Advertisement

Introduction

  • Jay Bartroff
  • Tze Leung Lai
  • Mei-Chiung Shih
Chapter
Part of the Springer Series in Statistics book series (SSS, volume 298)

Abstract

This chapter gives an overview of (a) the prevalence of sequential experimentation in translational medical research and (b) developments of statistical methods to design and analyze these sequential experiments in evidence-based medical research. In this connection it also gives an outline of the topics covered in the subsequent chapters and discusses the complementary roles of Bayesian and frequentist approaches to sequential design and analysis.

Keywords

Adaptive Design Sequential Probability Ratio Test Generalize Likelihood Ratio Bandit Problem Bayesian Design 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Andersen PK, Borgan Ø, Gill RD, Keiding N (1993) Statistical models based on counting processes. Springer Series in Statistics, Springer-Verlag, New York, DOI  10.1007/978-1-4612-4348-9 Google Scholar
  2. Anscombe F (1952) Large-sample theory of sequential estimation. Math Proc Cambridge Philosoph Soc 48(04):600–607MathSciNetMATHCrossRefGoogle Scholar
  3. Armitage P (1960) Sequential medical trials. Charles C. Thomas, Springfield, IllGoogle Scholar
  4. Armitage P, McPherson CK, Rowe BC (1969) Repeated significance tests on accumulating data. J Roy Statist Soc Ser A 132:235–244MathSciNetCrossRefGoogle Scholar
  5. Azriel D (2012) Optimal sequential designs in phase I studies. Comput Stat Data Anal To appearGoogle Scholar
  6. Babb J, Rogatko A, Zacks S (1998) Cancer phase I clinical trials: efficient dose escalation with overdose control. Stat Med 17(10):1103–1120CrossRefGoogle Scholar
  7. Barnard GA (1959) Control charts and stochastic processes (with discussion). J Roy Statist Soc Ser B 21:239–271MATHGoogle Scholar
  8. Bartroff J, Lai TL (2008a) Efficient adaptive designs with mid-course sample size adjustment in clinical trials. Stat Med 27(10):1593–1611, DOI 10.1002/sim.3201MathSciNetCrossRefGoogle Scholar
  9. Bartroff J, Lai TL (2008b) Generalized likelihood ratio statistics and uncertainty adjustments in efficient adaptive design of clinical trials. Sequent Anal 27(3):254–276MathSciNetMATHCrossRefGoogle Scholar
  10. Bartroff J, Lai TL (2010) Approximate dynamic programming and its applications to the design of phase I cancer trials. Statist Sci 25:245–257MathSciNetCrossRefGoogle Scholar
  11. Bartroff J, Lai TL (2011) Incorporating individual and collective ethics into phase I cancer trial designs. Biometrics 67(2):596–603, DOI 10.1111/j.1541-0420.2010.01471.xMathSciNetMATHCrossRefGoogle Scholar
  12. Bauer P (1989) Multistage testing with adaptive designs. Biometrie und Informatik in Medizin und Biologie 20:130–148, with discussionGoogle Scholar
  13. Bauer P, Köhne K (1994) Evaluation of experiments with adaptive interim analyses. Biometrics 50(4):1029–1041, DOI 10.2307/2533441MATHCrossRefGoogle Scholar
  14. Bayard DS (1991) A forward method for optimal stochastic nonlinear and adaptive control. IEEE Trans Automat Contrl 36(9):1046–1053, DOI 10.1109/9.83535MathSciNetMATHCrossRefGoogle Scholar
  15. Beal, S.L. and Sheiner, L.B., eds. (1992), NONMEM User.s Guide, University of California, San Francisco, NONMEM Project Group.Google Scholar
  16. Berry SM, Carlin BP, Lee JJ, Müller P (2011) Bayesian adaptive methods for clinical trials. Chapman & Hall/CRC biostatistics series, vol 38. CRC, Boca RatonGoogle Scholar
  17. Bertsekas DP (2007) Dynamic programming and optimal control, vol II, 3rd edn. Athena Scientific Belmont, MasssachusettsGoogle Scholar
  18. Beta-Blocker Heart Attack Trial Research Group (1982) A randomized trial of propranolol in patients with acute myocardial infarction: 1. mortality results. J Am Med Assoc 247(12):1707–1714Google Scholar
  19. Beta-Blocker Heart Attack Trial Research Group (1984) Beta-blocker heart attack trial: design, methods, and baseline results. Contr Clin Trial 5(4):382–437, DOI 10.1016/S0197-2456(84)80017-3CrossRefGoogle Scholar
  20. Birkett M, Day S (1994) Internal pilot studies for estimating sample size. Stat Med 13(23–24):2455–2463, DOI 10.1002/sim.4780132309CrossRefGoogle Scholar
  21. Boyd S. and Vandenberghe L. (2004), “Convex Optimization”, Cambridge University Press, New York.MATHGoogle Scholar
  22. Brensike JF, Kelsey SF, Passamani ER, Fisher MR, Richardson JM, Loh IK, Stone NJ, Aldrich RF, Battaglini JW, Moriarty DJ, Myrianthopoulos MB, Detre KM, Epstein SE, Levy RI (1982) National heart lung and blood institute type ii coronary intervention study: design, methods and baseline characteristics. Contr Clin Trial 3(2):91–111, DOI 10.1016/0197-2456(82)90038-1CrossRefGoogle Scholar
  23. Breslow NE, Clayton DG (1993) Approximate inference in generalized linear mixed models. J Am Statist Assoc 88(421):9–25MATHCrossRefGoogle Scholar
  24. Bretz F, Schmidli H, König F, Racine A, Maurer W (2006) Confirmatory seamless phase II/III clinical trials with hypothesis selection at interim: general concepts. Biomet J 4:623–634, DOI 10.1002/bimj.200510232CrossRefGoogle Scholar
  25. Brookmeyer R, Crowley J (1982) A confidence interval for the median survival time. Biometrics 38:29–41MATHCrossRefGoogle Scholar
  26. Burman CF, Sonesson C (2006) Are flexible designs sound? Biometrics 62(3):664–669, DOI 10.1111/j.1541-0420.2006.00626.xMathSciNetMATHCrossRefGoogle Scholar
  27. Chan HP, Lai TL (2000) Asymptotic approximations for error probabilities of sequential or fixed sample size tests in exponential families. Ann Statist 28(6):1638–1669MathSciNetMATHCrossRefGoogle Scholar
  28. Chang M (2007) Adaptive design theory and implementation using SAS and R. Chapman & Hall/CRC, Boca RatonGoogle Scholar
  29. Chen RT, Davis RL, Rhodes PH (2005) Special methodological issues in pharmacoepidemiology studies of vaccine safety. In: Strom B (ed) Pharmacoepidemiology, 4th edn. Wiley, New York, pp 455–486Google Scholar
  30. Chernoff H (1961) Sequential tests for the mean of a normal distribution. In: Proceedings of the 4th Berkeley symposium on mathematical statistics and probability, vol I, University of California Press, Berkeley, California, pp 79–91Google Scholar
  31. Chernoff H (1965) Sequential tests for the mean of a normal distribution III (small t). Ann Math Statist 36:28–54MathSciNetMATHCrossRefGoogle Scholar
  32. Chernoff H (1972) Sequential analysis and optimal design. Society for Industrial and Applied Mathematics, PhiladelphiaCrossRefGoogle Scholar
  33. Choi S, Smith P, Becker D (1985) Early decision in clinical trials when the treatment differences are small: experience of a controlled trial in head trauma. Contr Clin Trial 6(4):280–288, DOI 10.1016/0197-2456(85)90104-7CrossRefGoogle Scholar
  34. Chow SC, Chang M (2006) Adaptive design methods in clinical trials. Chapman & Hall/CRC, Boca RatonCrossRefGoogle Scholar
  35. Chuang CS, Lai TL (1998) Resampling methods for confidence intervals in group sequential trials. Biometrika 85(2):317–332MathSciNetMATHCrossRefGoogle Scholar
  36. Chuang CS, Lai TL (2000) Hybrid resampling methods for confidence intervals. Statist Sinica 10(1):1–50, with discussion and rejoinder by the authorsGoogle Scholar
  37. Cook A, Tiwari R, Wellman R, Heckbert S, Li L, Heagerty P, Marsh T, Nelson J (2012) Statistical approaches to group sequential monitoring of postmarket safety surveillance data: current state of the art for use in the mini-sentinel pilot. Pharmacoepidemiol Drug Safety 21:72–81CrossRefGoogle Scholar
  38. Cox DR (1972) Regression models and life-tables. J Roy Statist Soc Ser B 34:187–220, with discussion and a reply by the authorGoogle Scholar
  39. Cox DR (1975) Partial likelihood. Biometrika 62(2):269–276MathSciNetMATHCrossRefGoogle Scholar
  40. Cui L, Hung HMJ, Wang SJ (1999) Modification of sample size in group sequential clinical trials. Biometrics 55(3):853–857MATHCrossRefGoogle Scholar
  41. Dantzig GB (1940) On the non-existence of tests of “student’s” hypothesis having power functions independent of σ. Ann Math Statist 11:186–192MathSciNetMATHCrossRefGoogle Scholar
  42. Davidian M, Giltinan DM (1995) Nonlinear models for repeated measurement data. Monographs on statistics & applied probability. Chapman and Hall/CRC, Boca RatonGoogle Scholar
  43. Davis R, Kolczak M, Lewis E, Nordin J, Goodman M, Shay D, Platt R, Black S, Shinefield H, Chen R (2005) Active surveillance of vaccine safety – a system to detect early signs of adverse events. Epidemiology 16(3):336–341, DOI 10.1097/01.ede.0000155506.05636.a4CrossRefGoogle Scholar
  44. Denne JS (2001) Sample size recalculation using conditional power. Stat Med 20(17–18):2645–2660, DOI 10.1002/sim.734CrossRefGoogle Scholar
  45. Denne JS, Jennison C (1999) Estimating the sample size for a t-test using an internal pilot. Stat Med 18(13):1575–1585MathSciNetCrossRefGoogle Scholar
  46. Denne JS, Jennison C (2000) A group sequential t-test with updating of sample sizes. Biometrika 87(1):125–134, DOI 10.1093/biomet/87.1.125MathSciNetMATHCrossRefGoogle Scholar
  47. Dixon WJ, Mood AM (1948) A method for obtaining and analyzing sensitivity data. J Am Statist Assoc 43(241):109–126MATHCrossRefGoogle Scholar
  48. Durham SD, Flournoy N (1994) Random walks for quantile estimation. In: Statistical decision theory and related topics, V (West Lafayette, IN, 1992). Springer, New York, pp 467–476Google Scholar
  49. Dvoretzky A, Kiefer J, Wolfowitz J (1953) Sequential decision problems for processes with continuous time parameter. Ann Math Statist 24:403–415MathSciNetMATHCrossRefGoogle Scholar
  50. Eales JD, Jennison C (1992) An improved method for deriving optimal one-sided group sequential tests. Biometrika 79(1):13–24MathSciNetMATHCrossRefGoogle Scholar
  51. Eales JD, Jennison C (1995) Optimal two-sided group sequential tests. Sequent Anal 14(4):273–286MathSciNetMATHCrossRefGoogle Scholar
  52. Efron B (1987) Better bootstrap confidence intervals. J Am Statist Assoc 82(397):171–200, with comments and a rejoinder by the authorGoogle Scholar
  53. Eisenhauer EA, O’Dwyer PJ, Christian M, Humphrey JS (2000) Phase I clinical trial design in cancer drug development. J Clin Oncol 18:684Google Scholar
  54. Elfving G (1952) Optimum allocation in linear regression theory. Ann Math Statist 23:255–262MathSciNetMATHCrossRefGoogle Scholar
  55. Ellenberg SS, Foulkes MA, Midthun K, Goldenthal KL (2005) Evaluating the safety of new vaccines: summary of a workshop. Am J Public Health 95(5):800–807, DOI 10.2105/AJPH.2004.039438CrossRefGoogle Scholar
  56. Emerson SS, Fleming TR (1989) Symmetric group sequential test designs. Biometrics 45(3):905–923MathSciNetMATHCrossRefGoogle Scholar
  57. Emerson SS, Fleming TR (1990) Parameter estimation following group sequential hypothesis testing. Biometrika 77(4):875–892, DOI 10.1093/biomet/77.4.875MathSciNetCrossRefGoogle Scholar
  58. Facey KM (1992) A sequential procedure for a phase II efficacy trial in hypercholesterolemia. Contr Clin Trial 13(2):122–133, DOI 10.1016/0197-2456(92)90018-UCrossRefGoogle Scholar
  59. Fan J (1991) On the optimal rates of convergence for nonparametric deconvolution problems. Ann Statist 19(3):1257–1272, DOI 10.1214/aos/1176348248MathSciNetMATHCrossRefGoogle Scholar
  60. Fedorov VV (1972) Theory of optimal experiments. In: Studden WJ, Klimko EM (eds) Probability and mathematical statistics, vol 12. Academic, New York, translated from the RussianGoogle Scholar
  61. Fisher LD (1998) Self-designing clinical trials. Stat Med 17(14):1551–1562CrossRefGoogle Scholar
  62. Gehan EA (1965) A generalized wilcoxon test for comparing arbitrarily singly censored samples. Biometrika 52:203–223MathSciNetMATHGoogle Scholar
  63. Gould AL, Shih WJ (1992) Sample size re-estimation without unblinding for normally distributed outcomes with unknown variance. Commun Statist A – Theor Method 21(10):2833–2853, DOI  10.1080/03610929208830947
  64. Greene SK, Kulldorff M, Yin R, Yih WK, Lieu TA, Weintraub ES, Lee GM (2011) Near real-time vaccine safety surveillance with partially accrued data. Pharmacoepidemiol Drug Safety 20:583–590CrossRefGoogle Scholar
  65. Gross ST, Lai TL (1996) Bootstrap methods for truncated and censored data. Statist Sinica 6(3):509–530MathSciNetMATHGoogle Scholar
  66. Gu M, Lai TL (1991) Weak convergence of time-sequential censored rank statistics with applications to sequential testing in clinical trials. Ann Statist 19(3):1403–1433MathSciNetMATHCrossRefGoogle Scholar
  67. Gu M, Lai TL (1998) Repeated significance testing with censored rank statistics in interim analysis of clinical trials. Statist Sinica 8(2):411–428MathSciNetMATHGoogle Scholar
  68. Gu M, Lai TL (1999) Determination of power and sample size in the design of clinical trials with failure-time endpoints and interim analyses. Contr Clin Trials 20(5):423–438, DOI 10.1016/S0197-2456(99)00021-5CrossRefGoogle Scholar
  69. Gu M, Lai TL, Lan KKG (1991) Rank tests based on censored data and their sequential analogues. Am J Math Manag Sci 11(1–2):147–176MathSciNetMATHGoogle Scholar
  70. Haines LM, Perevozskaya I, Rosenberger WF (2003) Bayesian optimal designs for phase I clinical trials. Biometrics 59(3):591–600, DOI 10.1111/1541-0420.00069MathSciNetMATHCrossRefGoogle Scholar
  71. Hall P (1992) The Bootstrap and edgeworth expansion. Springer, New YorkGoogle Scholar
  72. Hall WJ, Yakir B (2003) Inference about a secondary process following a sequential trial. Biometrika 90(3):597–611, DOI 10.1093/biomet/90.3.597MathSciNetCrossRefGoogle Scholar
  73. Han J, Lai TL, Spivakovsky V (2006) Approximate policy optimization and adaptive control in regression models. Comput Econ 27:433–452MATHCrossRefGoogle Scholar
  74. Harrington DP, Fleming TR (1982) A class of rank test procedures for censored survival data. Biometrika 69(3):553–566, DOI 10.1093/biomet/69.3.553MathSciNetMATHCrossRefGoogle Scholar
  75. Haybittle J (1971) Repeated assessment of results in clinical trials of cancer treatment. Brit J Radiol 44(526):793–&Google Scholar
  76. He P, Lai TL, Liao OY (2012) Futility stopping in clinical trials. Stat Interface To appearGoogle Scholar
  77. Herson J (1979) Predictive probability early termination plans for phase II clinical trials. Biometrics 35(4):775–783, DOI 10.2307/2530109MATHCrossRefGoogle Scholar
  78. Herson J, Wittes JT (1993) The use of interim analysis in sample size adjustment. Drug Inf J 27:753–760CrossRefGoogle Scholar
  79. Heyse JF, Kuter BJ, Dallas MJ, Heaton P, REST Study Team (2008) Evaluating the safety of a rotavirus vaccine: the REST of the story. Clin Trials 5(2):131–139, DOI 10.1177/1740774508090507CrossRefGoogle Scholar
  80. Hoeffding W (1960) Lower bounds for the expected sample size and the average risk of a sequential procedure. Ann Math Statist 31:352–368MathSciNetMATHCrossRefGoogle Scholar
  81. Huang X, Ning J, Li Y, Estey E, Issa JP, Berry DA (2009) Using short-term response information to facilitate adaptive randomization for survival clinical trials. Stat Med 28(12):1680–1689, DOI 10.1002/sim.3578MathSciNetCrossRefGoogle Scholar
  82. Inoue LYT, Thall PF, Berry DA (2002) Seamlessly expanding a randomized Phase II trial to Phase III. Biometrics 58:823–831MathSciNetMATHCrossRefGoogle Scholar
  83. Jennison C, Turnbull BW (1990) Statistical approaches to interim monitoring of medical trials: a review and commentary. Statist Sci 5(3):299–317MathSciNetMATHCrossRefGoogle Scholar
  84. Jennison C, Turnbull BW (2000) Group sequential methods with applications to clinical trials. Chapman & Hall/CRC, Boca RatonMATHGoogle Scholar
  85. Jennison C, Turnbull BW (2003) Mid-course sample size modification in clinical trials based on the observed treatment effect. Stat Med 22(6):971–993, DOI 10.1002/sim.1457MathSciNetCrossRefGoogle Scholar
  86. Jennison C, Turnbull BW (2006a) Adaptive and nonadaptive group sequential tests. Biometrika 93(1):1–21, DOI 10.1093/biomet/93.1.1MathSciNetMATHCrossRefGoogle Scholar
  87. Jennison C, Turnbull BW (2006b) Efficient group sequential designs when there are several effect sizes under consideration. Stat Med 25(6):917–932, DOI 10.1002/sim.2251MathSciNetCrossRefGoogle Scholar
  88. Johnson RA (1970) Asymptotic expansions associated with posterior distributions. Ann Math Statist 41:851–864MathSciNetMATHCrossRefGoogle Scholar
  89. Julious S, Swank D (2005) Moving statistics beyond the individual clinical trial: applying decision science to optimize a clinical development plan. Pharmaceut Statist 4(1):37–46, DOI 10.1002/pst.149CrossRefGoogle Scholar
  90. Katzung BG (1995) Basic and clinical pharmacology, 6th edn. Prentice Hall, Englewood, CliffsGoogle Scholar
  91. Kiefer J (1974) General equivalence theory for optimum designs (approximate theory). Ann Statist 2:849–879MathSciNetMATHCrossRefGoogle Scholar
  92. Kiefer J, Weiss L (1957) Some properties of generalized sequential probability ratio tests. Ann Math Statist 28:57–74MathSciNetMATHCrossRefGoogle Scholar
  93. Kim K, DeMets DL (1987) Design and analysis of group sequential tests based on the type I error spending rate function. Biometrika 74(1):149–154MathSciNetMATHCrossRefGoogle Scholar
  94. Korn EL, Midthune D, Chen TT, Rubinstein LV, Christian MC, Simon RM (1994) A comparison of two phase I trial designs. Stat Med 13(18):1799–1806, DOI 10.1002/sim.4780131802CrossRefGoogle Scholar
  95. Kulldorff M, Davis R, Kolczak M, Lewis E, Lieu T, Platt R (2011) A maximized sequential probability ratio test for drug and vaccine safety surveillance. Sequent Anal 30(1):58–78MathSciNetMATHCrossRefGoogle Scholar
  96. Lai TL (1973) Optimal stopping and sequential tests which minimize the maximum expected sample size. Ann Statist 1:659–673MathSciNetMATHCrossRefGoogle Scholar
  97. Lai TL (1988) Nearly optimal sequential tests of composite hypotheses. Ann Statist 16(2):856–886MathSciNetMATHCrossRefGoogle Scholar
  98. Lai TL (1995) Sequential changepoint detection in quality control and dynamical systems. J Roy Statist Soc Ser B 57(4):613–658, with discussion and a reply by the authorGoogle Scholar
  99. Lai TL (1997) On optimal stopping problems in sequential hypothesis testing. Statist Sinica 7(1):33–51MathSciNetMATHGoogle Scholar
  100. Lai TL (1998) Information bounds and quick detection of parameter changes in stochastic systems. IEEE Trans Inform Theory 44:2917–2929MathSciNetMATHCrossRefGoogle Scholar
  101. Lai TL (2001) Sequential analysis: some classical problems and new challenges. Statist Sinica 11(2):303–408, with comments and a rejoinder by the authorGoogle Scholar
  102. Lai TL (2004) Likelihood ratio identities and their applications to sequential analysis. Sequent Anal 23(4):467–497MATHCrossRefGoogle Scholar
  103. Lai TL, Li W (2006) Confidence intervals in group sequential trials with random group sizes and applications to survival analysis. Biometrika 93(3):641–654MathSciNetMATHCrossRefGoogle Scholar
  104. Lai TL, Liao OY (2012) Efficient adaptive randomization and stopping rules in multi-arm clinical trials for testing a new treatment. Sequent Anal To appearGoogle Scholar
  105. Lai TL, Robbins H (1979) Adaptive design and stochastic approximation. Ann Statist 7(6):1196–1221MathSciNetMATHCrossRefGoogle Scholar
  106. Lai TL, Shih MC (2003a) A hybrid estimator in nonlinear and generalised linear mixed effects models. Biometrika 90(4):859–879MathSciNetCrossRefGoogle Scholar
  107. Lai TL, Shih MC (2003b) Nonparametric estimation in nonlinear mixed effects models. Biometrika 90(1):1–13MathSciNetMATHCrossRefGoogle Scholar
  108. Lai TL, Shih MC (2004) Power, sample size and adaptation considerations in the design of group sequential clinical trials. Biometrika 91(3):507–528MathSciNetMATHCrossRefGoogle Scholar
  109. Lai TL, Su Z (2006) Confidence intervals for survival quantiles in the cox regression model. Lifetime Data Anal 12:407–419MathSciNetMATHCrossRefGoogle Scholar
  110. Lai TL, Wang JQ (1994) Asymptotic expansions for the distributions of stopped random walks and first passage times. Ann Probab 22(4):1957–1992MathSciNetMATHCrossRefGoogle Scholar
  111. Lai TL, Xing H (2010) Sequential change-point detection when the pre- and post-change parameters are unknown. Sequent Anal 29:162–175MathSciNetMATHCrossRefGoogle Scholar
  112. Lai TL, Zhang L (1994) A modification of schwarz’s sequential likelihood ratio tests in multivariate sequential analysis. Sequent Anal 13(2):79–96MathSciNetMATHCrossRefGoogle Scholar
  113. Lai T, Su Z, Chuang C (2006a) Bias correction and confidence intervals following sequential tests. In: Lecture Notes-Monograph Series, JSTOR, pp 44–57Google Scholar
  114. Lai TL, Shih MC, Wong S (2006b) A new approach to modeling covariate effects and individualization in population pharmacokinetics-pharmacodynamics. J Pharmacok Pharmacodynam 33:49–74, DOI 10.1007/s10928-005-9000-2CrossRefGoogle Scholar
  115. Lai TL, Shih MC, Zhu G (2006c) Modified Haybittle-Peto group sequential designs for testing superiority and non-inferiority hypotheses in clinical trials. Stat Med 25(7):1149–1167MathSciNetCrossRefGoogle Scholar
  116. Lai TL, Shih MC, Su Z (2009) Tests and confidence intervals for secondary endpoints in sequential clinical trials. Biometrika 96:903–915, DOI 10.1093/biomet/asp063MathSciNetMATHCrossRefGoogle Scholar
  117. Lai TL, Lavori PW, Shih MC (2012a) Sequential design of phase II–III cancer trials. Stat Med 31(18):1944–1960, DOI 10.1002/sim.5346MathSciNetCrossRefGoogle Scholar
  118. Lai TL, Lavori PW, Shih MC, Sikic BI (2012b) Clinical trial designs for testing biomarker-based personalized therapies. Clin Trials 9(2):141–154, DOI 10.1177/1740774512437252CrossRefGoogle Scholar
  119. Lai TL, Liao OY, Zhu G (2012c) Adaptation in clinical development plans and adaptive clinical trial designs. Stat Interface To appearGoogle Scholar
  120. Lan KKG, DeMets DL (1983) Discrete sequential boundaries for clinical trials. Biometrika 70(3):659–663MathSciNetMATHCrossRefGoogle Scholar
  121. Lan KKG, Wittes J (1988) The B-value: a tool for monitoring data. Biometrics 44(2):579–585, DOI 10.2307/2531870CrossRefGoogle Scholar
  122. Lan KKG, Simon R, Halperin M (1982) Stochastically curtailed tests in long-term clinical trials. Comm Statist C—Sequent Anal 1(3):207–219Google Scholar
  123. Lehmacher W, Wassmer G (1999) Adaptive sample size calculations in group sequential trials. Biometrics 55(4):1286–1290, DOI 10.1111/j.0006-341X.1999.01286.xMATHCrossRefGoogle Scholar
  124. Li G, Shih WJ (2002) A sample size adjustment procedure for clinical trials based on conditional power. Biostatistics 3(2):277–287, DOI 10.1093/biostatistics/3.2.277MATHCrossRefGoogle Scholar
  125. Li L (2009) A conditional sequential sampling procedure for drug safety surveillance. Stat Med 28(25):3124–3138, DOI 10.1002/sim.3689MathSciNetCrossRefGoogle Scholar
  126. Li L, Kulldorff M (2010) A conditional maximized sequential probability ratio test for pharmacovigilance. Stat Med 29(2):284–295MathSciNetGoogle Scholar
  127. Lieu TA, Kulldorfif M, Davis RL, Lewis EM, Weintraub E, Yih K, Yin R, Brown JS, Platt R (2007) Real-time vaccine safety surveillance for the early detection of adverse events. Med Care 45(10, Suppl. 2):S89–S95Google Scholar
  128. Lindstrom MJ, Bates DM (1990) Nonlinear mixed effects models for repeated measures data. Biometrics 46(3):673–687, DOI 10.2307/2532087MathSciNetCrossRefGoogle Scholar
  129. Liu A, Hall WJ (1999) Unbiased estimation following a group sequential test. Biometrika 86(1):71–78, DOI 10.1093/biomet/86.1.71MathSciNetMATHCrossRefGoogle Scholar
  130. Liu A, Tan M, Boyett JM, Xiong XP (2000) Testing secondary hypotheses following sequential clinical trials. Biometrics 56(2):640–644MATHCrossRefGoogle Scholar
  131. Liu Q, Pierce DA (1994) A note on Gauss-Hermite quadrature. Biometrika 81(3):624–629, DOI 10.1093/biomet/81.3.624MathSciNetMATHGoogle Scholar
  132. Lorden G (1971) Procedures for reacting to a change in distribution. Ann Math Statist 42:1897–1908MathSciNetMATHCrossRefGoogle Scholar
  133. Lorden G (1976) 2-SPRT’s and the modified Kiefer-Weiss problem of minimizing an expected sample size. Ann Statist 4(2):281–291MathSciNetMATHCrossRefGoogle Scholar
  134. Lorden G (1983) Asymptotic efficiency of three-stage hypothesis tests. Ann Statist 11(1):129–140MathSciNetMATHCrossRefGoogle Scholar
  135. Mantel N (1966) Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemotherap Rep 50(3):163–170Google Scholar
  136. Müller HG, Wang JL (1994) Hazard rate estimation under random censoring with varying kernels and bandwidths. Biometrics 50:61–76MathSciNetMATHCrossRefGoogle Scholar
  137. Murphy T, Gargiullo P, Massoudi M, Nelson D, Jumaan A, Okoro C, Zanardi L, Setia S, Fair E, LeBaron C, Schwartz B, Wharton M, Livingood J (2001) Intussusception among infants given an oral rotavirus vaccine. N Engl J Med 344(8):564–572CrossRefGoogle Scholar
  138. Murphy T, Smith P, Gargiullo P, Schwartz B (2003) The first rotavirus vaccine and intussusception: epidemiological studies and policy decisions. J Infec Dis 187(8):1309–1313CrossRefGoogle Scholar
  139. Nelson J, Cook A, Yu O, Dominguez C, Zhao S, Greene S, Fireman B, Jacobsen S, Weintraub E, Jackson L (2012) Challenges in the design and analysis of sequentially monitored postmarket safety surveillance evaluations using electronic observational health care data. Pharmacoepidemiol Drug Safety 21:62–71CrossRefGoogle Scholar
  140. Newlands E, Blackledge G, Slack J, Rustin G, Smith D, Stuart N, Quarterman C, Hoffman R, Stevens M, Brampton M, Gibson A (1992) Antitumor imidazotetrazines.26. phase I trial of temozolomide (ccrg-81045, m-and-b 39831, nsc-362856). Br J Cancer 65(2):287–291, DOI 10.1038/bjc.1992.57Google Scholar
  141. Nguyen M, Ball R, Midthun K, Lieu T (2012) The food and drug administration’s post-licensure rapid immunization safety monitoring program: strengthening the federal vaccine safety enterprise. Pharmacoepidemiol Drug Safety 21:291–297CrossRefGoogle Scholar
  142. O’Brien PC, Fleming TR (1979) Multiple testing procedure for clinical trials. Biometrics 35(3):549–556CrossRefGoogle Scholar
  143. O’Quigley J (2002) Continual reassessment designs with early termination. Biostatistics 3(1):87–99, DOI 10.1093/biostatistics/3.1.87MathSciNetMATHCrossRefGoogle Scholar
  144. O’Quigley J, Pepe M, Fisher L (1990) Continual reassessment method: a practical design for phase I clinical trials in cancer. Biometrics 46(1):33–48, DOI 10.2307/2531628MathSciNetMATHCrossRefGoogle Scholar
  145. Page ES (1954) Continuous inspection schemes. Biometrika 41:100–115MathSciNetMATHGoogle Scholar
  146. Pampallona S, Tsiatis AA (1994) Group sequential designs for one-sided and two-sided hypothesis testing with provision for early stopping in favor of the null hypothesis. J Statist Plan Infer 42(1–2):19–35MathSciNetMATHCrossRefGoogle Scholar
  147. Pepe MS, Anderson GL (1992) Two-stage experimental designs: early stopping with a negative result. J Roy Statist Soc Ser C 41(1):181–190, DOI 10.2307/2347627MATHGoogle Scholar
  148. Peto R, Peto J (1972) Asymptotically efficient rank invariant test procedures. J Roy Statist Soc Ser A 135(2):185–207MathSciNetCrossRefGoogle Scholar
  149. Peto R, Pike M, Armitage P, Breslow N, Cox D, Howard S, Mantel N, McPherson K, Peto J, Smith P (1976) Design and analysis of randomized clinical trials requiring prolonged observation of each patient 1. Introduction and design. Br J Cancer 34(6):585–612Google Scholar
  150. Pinheiro JC, Bates DM (1995) Approximations to the log-likelihood function in the nonlinear mixed-effects model. J Comput Graph Stat 4(1):12–35Google Scholar
  151. Platt R, Carnahan R, Brown J, Chrischilles E, Curtis L, Hennessy S, Nelson J, Racoosin J, Robb M, Schneeweiss S et al (2012) The us food and drug administration’s mini-sentinel program: status and direction. Pharmacoepidemiol Drug Safety 21:1–8Google Scholar
  152. Pocock SJ (1977) Group sequential methods in the design and analysis of clinical trials. Biometrika 64(2):191–199CrossRefGoogle Scholar
  153. Pollak M (1985) Optimal detection of a change in distribution. Ann Statist 13:206–227MathSciNetMATHCrossRefGoogle Scholar
  154. Posch M, Bauer P (1999) Adaptive two stage designs and the conditional error function. Biom J 41(6):689–696MATHCrossRefGoogle Scholar
  155. Prentice RL (1978) Linear rank tests with right censored data. Biometrika 65(1):167–179, DOI 10.1093/biomet/65.1.167MathSciNetMATHCrossRefGoogle Scholar
  156. Press NH, Flannery BP, Teukolsky SA, Vitterling WT (1992) Numerical recipes in C: the art of scientific computing, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  157. Proschan MA, Hunsberger SA (1995) Designed extension of studies based on conditional power. Biometrics 51(4):1315–1324, DOI 10.2307/2533262MathSciNetMATHCrossRefGoogle Scholar
  158. Proschan MA, Lan KG, Wittes JT (2006) Statistical monitoring of clinical trials: a unified approach. Springer, New York, DOI  10.1007/978-0-387-44970-8 Google Scholar
  159. Reiner E, Paoletti X, O’Quigley J (1999) Operating characteristics of the standard phase I clinical trial design. Comput Stat Data Anal 30(3):303–315, DOI 10.1016/S0167-9473(98)00095-4MATHCrossRefGoogle Scholar
  160. Robbins H, Monro S (1951) A stochastic approximation method. Ann Math Statist 22:400–407MathSciNetMATHCrossRefGoogle Scholar
  161. Roberts SW (1966) A comparison of some control chart procedures. Technometrics 8:411–430MathSciNetCrossRefGoogle Scholar
  162. Rosner GL, Tsiatis AA (1988) Exact confidence-intervals following a group sequential trial – a comparison of methods. Biometrika 75(4):723–729MATHCrossRefGoogle Scholar
  163. Rowland M, Tozer TN (1989) Clinical pharmacokinetics: concepts and applications, 2nd edn. Lea and Febiger PhildelphiaGoogle Scholar
  164. Rubinstein L, Crowley J, Ivy P, LeBlanc M, Sargent D (2009) Randomized phase II designs. Clin Cancer Res 15:1883–1890, DOI 10.1158/1078-0432.CCR-08-2031CrossRefGoogle Scholar
  165. Sacks J (1958) Asymptotic distribution of stochastic approximation procedures. Ann Math Statist 29:373–405MathSciNetMATHCrossRefGoogle Scholar
  166. Scharfstein DO, Tsiatis AA (1998) The use of simulation and bootstrap in information-based group sequential studies. Stat Med 17(1):75–87CrossRefGoogle Scholar
  167. Scharfstein DO, Tsiatis AA, Robins JM (1997) Semiparametric efficiency and its implication on the design and analysis of group-sequential studies. J Am Statist Assoc 92(440):1342–1350, DOI 10.2307/2965404MATHCrossRefGoogle Scholar
  168. Schmitz N (1993) Optimal sequentially planned decision procedures. Lecture notes in statistics, vol 79. Springer, New YorkGoogle Scholar
  169. Schwarz G (1962) Asymptotic shapes of Bayes sequential testing regions. Ann Math Statist 33:224–236MathSciNetMATHCrossRefGoogle Scholar
  170. Shen Y, Fisher L (1999) Statistical inference for self-designing clinical trials with a one-sided hypothesis. Biometrics 55(1):190–197, DOI 10.1111/j.0006-341X.1999.00190.xMATHCrossRefGoogle Scholar
  171. Shewhart WA (1931) Economic control of manufactured products. Van Nostrand Reinhold, New YorkGoogle Scholar
  172. Shih MC, Lai TL, Heyse JF, Chen J (2010) Sequential generalized likelihood ratio tests for vaccine safety evaluation. Stat Med 29(26):2698–2708, DOI 10.1002/sim.4036MathSciNetCrossRefGoogle Scholar
  173. Shih WJ (2001) Sample size re-estimation: Journey for a decade. Stat Med 20(4):515–518, DOI 10.1002/sim.532CrossRefGoogle Scholar
  174. Siegmund D (1978) Estimation following sequential tests. Biometrika 65(2):341–349, DOI 10.2307/2335213MathSciNetMATHGoogle Scholar
  175. Siegmund D (1985) Sequential analysis. Springer, New YorkMATHGoogle Scholar
  176. Siegmund D, Venkatraman ES (1995) Using the generalized likelihood ratio statistics for sequential detection of a change-point. Ann Statist 23:255–271MathSciNetMATHCrossRefGoogle Scholar
  177. Silvey SD (1980) Optimal design. Monographs on applied probability and statistics. Chapman & Hall, LondonGoogle Scholar
  178. Simon R (1989) Designs for efficient clinical trials. Oncology 3(7):43–53 with discussionGoogle Scholar
  179. Simon R (1989) Optimal 2-stage designs for phase II clinical trials. Contr Clin Trial 10(1):1–10, DOI 10.1016/0197-2456(89)90015-9CrossRefGoogle Scholar
  180. Slud E, Wei LJ (1982) Two-sample repeated significance tests based on the modified Wilcoxon statistic. J Am Statist Assoc 77(380):862–868MathSciNetMATHCrossRefGoogle Scholar
  181. Sonesson C, Bock D (2003) A review and discussion of prospective statistical surveillance in public health. J Roy Statist Soc Ser A 166(1):5–21, DOI 10.1111/1467-985X.00256MathSciNetCrossRefGoogle Scholar
  182. Spiegelhalter D, Freedman L, Blackburn P (1986) Monitoring clinical trials: Conditional or predictive power? Contr Clin Trial 7(1):8–17, DOI 10.1016/0197-2456(86)90003-6CrossRefGoogle Scholar
  183. Stein C (1945) A two-sample test for a linear hypothesis whose power is independent of the variance. Ann Math Statist 16:243–258MATHCrossRefGoogle Scholar
  184. Storer B (1989) Design and analysis of phase I clinical trials. Biometrics 45(3):925–937, DOI 10.2307/2531693MathSciNetMATHCrossRefGoogle Scholar
  185. Susarla V, Van Ryzin J (1976) Nonparametric Bayesian estimation of survival curves from incomplete observations. J Am Statist Assoc 71(356):897–902MATHCrossRefGoogle Scholar
  186. Todd S, Whitehead J (1996) Point and interval estimation following a sequential clinical trial. Biometrika 83(2):453–461MATHCrossRefGoogle Scholar
  187. Tsiatis AA (1981) The asymptotic joint distribution of the efficient scores test for the proportional hazards model calculated over time. Biometrika 68(1):311–315, DOI 10.1093/biomet/68.1.311MathSciNetMATHCrossRefGoogle Scholar
  188. Tsiatis AA, Mehta C (2003) On the inefficiency of the adaptive design for monitoring clinical trials. Biometrika 90(2):367–378, DOI 10.1093/biomet/90.2.367MathSciNetMATHCrossRefGoogle Scholar
  189. Vickers AJ, Ballen V, Scher HI (2007) Setting the bar in phase II trials: the use of historical data for determining “go/no go” decision for definitive phase III testing. Clin Cancer Res 13(3):972–976, DOI 10.1158/1078-0432.CCR-06-0909CrossRefGoogle Scholar
  190. Von Hoff DD, Turner J (1991) Response rates, duration of response, and dose-response effects in phase I studies of antineoplastics. Invest New Drugs 9(1):115–122Google Scholar
  191. Vonesh EF (1996) A note on the use of Laplace’s approximation for nonlinear mixed-effects models. Biometrika 83(2):447–452, DOI 10.1093/biomet/83.2.447MathSciNetMATHCrossRefGoogle Scholar
  192. Wald A (1945) Sequential tests of statistical hypotheses. Ann Math Statist 16:117–186MathSciNetMATHCrossRefGoogle Scholar
  193. Wald A, Wolfowitz J (1948) Optimum character of the sequential probability ratio test. Ann Math Statist 19:326–339MathSciNetMATHCrossRefGoogle Scholar
  194. Wallis WA (1980) The statistical research group, 1942–1945. J Am Statist Assoc 75(370):320–335, with comments by F.J. Anscombe and William H. Kruskal and a reply by the authorGoogle Scholar
  195. Wang S, Hung H, Tsong Y, Cui L (2001) Group sequential test strategies for superiority and non-inferiority hypotheses in active controlled clinical trials. Stat Med 20(13):1903–1912CrossRefGoogle Scholar
  196. Wang SK, Tsiatis AA (1987) Approximately optimal one-parameter boundaries for group sequential trials. Biometrics 43(1):193–199MathSciNetMATHCrossRefGoogle Scholar
  197. Wassmer G, Vandemeulebroecke M (2006) A brief review on software developments for group sequential and adaptive designs. Biom J 48(4):732–737, DOI 10.1002/bimj.200510233MathSciNetCrossRefGoogle Scholar
  198. Whitehead J (1986) Supplementary analysis at the conclusion of a sequential clinical trial. Biometrics 42(3):461–471MATHCrossRefGoogle Scholar
  199. Whitehead J (1992) The design and analysis of sequential clinical trials, 2nd edn. Wiley, New YorkMATHGoogle Scholar
  200. Whitehead J, Stratton I (1983) Group sequential clinical trials with triangular continuation regions. Biometrics 39(1):227–236MathSciNetCrossRefGoogle Scholar
  201. Whitehead J, Todd S, Hall WJ (2000) Confidence intervals for secondary parameters following a sequential test. J Roy Statist Soc Ser B 62(4):731–745, DOI 10.1111/1467-9868.00260MathSciNetMATHCrossRefGoogle Scholar
  202. Whitehead J, Whitehead A, Todd S, Bolland K, Sooriyarachchi M (2001) Mid-trial design reviews for sequential clinical trials. Stat Med 20(2):165–176CrossRefGoogle Scholar
  203. Willsky AS, Jones HG (1976) A generalized likelihood ratio approach to detection and estimation of jumps in linear systems. IEEE Trans Automat Contr 21:108–112MathSciNetMATHCrossRefGoogle Scholar
  204. Wilson EB, Worcester J (1943) The determination of L.D.50 and its sampling error in bio-assay. Proc Nat Acad Sci U S A 29(2):79–85Google Scholar
  205. Wittes J, Brittain E (1990) The role of internal pilot: studies in increasing the efficiency of clinical trials. Stat Med 9(1–2):65–72, DOI 10.1002/sim.4780090113CrossRefGoogle Scholar
  206. Wolfinger R (1993) Laplace’s approximation for nonlinear mixed models. Biometrika 80(4):791–795, DOI 10.1093/biomet/80.4.791MathSciNetMATHCrossRefGoogle Scholar
  207. Wolfinger R, O’Connell M (1993) Generalized linear mixed models: a pseudo-likelihood approach. J Stat Comput Sim 48(3–4):233–243, DOI  10.1080/00949659308811554 MATHCrossRefGoogle Scholar
  208. Woodroofe M (1986) Very weak expansions for sequential confidence levels. Ann Statist 14(3):1049–1067, DOI 10.1214/aos/1176350049MathSciNetMATHCrossRefGoogle Scholar
  209. Woodroofe M (1992) Estimation after sequential testing: a simple approach for a truncated sequential probability ratio test. Biometrika 79(2):347–353, DOI 10.1093/biomet/79.2.347MathSciNetMATHCrossRefGoogle Scholar
  210. Wu CFJ (1985) Efficient sequential designs with binary data. J Am Statist Assoc 80(392):974–984MATHCrossRefGoogle Scholar
  211. Yafune A, Takebe M, Ogata H (1998) A use of Monte Carlo integration for population pharmacokinetics with multivariate population distribution. J Pharmacok Biopharm 26(1):103–123, DOI 10.1023/A:1023280909207Google Scholar
  212. Yin G, Yuan Y (2009) Bayesian model averaging continual reassessment method in phase I clinical trials. J Am Statist Assoc 104(487):954–968, DOI 10.1198/jasa.2009.ap08425MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jay Bartroff
    • 1
  • Tze Leung Lai
    • 2
  • Mei-Chiung Shih
    • 3
  1. 1.Department of MathematicsUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of Statistics and Cancer InstituteStanford UniversityStanfordUSA
  3. 3.Department of Health Research and PolicyStanford University VA Cooperative Studies ProgramStanfordUSA

Personalised recommendations