner, L.B., eds. (1992), NONMEM User.s Guide, University of California, San Francisco, NONMEM Project Group.

    Google Scholar 

  • Berry SM, Carlin BP, Lee JJ, Müller P (2011) Bayesian adaptive methods for clinical trials. Chapman & Hall/CRC biostatistics series, vol 38. CRC, Boca Raton

    Google Scholar 

  • Bertsekas DP (2007) Dynamic programming and optimal control, vol II, 3rd edn. Athena Scientific Belmont, Masssachusetts

    Google Scholar 

  • Beta-Blocker Heart Attack Trial Research Group (1982) A randomized trial of propranolol in patients with acute myocardial infarction: 1. mortality results. J Am Med Assoc 247(12):1707–1714

    Google Scholar 

  • Beta-Blocker Heart Attack Trial Research Group (1984) Beta-blocker heart attack trial: design, methods, and baseline results. Contr Clin Trial 5(4):382–437, DOI 10.1016/S0197-2456(84)80017-3

    Google Scholar 

  • Birkett M, Day S (1994) Internal pilot studies for estimating sample size. Stat Med 13(23–24):2455–2463, DOI 10.1002/sim.4780132309

    Google Scholar 

  • Boyd S. and Vandenberghe L. (2004), “Convex Optimization”, Cambridge University Press, New York.

    MATH  Google Scholar 

  • Brensike JF, Kelsey SF, Passamani ER, Fisher MR, Richardson JM, Loh IK, Stone NJ, Aldrich RF, Battaglini JW, Moriarty DJ, Myrianthopoulos MB, Detre KM, Epstein SE, Levy RI (1982) National heart lung and blood institute type ii coronary intervention study: design, methods and baseline characteristics. Contr Clin Trial 3(2):91–111, DOI 10.1016/0197-2456(82)90038-1

    Google Scholar 

  • Breslow NE, Clayton DG (1993) Approximate inference in generalized linear mixed models. J Am Statist Assoc 88(421):9–25

    MATH  Google Scholar 

  • Bretz F, Schmidli H, König F, Racine A, Maurer W (2006) Confirmatory seamless phase II/III clinical trials with hypothesis selection at interim: general concepts. Biomet J 4:623–634, DOI 10.1002/bimj.200510232

    Google Scholar 

  • Brookmeyer R, Crowley J (1982) A confidence interval for the median survival time. Biometrics 38:29–41

    MATH  Google Scholar 

  • Burman CF, Sonesson C (2006) Are flexible designs sound? Biometrics 62(3):664–669, DOI 10.1111/j.1541-0420.2006.00626.x

    MathSciNet  MATH  Google Scholar 

  • Chan HP, Lai TL (2000) Asymptotic approximations for error probabilities of sequential or fixed sample size tests in exponential families. Ann Statist 28(6):1638–1669

    MathSciNet  MATH  Google Scholar 

  • Chang M (2007) Adaptive design theory and implementation using SAS and R. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  • Chen RT, Davis RL, Rhodes PH (2005) Special methodological issues in pharmacoepidemiology studies of vaccine safety. In: Strom B (ed) Pharmacoepidemiology, 4th edn. Wiley, New York, pp 455–486

    Google Scholar 

  • Chernoff H (1961) Sequential tests for the mean of a normal distribution. In: Proceedings of the 4th Berkeley symposium on mathematical statistics and probability, vol I, University of California Press, Berkeley, California, pp 79–91

    Google Scholar 

  • Chernoff H (1965) Sequential tests for the mean of a normal distribution III (small t). Ann Math Statist 36:28–54

    MathSciNet  MATH  Google Scholar 

  • Chernoff H (1972) Sequential analysis and optimal design. Society for Industrial and Applied Mathematics, Philadelphia

    Google Scholar 

  • Choi S, Smith P, Becker D (1985) Early decision in clinical trials when the treatment differences are small: experience of a controlled trial in head trauma. Contr Clin Trial 6(4):280–288, DOI 10.1016/0197-2456(85)90104-7

    Google Scholar 

  • Chow SC, Chang M (2006) Adaptive design methods in clinical trials. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  • Chuang CS, Lai TL (1998) Resampling methods for confidence intervals in group sequential trials. Biometrika 85(2):317–332

    MathSciNet  MATH  Google Scholar 

  • Chuang CS, Lai TL (2000) Hybrid resampling methods for confidence intervals. Statist Sinica 10(1):1–50, with discussion and rejoinder by the authors

    Google Scholar 

  • Cook A, Tiwari R, Wellman R, Heckbert S, Li L, Heagerty P, Marsh T, Nelson J (2012) Statistical approaches to group sequential monitoring of postmarket safety surveillance data: current state of the art for use in the mini-sentinel pilot. Pharmacoepidemiol Drug Safety 21:72–81

    Google Scholar 

  • Cox DR (1972) Regression models and life-tables. J Roy Statist Soc Ser B 34:187–220, with discussion and a reply by the author

    Google Scholar 

  • Cox DR (1975) Partial likelihood. Biometrika 62(2):269–276

    MathSciNet  MATH  Google Scholar 

  • Cui L, Hung HMJ, Wang SJ (1999) Modification of sample size in group sequential clinical trials. Biometrics 55(3):853–857

    MATH  Google Scholar 

  • Dantzig GB (1940) On the non-existence of tests of “student’s” hypothesis having power functions independent of σ. Ann Math Statist 11:186–192

    MathSciNet  MATH  Google Scholar 

  • Davidian M, Giltinan DM (1995) Nonlinear models for repeated measurement data. Monographs on statistics & applied probability. Chapman and Hall/CRC, Boca Raton

    Google Scholar 

  • Davis R, Kolczak M, Lewis E, Nordin J, Goodman M, Shay D, Platt R, Black S, Shinefield H, Chen R (2005) Active surveillance of vaccine safety – a system to detect early signs of adverse events. Epidemiology 16(3):336–341, DOI 10.1097/01.ede.0000155506.05636.a4

    Google Scholar 

  • Denne JS (2001) Sample size recalculation using conditional power. Stat Med 20(17–18):2645–2660, DOI 10.1002/sim.734

    Google Scholar 

  • Denne JS, Jennison C (1999) Estimating the sample size for a t-test using an internal pilot. Stat Med 18(13):1575–1585

    MathSciNet  Google Scholar 

  • Denne JS, Jennison C (2000) A group sequential t-test with updating of sample sizes. Biometrika 87(1):125–134, DOI 10.1093/biomet/87.1.125

    MathSciNet  MATH  Google Scholar 

  • Dixon WJ, Mood AM (1948) A method for obtaining and analyzing sensitivity data. J Am Statist Assoc 43(241):109–126

    MATH  Google Scholar 

  • Durham SD, Flournoy N (1994) Random walks for quantile estimation. In: Statistical decision theory and related topics, V (West Lafayette, IN, 1992). Springer, New York, pp 467–476

    Google Scholar 

  • Dvoretzky A, Kiefer J, Wolfowitz J (1953) Sequential decision problems for processes with continuous time parameter. Ann Math Statist 24:403–415

    MathSciNet  MATH  Google Scholar 

  • Eales JD, Jennison C (1992) An improved method for deriving optimal one-sided group sequential tests. Biometrika 79(1):13–24

    MathSciNet  MATH  Google Scholar 

  • Eales JD, Jennison C (1995) Optimal two-sided group sequential tests. Sequent Anal 14(4):273–286

    MathSciNet  MATH  Google Scholar 

  • Efron B (1987) Better bootstrap confidence intervals. J Am Statist Assoc 82(397):171–200, with comments and a rejoinder by the author

    Google Scholar 

  • Eisenhauer EA, O’Dwyer PJ, Christian M, Humphrey JS (2000) Phase I clinical trial design in cancer drug development. J Clin Oncol 18:684

    Google Scholar 

  • Elfving G (1952) Optimum allocation in linear regression theory. Ann Math Statist 23:255–262

    MathSciNet  MATH  Google Scholar 

  • Ellenberg SS, Foulkes MA, Midthun K, Goldenthal KL (2005) Evaluating the safety of new vaccines: summary of a workshop. Am J Public Health 95(5):800–807, DOI 10.2105/AJPH.2004.039438

    Google Scholar 

  • Emerson SS, Fleming TR (1989) Symmetric group sequential test designs. Biometrics 45(3):905–923

    MathSciNet  MATH  Google Scholar 

  • Emerson SS, Fleming TR (1990) Parameter estimation following group sequential hypothesis testing. Biometrika 77(4):875–892, DOI 10.1093/biomet/77.4.875

    MathSciNet  Google Scholar 

  • Facey KM (1992) A sequential procedure for a phase II efficacy trial in hypercholesterolemia. Contr Clin Trial 13(2):122–133, DOI 10.1016/0197-2456(92)90018-U

    Google Scholar 

  • Fan J (1991) On the optimal rates of convergence for nonparametric deconvolution problems. Ann Statist 19(3):1257–1272, DOI 10.1214/aos/1176348248

    MathSciNet  MATH  Google Scholar 

  • Fedorov VV (1972) Theory of optimal experiments. In: Studden WJ, Klimko EM (eds) Probability and mathematical statistics, vol 12. Academic, New York, translated from the Russian

    Google Scholar 

  • Fisher LD (1998) Self-designing clinical trials. Stat Med 17(14):1551–1562

    Google Scholar 

  • Gehan EA (1965) A generalized wilcoxon test for comparing arbitrarily singly censored samples. Biometrika 52:203–223

    MathSciNet  MATH  Google Scholar 

  • Gould AL, Shih WJ (1992) Sample size re-estimation without unblinding for normally distributed outcomes with unknown variance. Commun Statist A – Theor Method 21(10):2833–2853, DOI 10.1080/03610929208830947

  • Greene SK, Kulldorff M, Yin R, Yih WK, Lieu TA, Weintraub ES, Lee GM (2011) Near real-time vaccine safety surveillance with partially accrued data. Pharmacoepidemiol Drug Safety 20:583–590

    Google Scholar 

  • Gross ST, Lai TL (1996) Bootstrap methods for truncated and censored data. Statist Sinica 6(3):509–530

    MathSciNet  MATH  Google Scholar 

  • Gu M, Lai TL (1991) Weak convergence of time-sequential censored rank statistics with applications to sequential testing in clinical trials. Ann Statist 19(3):1403–1433

    MathSciNet  MATH  Google Scholar 

  • Gu M, Lai TL (1998) Repeated significance testing with censored rank statistics in interim analysis of clinical trials. Statist Sinica 8(2):411–428

    MathSciNet  MATH  Google Scholar 

  • Gu M, Lai TL (1999) Determination of power and sample size in the design of clinical trials with failure-time endpoints and interim analyses. Contr Clin Trials 20(5):423–438, DOI 10.1016/S0197-2456(99)00021-5

    Google Scholar 

  • Gu M, Lai TL, Lan KKG (1991) Rank tests based on censored data and their sequential analogues. Am J Math Manag Sci 11(1–2):147–176

    MathSciNet  MATH  Google Scholar 

  • Haines LM, Perevozskaya I, Rosenberger WF (2003) Bayesian optimal designs for phase I clinical trials. Biometrics 59(3):591–600, DOI 10.1111/1541-0420.00069

    MathSciNet  MATH  Google Scholar 

  • Hall P (1992) The Bootstrap and edgeworth expansion. Springer, New York

    Google Scholar 

  • Hall WJ, Yakir B (2003) Inference about a secondary process following a sequential trial. Biometrika 90(3):597–611, DOI 10.1093/biomet/90.3.597

    MathSciNet  Google Scholar 

  • Han J, Lai TL, Spivakovsky V (2006) Approximate policy optimization and adaptive control in regression models. Comput Econ 27:433–452

    MATH  Google Scholar 

  • Harrington DP, Fleming TR (1982) A class of rank test procedures for censored survival data. Biometrika 69(3):553–566, DOI 10.1093/biomet/69.3.553

    MathSciNet  MATH  Google Scholar 

  • Haybittle J (1971) Repeated assessment of results in clinical trials of cancer treatment. Brit J Radiol 44(526):793–&

    Google Scholar 

  • He P, Lai TL, Liao OY (2012) Futility stopping in clinical trials. Stat Interface To appear

    Google Scholar 

  • Herson J (1979) Predictive probability early termination plans for phase II clinical trials. Biometrics 35(4):775–783, DOI 10.2307/2530109

    MATH  Google Scholar 

  • Herson J, Wittes JT (1993) The use of interim analysis in sample size adjustment. Drug Inf J 27:753–760

    Google Scholar 

  • Heyse JF, Kuter BJ, Dallas MJ, Heaton P, REST Study Team (2008) Evaluating the safety of a rotavirus vaccine: the REST of the story. Clin Trials 5(2):131–139, DOI 10.1177/1740774508090507

    Google Scholar 

  • Hoeffding W (1960) Lower bounds for the expected sample size and the average risk of a sequential procedure. Ann Math Statist 31:352–368

    MathSciNet  MATH  Google Scholar 

  • Huang X, Ning J, Li Y, Estey E, Issa JP, Berry DA (2009) Using short-term response information to facilitate adaptive randomization for survival clinical trials. Stat Med 28(12):1680–1689, DOI 10.1002/sim.3578

    MathSciNet  Google Scholar 

  • Inoue LYT, Thall PF, Berry DA (2002) Seamlessly expanding a randomized Phase II trial to Phase III. Biometrics 58:823–831

    MathSciNet  MATH  Google Scholar 

  • Jennison C, Turnbull BW (1990) Statistical approaches to interim monitoring of medical trials: a review and commentary. Statist Sci 5(3):299–317

    MathSciNet  MATH  Google Scholar 

  • Jennison C, Turnbull BW (2000) Group sequential methods with applications to clinical trials. Chapman & Hall/CRC, Boca Raton

    MATH  Google Scholar 

  • Jennison C, Turnbull BW (2003) Mid-course sample size modification in clinical trials based on the observed treatment effect. Stat Med 22(6):971–993, DOI 10.1002/sim.1457

    MathSciNet  Google Scholar 

  • Jennison C, Turnbull BW (2006a) Adaptive and nonadaptive group sequential tests. Biometrika 93(1):1–21, DOI 10.1093/biomet/93.1.1

    MathSciNet  MATH  Google Scholar 

  • Jennison C, Turnbull BW (2006b) Efficient group sequential designs when there are several effect sizes under consideration. Stat Med 25(6):917–932, DOI 10.1002/sim.2251

    MathSciNet  Google Scholar 

  • Johnson RA (1970) Asymptotic expansions associated with posterior distributions. Ann Math Statist 41:851–864

    MathSciNet  MATH  Google Scholar 

  • Julious S, Swank D (2005) Moving statistics beyond the individual clinical trial: applying decision science to optimize a clinical development plan. Pharmaceut Statist 4(1):37–46, DOI 10.1002/pst.149

    Google Scholar 

  • Katzung BG (1995) Basic and clinical pharmacology, 6th edn. Prentice Hall, Englewood, Cliffs

    Google Scholar 

  • Kiefer J (1974) General equivalence theory for optimum designs (approximate theory). Ann Statist 2:849–879

    MathSciNet  MATH  Google Scholar 

  • Kiefer J, Weiss L (1957) Some properties of generalized sequential probability ratio tests. Ann Math Statist 28:57–74

    MathSciNet  MATH  Google Scholar 

  • Kim K, DeMets DL (1987) Design and analysis of group sequential tests based on the type I error spending rate function. Biometrika 74(1):149–154

    MathSciNet  MATH  Google Scholar 

  • Korn EL, Midthune D, Chen TT, Rubinstein LV, Christian MC, Simon RM (1994) A comparison of two phase I trial designs. Stat Med 13(18):1799–1806, DOI 10.1002/sim.4780131802

    Google Scholar 

  • Kulldorff M, Davis R, Kolczak M, Lewis E, Lieu T, Platt R (2011) A maximized sequential probability ratio test for drug and vaccine safety surveillance. Sequent Anal 30(1):58–78

    MathSciNet  MATH  Google Scholar 

  • Lai TL (1973) Optimal stopping and sequential tests which minimize the maximum expected sample size. Ann Statist 1:659–673

    MathSciNet  MATH  Google Scholar 

  • Lai TL (1988) Nearly optimal sequential tests of composite hypotheses. Ann Statist 16(2):856–886

    MathSciNet  MATH  Google Scholar 

  • Lai TL (1995) Sequential changepoint detection in quality control and dynamical systems. J Roy Statist Soc Ser B 57(4):613–658, with discussion and a reply by the author

    Google Scholar 

  • Lai TL (1997) On optimal stopping problems in sequential hypothesis testing. Statist Sinica 7(1):33–51

    MathSciNet  MATH  Google Scholar 

  • Lai TL (1998) Information bounds and quick detection of parameter changes in stochastic systems. IEEE Trans Inform Theory 44:2917–2929

    MathSciNet  MATH  Google Scholar 

  • Lai TL (2001) Sequential analysis: some classical problems and new challenges. Statist Sinica 11(2):303–408, with comments and a rejoinder by the author

    Google Scholar 

  • Lai TL (2004) Likelihood ratio identities and their applications to sequential analysis. Sequent Anal 23(4):467–497

    MATH  Google Scholar 

  • Lai TL, Li W (2006) Confidence intervals in group sequential trials with random group sizes and applications to survival analysis. Biometrika 93(3):641–654

    MathSciNet  MATH  Google Scholar 

  • Lai TL, Liao OY (2012) Efficient adaptive randomization and stopping rules in multi-arm clinical trials for testing a new treatment. Sequent Anal To appear

    Google Scholar 

  • Lai TL, Robbins H (1979) Adaptive design and stochastic approximation. Ann Statist 7(6):1196–1221

    MathSciNet  MATH  Google Scholar 

  • Lai TL, Shih MC (2003a) A hybrid estimator in nonlinear and generalised linear mixed effects models. Biometrika 90(4):859–879

    MathSciNet  Google Scholar 

  • Lai TL, Shih MC (2003b) Nonparametric estimation in nonlinear mixed effects models. Biometrika 90(1):1–13

    MathSciNet  MATH  Google Scholar 

  • Lai TL, Shih MC (2004) Power, sample size and adaptation considerations in the design of group sequential clinical trials. Biometrika 91(3):507–528

    MathSciNet  MATH  Google Scholar 

  • Lai TL, Su Z (2006) Confidence intervals for survival quantiles in the cox regression model. Lifetime Data Anal 12:407–419

    MathSciNet  MATH  Google Scholar 

  • Lai TL, Wang JQ (1994) Asymptotic expansions for the distributions of stopped random walks and first passage times. Ann Probab 22(4):1957–1992

    MathSciNet  MATH  Google Scholar 

  • Lai TL, Xing H (2010) Sequential change-point detection when the pre- and post-change parameters are unknown. Sequent Anal 29:162–175

    MathSciNet  MATH  Google Scholar 

  • Lai TL, Zhang L (1994) A modification of schwarz’s sequential likelihood ratio tests in multivariate sequential analysis. Sequent Anal 13(2):79–96

    MathSciNet  MATH  Google Scholar 

  • Lai T, Su Z, Chuang C (2006a) Bias correction and confidence intervals following sequential tests. In: Lecture Notes-Monograph Series, JSTOR, pp 44–57

    Google Scholar 

  • Lai TL, Shih MC, Wong S (2006b) A new approach to modeling covariate effects and individualization in population pharmacokinetics-pharmacodynamics. J Pharmacok Pharmacodynam 33:49–74, DOI 10.1007/s10928-005-9000-2

    Google Scholar 

  • Lai TL, Shih MC, Zhu G (2006c) Modified Haybittle-Peto group sequential designs for testing superiority and non-inferiority hypotheses in clinical trials. Stat Med 25(7):1149–1167

    MathSciNet  Google Scholar 

  • Lai TL, Shih MC, Su Z (2009) Tests and confidence intervals for secondary endpoints in sequential clinical trials. Biometrika 96:903–915, DOI 10.1093/biomet/asp063

    MathSciNet  MATH  Google Scholar 

  • Lai TL, Lavori PW, Shih MC (2012a) Sequential design of phase II–III cancer trials. Stat Med 31(18):1944–1960, DOI 10.1002/sim.5346

    MathSciNet  Google Scholar 

  • Lai TL, Lavori PW, Shih MC, Sikic BI (2012b) Clinical trial designs for testing biomarker-based personalized therapies. Clin Trials 9(2):141–154, DOI 10.1177/1740774512437252

    Google Scholar 

  • Lai TL, Liao OY, Zhu G (2012c) Adaptation in clinical development plans and adaptive clinical trial designs. Stat Interface To appear

    Google Scholar 

  • Lan KKG, DeMets DL (1983) Discrete sequential boundaries for clinical trials. Biometrika 70(3):659–663

    MathSciNet  MATH  Google Scholar 

  • Lan KKG, Wittes J (1988) The B-value: a tool for monitoring data. Biometrics 44(2):579–585, DOI 10.2307/2531870

    Google Scholar 

  • Lan KKG, Simon R, Halperin M (1982) Stochastically curtailed tests in long-term clinical trials. Comm Statist C—Sequent Anal 1(3):207–219

    Google Scholar 

  • Lehmacher W, Wassmer G (1999) Adaptive sample size calculations in group sequential trials. Biometrics 55(4):1286–1290, DOI 10.1111/j.0006-341X.1999.01286.x

    MATH  Google Scholar 

  • Li G, Shih WJ (2002) A sample size adjustment procedure for clinical trials based on conditional power. Biostatistics 3(2):277–287, DOI 10.1093/biostatistics/3.2.277

    MATH  Google Scholar 

  • Li L (2009) A conditional sequential sampling procedure for drug safety surveillance. Stat Med 28(25):3124–3138, DOI 10.1002/sim.3689

    MathSciNet  Google Scholar 

  • Li L, Kulldorff M (2010) A conditional maximized sequential probability ratio test for pharmacovigilance. Stat Med 29(2):284–295

    MathSciNet  Google Scholar 

  • Lieu TA, Kulldorfif M, Davis RL, Lewis EM, Weintraub E, Yih K, Yin R, Brown JS, Platt R (2007) Real-time vaccine safety surveillance for the early detection of adverse events. Med Care 45(10, Suppl. 2):S89–S95

    Google Scholar 

  • Lindstrom MJ, Bates DM (1990) Nonlinear mixed effects models for repeated measures data. Biometrics 46(3):673–687, DOI 10.2307/2532087

    MathSciNet  Google Scholar 

  • Liu A, Hall WJ (1999) Unbiased estimation following a group sequential test. Biometrika 86(1):71–78, DOI 10.1093/biomet/86.1.71

    MathSciNet  MATH  Google Scholar 

  • Liu A, Tan M, Boyett JM, Xiong XP (2000) Testing secondary hypotheses following sequential clinical trials. Biometrics 56(2):640–644

    MATH  Google Scholar 

  • Liu Q, Pierce DA (1994) A note on Gauss-Hermite quadrature. Biometrika 81(3):624–629, DOI 10.1093/biomet/81.3.624

    MathSciNet  MATH  Google Scholar 

  • Lorden G (1971) Procedures for reacting to a change in distribution. Ann Math Statist 42:1897–1908

    MathSciNet  MATH  Google Scholar 

  • Lorden G (1976) 2-SPRT’s and the modified Kiefer-Weiss problem of minimizing an expected sample size. Ann Statist 4(2):281–291

    MathSciNet  MATH  Google Scholar 

  • Lorden G (1983) Asymptotic efficiency of three-stage hypothesis tests. Ann Statist 11(1):129–140

    MathSciNet  MATH  Google Scholar 

  • Mantel N (1966) Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemotherap Rep 50(3):163–170

    Google Scholar 

  • Müller HG, Wang JL (1994) Hazard rate estimation under random censoring with varying kernels and bandwidths. Biometrics 50:61–76

    MathSciNet  MATH  Google Scholar 

  • Murphy T, Gargiullo P, Massoudi M, Nelson D, Jumaan A, Okoro C, Zanardi L, Setia S, Fair E, LeBaron C, Schwartz B, Wharton M, Livingood J (2001) Intussusception among infants given an oral rotavirus vaccine. N Engl J Med 344(8):564–572

    Google Scholar 

  • Murphy T, Smith P, Gargiullo P, Schwartz B (2003) The first rotavirus vaccine and intussusception: epidemiological studies and policy decisions. J Infec Dis 187(8):1309–1313

    Google Scholar 

  • Nelson J, Cook A, Yu O, Dominguez C, Zhao S, Greene S, Fireman B, Jacobsen S, Weintraub E, Jackson L (2012) Challenges in the design and analysis of sequentially monitored postmarket safety surveillance evaluations using electronic observational health care data. Pharmacoepidemiol Drug Safety 21:62–71

    Google Scholar 

  • Newlands E, Blackledge G, Slack J, Rustin G, Smith D, Stuart N, Quarterman C, Hoffman R, Stevens M, Brampton M, Gibson A (1992) Antitumor imidazotetrazines.26. phase I trial of temozolomide (ccrg-81045, m-and-b 39831, nsc-362856). Br J Cancer 65(2):287–291, DOI 10.1038/bjc.1992.57

    Google Scholar 

  • Nguyen M, Ball R, Midthun K, Lieu T (2012) The food and drug administration’s post-licensure rapid immunization safety monitoring program: strengthening the federal vaccine safety enterprise. Pharmacoepidemiol Drug Safety 21:291–297

    Google Scholar 

  • O’Brien PC, Fleming TR (1979) Multiple testing procedure for clinical trials. Biometrics 35(3):549–556

    Google Scholar 

  • O’Quigley J (2002) Continual reassessment designs with early termination. Biostatistics 3(1):87–99, DOI 10.1093/biostatistics/3.1.87

    MathSciNet  MATH  Google Scholar 

  • O’Quigley J, Pepe M, Fisher L (1990) Continual reassessment method: a practical design for phase I clinical trials in cancer. Biometrics 46(1):33–48, DOI 10.2307/2531628

    MathSciNet  MATH  Google Scholar 

  • Page ES (1954) Continuous inspection schemes. Biometrika 41:100–115

    MathSciNet  MATH  Google Scholar 

  • Pampallona S, Tsiatis AA (1994) Group sequential designs for one-sided and two-sided hypothesis testing with provision for early stopping in favor of the null hypothesis. J Statist Plan Infer 42(1–2):19–35

    MathSciNet  MATH  Google Scholar 

  • Pepe MS, Anderson GL (1992) Two-stage experimental designs: early stopping with a negative result. J Roy Statist Soc Ser C 41(1):181–190, DOI 10.2307/2347627

    MATH  Google Scholar 

  • Peto R, Peto J (1972) Asymptotically efficient rank invariant test procedures. J Roy Statist Soc Ser A 135(2):185–207

    MathSciNet  Google Scholar 

  • Peto R, Pike M, Armitage P, Breslow N, Cox D, Howard S, Mantel N, McPherson K, Peto J, Smith P (1976) Design and analysis of randomized clinical trials requiring prolonged observation of each patient 1. Introduction and design. Br J Cancer 34(6):585–612

    Google Scholar 

  • Pinheiro JC, Bates DM (1995) Approximations to the log-likelihood function in the nonlinear mixed-effects model. J Comput Graph Stat 4(1):12–35

    Google Scholar 

  • Platt R, Carnahan R, Brown J, Chrischilles E, Curtis L, Hennessy S, Nelson J, Racoosin J, Robb M, Schneeweiss S et al (2012) The us food and drug administration’s mini-sentinel program: status and direction. Pharmacoepidemiol Drug Safety 21:1–8

    Google Scholar 

  • Pocock SJ (1977) Group sequential methods in the design and analysis of clinical trials. Biometrika 64(2):191–199

    Google Scholar 

  • Pollak M (1985) Optimal detection of a change in distribution. Ann Statist 13:206–227

    MathSciNet  MATH  Google Scholar 

  • Posch M, Bauer P (1999) Adaptive two stage designs and the conditional error function. Biom J 41(6):689–696

    MATH  Google Scholar 

  • Prentice RL (1978) Linear rank tests with right censored data. Biometrika 65(1):167–179, DOI 10.1093/biomet/65.1.167

    MathSciNet  MATH  Google Scholar 

  • Press NH, Flannery BP, Teukolsky SA, Vitterling WT (1992) Numerical recipes in C: the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Proschan MA, Hunsberger SA (1995) Designed extension of studies based on conditional power. Biometrics 51(4):1315–1324, DOI 10.2307/2533262

    MathSciNet  MATH  Google Scholar 

  • Proschan MA, Lan KG, Wittes JT (2006) Statistical monitoring of clinical trials: a unified approach. Springer, New York, DOI 10.1007/978-0-387-44970-8

    Google Scholar 

  • Reiner E, Paoletti X, O’Quigley J (1999) Operating characteristics of the standard phase I clinical trial design. Comput Stat Data Anal 30(3):303–315, DOI 10.1016/S0167-9473(98)00095-4

    MATH  Google Scholar 

  • Robbins H, Monro S (1951) A stochastic approximation method. Ann Math Statist 22:400–407

    MathSciNet  MATH  Google Scholar 

  • Roberts SW (1966) A comparison of some control chart procedures. Technometrics 8:411–430

    MathSciNet  Google Scholar 

  • Rosner GL, Tsiatis AA (1988) Exact confidence-intervals following a group sequential trial – a comparison of methods. Biometrika 75(4):723–729

    MATH  Google Scholar 

  • Rowland M, Tozer TN (1989) Clinical pharmacokinetics: concepts and applications, 2nd edn. Lea and Febiger Phildelphia

    Google Scholar 

  • Rubinstein L, Crowley J, Ivy P, LeBlanc M, Sargent D (2009) Randomized phase II designs. Clin Cancer Res 15:1883–1890, DOI 10.1158/1078-0432.CCR-08-2031

    Google Scholar 

  • Sacks J (1958) Asymptotic distribution of stochastic approximation procedures. Ann Math Statist 29:373–405

    MathSciNet  MATH  Google Scholar 

  • Scharfstein DO, Tsiatis AA (1998) The use of simulation and bootstrap in information-based group sequential studies. Stat Med 17(1):75–87

    Google Scholar 

  • Scharfstein DO, Tsiatis AA, Robins JM (1997) Semiparametric efficiency and its implication on the design and analysis of group-sequential studies. J Am Statist Assoc 92(440):1342–1350, DOI 10.2307/2965404

    MATH  Google Scholar 

  • Schmitz N (1993) Optimal sequentially planned decision procedures. Lecture notes in statistics, vol 79. Springer, New York

    Google Scholar 

  • Schwarz G (1962) Asymptotic shapes of Bayes sequential testing regions. Ann Math Statist 33:224–236

    MathSciNet  MATH  Google Scholar 

  • Shen Y, Fisher L (1999) Statistical inference for self-designing clinical trials with a one-sided hypothesis. Biometrics 55(1):190–197, DOI 10.1111/j.0006-341X.1999.00190.x

    MATH  Google Scholar 

  • Shewhart WA (1931) Economic control of manufactured products. Van Nostrand Reinhold, New York

    Google Scholar 

  • Shih MC, Lai TL, Heyse JF, Chen J (2010) Sequential generalized likelihood ratio tests for vaccine safety evaluation. Stat Med 29(26):2698–2708, DOI 10.1002/sim.4036

    MathSciNet  Google Scholar 

  • Shih WJ (2001) Sample size re-estimation: Journey for a decade. Stat Med 20(4):515–518, DOI 10.1002/sim.532

    Google Scholar 

  • Siegmund D (1978) Estimation following sequential tests. Biometrika 65(2):341–349, DOI 10.2307/2335213

    MathSciNet  MATH  Google Scholar 

  • Siegmund D (1985) Sequential analysis. Springer, New York

    MATH  Google Scholar 

  • Siegmund D, Venkatraman ES (1995) Using the generalized likelihood ratio statistics for sequential detection of a change-point. Ann Statist 23:255–271

    MathSciNet  MATH  Google Scholar 

  • Silvey SD (1980) Optimal design. Monographs on applied probability and statistics. Chapman & Hall, London

    Google Scholar 

  • Simon R (1989) Designs for efficient clinical trials. Oncology 3(7):43–53 with discussion

    Google Scholar 

  • Simon R (1989) Optimal 2-stage designs for phase II clinical trials. Contr Clin Trial 10(1):1–10, DOI 10.1016/0197-2456(89)90015-9

    Google Scholar 

  • Slud E, Wei LJ (1982) Two-sample repeated significance tests based on the modified Wilcoxon statistic. J Am Statist Assoc 77(380):862–868

    MathSciNet  MATH  Google Scholar 

  • Sonesson C, Bock D (2003) A review and discussion of prospective statistical surveillance in public health. J Roy Statist Soc Ser A 166(1):5–21, DOI 10.1111/1467-985X.00256

    MathSciNet  Google Scholar 

  • Spiegelhalter D, Freedman L, Blackburn P (1986) Monitoring clinical trials: Conditional or predictive power? Contr Clin Trial 7(1):8–17, DOI 10.1016/0197-2456(86)90003-6

    Google Scholar 

  • Stein C (1945) A two-sample test for a linear hypothesis whose power is independent of the variance. Ann Math Statist 16:243–258

    MATH  Google Scholar 

  • Storer B (1989) Design and analysis of phase I clinical trials. Biometrics 45(3):925–937, DOI 10.2307/2531693

    MathSciNet  MATH  Google Scholar 

  • Susarla V, Van Ryzin J (1976) Nonparametric Bayesian estimation of survival curves from incomplete observations. J Am Statist Assoc 71(356):897–902

    MATH  Google Scholar 

  • Todd S, Whitehead J (1996) Point and interval estimation following a sequential clinical trial. Biometrika 83(2):453–461

    MATH  Google Scholar 

  • Tsiatis AA (1981) The asymptotic joint distribution of the efficient scores test for the proportional hazards model calculated over time. Biometrika 68(1):311–315, DOI 10.1093/biomet/68.1.311

    MathSciNet  MATH  Google Scholar 

  • Tsiatis AA, Mehta C (2003) On the inefficiency of the adaptive design for monitoring clinical trials. Biometrika 90(2):367–378, DOI 10.1093/biomet/90.2.367

    MathSciNet  MATH  Google Scholar 

  • Vickers AJ, Ballen V, Scher HI (2007) Setting the bar in phase II trials: the use of historical data for determining “go/no go” decision for definitive phase III testing. Clin Cancer Res 13(3):972–976, DOI 10.1158/1078-0432.CCR-06-0909

    Google Scholar 

  • Von Hoff DD, Turner J (1991) Response rates, duration of response, and dose-response effects in phase I studies of antineoplastics. Invest New Drugs 9(1):115–122

    Google Scholar 

  • Vonesh EF (1996) A note on the use of Laplace’s approximation for nonlinear mixed-effects models. Biometrika 83(2):447–452, DOI 10.1093/biomet/83.2.447

    MathSciNet  MATH  Google Scholar 

  • Wald A (1945) Sequential tests of statistical hypotheses. Ann Math Statist 16:117–186

    MathSciNet  MATH  Google Scholar 

  • Wald A, Wolfowitz J (1948) Optimum character of the sequential probability ratio test. Ann Math Statist 19:326–339

    MathSciNet  MATH  Google Scholar 

  • Wallis WA (1980) The statistical research group, 1942–1945. J Am Statist Assoc 75(370):320–335, with comments by F.J. Anscombe and William H. Kruskal and a reply by the author

    Google Scholar 

  • Wang S, Hung H, Tsong Y, Cui L (2001) Group sequential test strategies for superiority and non-inferiority hypotheses in active controlled clinical trials. Stat Med 20(13):1903–1912

    Google Scholar 

  • Wang SK, Tsiatis AA (1987) Approximately optimal one-parameter boundaries for group sequential trials. Biometrics 43(1):193–199

    MathSciNet  MATH  Google Scholar 

  • Wassmer G, Vandemeulebroecke M (2006) A brief review on software developments for group sequential and adaptive designs. Biom J 48(4):732–737, DOI 10.1002/bimj.200510233

    MathSciNet  Google Scholar 

  • Whitehead J (1986) Supplementary analysis at the conclusion of a sequential clinical trial. Biometrics 42(3):461–471

    MATH  Google Scholar 

  • Whitehead J (1992) The design and analysis of sequential clinical trials, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Whitehead J, Stratton I (1983) Group sequential clinical trials with triangular continuation regions. Biometrics 39(1):227–236

    MathSciNet  Google Scholar 

  • Whitehead J, Todd S, Hall WJ (2000) Confidence intervals for secondary parameters following a sequential test. J Roy Statist Soc Ser B 62(4):731–745, DOI 10.1111/1467-9868.00260

    MathSciNet  MATH  Google Scholar 

  • Whitehead J, Whitehead A, Todd S, Bolland K, Sooriyarachchi M (2001) Mid-trial design reviews for sequential clinical trials. Stat Med 20(2):165–176

    Google Scholar 

  • Willsky AS, Jones HG (1976) A generalized likelihood ratio approach to detection and estimation of jumps in linear systems. IEEE Trans Automat Contr 21:108–112

    MathSciNet  MATH  Google Scholar 

  • Wilson EB, Worcester J (1943) The determination of L.D.50 and its sampling error in bio-assay. Proc Nat Acad Sci U S A 29(2):79–85

    Google Scholar 

  • Wittes J, Brittain E (1990) The role of internal pilot: studies in increasing the efficiency of clinical trials. Stat Med 9(1–2):65–72, DOI 10.1002/sim.4780090113

    Google Scholar 

  • Wolfinger R (1993) Laplace’s approximation for nonlinear mixed models. Biometrika 80(4):791–795, DOI 10.1093/biomet/80.4.791

    MathSciNet  MATH  Google Scholar 

  • Wolfinger R, O’Connell M (1993) Generalized linear mixed models: a pseudo-likelihood approach. J Stat Comput Sim 48(3–4):233–243, DOI 10.1080/00949659308811554

    MATH  Google Scholar 

  • Woodroofe M (1986) Very weak expansions for sequential confidence levels. Ann Statist 14(3):1049–1067, DOI 10.1214/aos/1176350049

    MathSciNet  MATH  Google Scholar 

  • Woodroofe M (1992) Estimation after sequential testing: a simple approach for a truncated sequential probability ratio test. Biometrika 79(2):347–353, DOI 10.1093/biomet/79.2.347

    MathSciNet  MATH  Google Scholar 

  • Wu CFJ (1985) Efficient sequential designs with binary data. J Am Statist Assoc 80(392):974–984

    MATH  Google Scholar 

  • Yafune A, Takebe M, Ogata H (1998) A use of Monte Carlo integration for population pharmacokinetics with multivariate population distribution. J Pharmacok Biopharm 26(1):103–123, DOI 10.1023/A:1023280909207

    Google Scholar 

  • Yin G, Yuan Y (2009) Bayesian model averaging continual reassessment method in phase I clinical trials. J Am Statist Assoc 104(487):954–968, DOI 10.1198/jasa.2009.ap08425

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bartroff, J., Lai, T.L., Shih, MC. (2013). Sequential Methods for Vaccine Safety Evaluation and Surveillance in Public Health. In: Sequential Experimentation in Clinical Trials. Springer Series in Statistics, vol 298. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6114-2_5

Download citation

Publish with us

Policies and ethics