Skip to main content

ABA: Role in Plant Signaling Under Salt Stress

  • Chapter
  • First Online:
Salt Stress in Plants

Abstract

Salt stress in soil and water is one of the primary abiotic stresses which limit plant growth and productivity, especially in arid and semi-arid regions. Salinity is responsible for other stresses such as ion toxicity, and nutrient imbalances. During the development of salt stress within the plant, all the major processes such as photosynthesis, protein synthesis, energy and lipid metabolisms are affected. In terms of salinity tolerance, plants are classified as halophytes, which can grow and reproduce under high salinity (>400 mM NaCl), and glycophytes, which cannot survive high salinity. Most of the grain crops and vegetables like bean, eggplant, corn, potato and sugarcane are natrophobic (glycophytes) and are highly susceptible to soil salinity.

Among physiological responses to abiotic stresses, the plant hormone abscisic acid (ABA) – a sesquiterpenoid with one (C-1) asymmetric carbon plays an important role. The accumulation of ABA in response to water or salt stress is a cell signaling process, encompassing initial stress signal perception, cellular signal transduction and regulation of expression of genes encoding key enzymes in ABA biosynthesis and catabolism. This phytohormone plays a dual roles in its physiological regulation. It exhibits inhibitive functions when it is accumulated in large amount under stress to help plant survival through inhibition of processes such as stomatal opening and plant size expansion. Moreover ABA is involved in the inhibition of ethylene production, which is a growth inhibitor under stress. At low concentration it exhibits promoting influence while at ‘normal’ conditions, the metabolite has been shown essential for vegetative growth in several organs, e.g., primary root growth and post-germination seedling development. Also, in seeds ABA modulates the biosynthesis of storage components such as lipids and proteins. The amount of active ABA can be regulated by synthesis, conjugation and catabolism. The present review will throw light on role of ABA in signal transduction under salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu Qamar S, Luo H, Laluk K, Mickelbart MV, Mengiste T (2009) Crosstalk between biotic and abiotic stress responses in tomato is mediated by the AIM1 transcription factor. Plant J 58(2):347–360

    Article  CAS  Google Scholar 

  • Achuo EA, Prinsen E, Höfte M (2006) Influence of drought, salt stress and abscisic acid on the resistance of tomato to Botrytis cinerea and Oidium neolycopersici. Plant Pathol 55:178–186

    Article  CAS  Google Scholar 

  • Afzal I, Basra SMA, Farooq M, Nawaz A (2006) Alleviation of salinity stress in spring wheat by hormonal priming with ABA, salicylic acid and ascorbic acid. Int J Agr Biol 8:23–28

    CAS  Google Scholar 

  • Ahmad P, Sharma S (2008) Salt stress and phyto-biochemical responses of plants. Plant Soil Environ 54:89–99

    Google Scholar 

  • Albinsky D, Masson JE, Bogucki A, Afsar K, Vass I, Nagy F, Paszkowski J (1999) Plant responses to genotoxic stress are linked to an ABA-salinity signalling pathway. Plant J 17:73–82

    Article  CAS  Google Scholar 

  • Anuradha S, Rao SSR (2001) Effect of brassinosteroids on salinity stress induced inhibition of seed germination and seedling growth of rice (Oryza sativa L.). J Plant Growth Regul 33:151–153

    Article  CAS  Google Scholar 

  • Arbona V, López-Climent MF, Mahouachi J, Pérez-Clemente RM, Abrams SR, Gómez-Cadenas A (2006) Use of persistent analogs of abscisic acid as palliatives against salt-stress induced damage in citrus plants. J Plant Growth Regul 25:1–9

    Article  CAS  Google Scholar 

  • Ashraf MY, Sarwar G, Ashraf M, Afaf R, Sattar A (2002) Salinity induced changes in α-amylase activity during germination and early cotton seedling growth. Biol Plantarum 45:589–591

    Article  CAS  Google Scholar 

  • Babu MA, Singh D, Gothandam KM (2012) The effect of salinity on growth, hormones and mineral elements in leaf and fruit of tomato cultivar PKM1. J Anim Plant Sci 22(1):159–164

    CAS  Google Scholar 

  • Bacon MA (1999) The biochemical control of leaf expansion during drought. J Plant Growth Regul 29:101–112

    Article  CAS  Google Scholar 

  • Bacon MA, Wilkinson S, Davies WJ (1998) pH-regulated leaf cell expansion in droughted plants is abscisic acid dependent. Plant Physiol 118:1507–1515

    Article  PubMed  CAS  Google Scholar 

  • Bano A (2010) Root-to-shoot signal transduction in rice under salt stress. Pak J Bot 42:329–339

    CAS  Google Scholar 

  • Bano S, Bano A (2011) Physiological and biochemical analysis of the selected halophytes of district Mardan, Pakistan. J Biosci Biochem Bioinf 1:239–243

    Google Scholar 

  • Basu S, Gangopadhyay G, Mukherjee BB (2002) Salt tolerance in rice in vitro: Implication of accumulation of Na+, K+ and proline. Plant Cell Tiss Org Cult 69:55–64

    Article  CAS  Google Scholar 

  • Bazihizina N, Barrett-Lennard EG, Colmer TD (2012) Plant growth and physiology under heterogeneous salinity. Plant Soil 354:1–19

    Article  CAS  Google Scholar 

  • Bhattacharjee S (2005) Reactive oxygen species and oxidative burst: roles in stress, senescence and signal transduction in plants. Cur Sci 89:1113–1121

    CAS  Google Scholar 

  • Brady NC, Weill RR (2002) The nature and property of soils, 13th edn. Prentice Hall, Upper Saddle River, 960

    Google Scholar 

  • Bravo LA, Zúñiga GE, Alberdi M, Corcuera LJ (1998) The role of ABA in freezing tolerance and cold acclimation in barley. Physiol Plant 103:17–23

    Article  CAS  Google Scholar 

  • Cabot C, John C, Sibole V, Balcero J, Poschenrieder C (2009) Abscisic acid decreases leaf Na+ exclusion in salt-treated Phaseolus vulgaris L. J Plant Growth Regul 28:187–192

    Article  CAS  Google Scholar 

  • Camacho-Barron M, Gonzalez de Mejia E (1998) Comparative study of enzymes related to proline metabolism in tepary bean (Phaseolus acutifolius) and common bean (Phaseolus vulgaris) under drought and irrigated conditions, and various urea concentrations. Plant Foods Human Nutr 52:119–132

    Article  CAS  Google Scholar 

  • Chen CCS, Plant AL (1999) Salt-induced protein synthesis in tomato roots: the role of ABA. J Exp Bot 50:677–687

    CAS  Google Scholar 

  • Chen W, Provart NJ, Glazebrook J, Katagiri F, Chang HS, Eulgem T, Mauch F, Luan S, Zou G, Whitham SA, Budworth PR, Tao Y, Xie Z, Chen X, Lam S, Kreps JA, Harper JF, Si-Ammour A, Mauch-Mani B, Heinlein M, Kobayashi K, Hohn T, Dangl JL, Wang X, Zhu T (2002) Expression profile matrix of arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14:559–574

    Article  PubMed  CAS  Google Scholar 

  • Cramer GR, Krishnan K, Abrams SR (1998) Kinetics of maize leaf elongation. IV. Effects of (+)- and (−)-absisic acid. J Exp Bot 49:191–198

    CAS  Google Scholar 

  • Dash M, Panda SK (2001) Salt stress induced changes in growth and enzyme activities in germinating Phaseolus muingo seeds. Biol Plantarum 44:587–589

    Article  CAS  Google Scholar 

  • Debez A, Chaibi W, Bouzid S (2001) Effect du NaCl et de regulatoeurs de croissance sur la germination d’ (Atriplex halimus L.). Cahiers Agricultures 10:135–138

    Google Scholar 

  • Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–588

    Article  PubMed  CAS  Google Scholar 

  • DiLeo MV, Pye MF, Roubtsova TV, Duniway JM, MacDonald JD, Rizzo DM, Bostock RM (2010) Abscisic acid in salt stress predisposition to phytophthora root and crown rot in tomato and Chrysanthemum. Plant Stress and Abiotic Disord 100:871–879

    CAS  Google Scholar 

  • Dodd IC, Davies WJ (1996) The relationship between leaf growth and ABA accumulation in the grass leaf elongation zone. Plant Cell Environ 19:1047–1056

    Article  CAS  Google Scholar 

  • Dolatabadian A, Jouneghani S (2009) Impact of exogenous ascorbic acid on antioxidant activity and some physiological traits of common bean subjected to salinity stress. Not Bot Hort Agrobot Cluj 37:165–172

    CAS  Google Scholar 

  • Essa TA (2002) Effect of salinity stress on growth and nutrient composition of three soybean (Glycine max (L.) Merrill) cultivars. J Agr Crop Sci 188:86–93

    Article  CAS  Google Scholar 

  • Etehadnia M, Waterer DR, Tanino KK (2008) The method of ABA application affects salt stress responses in resistant and sensitive potato lines. J Plant Growth Regul 27:331–341

    Article  CAS  Google Scholar 

  • Finkelstein RR, Rock CD (2002) Abscisic acid biosynthesis and response. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. American Society of Plant Biologists, Rockville, pp 1–52

    Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  PubMed  CAS  Google Scholar 

  • Freundl E, Steudle E, Hartung W (2000) Apoplastic transport of abscisic acid through roots of maize: effect of the exodermis. Planta 210:222–231

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Cadenas A, Tadeo FR, Primo-Millo E, Talon M (1998) Involvement of abscisic acid and ethylene in the responses of citrus seedlings to salt shock. Physiol Plant 103:475–484

    Article  Google Scholar 

  • Gómez-Cadenas A, Arbona V, Jacas J, Primo-Millo E, Talon M (2003) Abscisic acid reduces leaf abscission and increases salt tolerance in citrus plants. J Plant Growth Regul 21:234–240

    Article  CAS  Google Scholar 

  • Gracia-Mata C, Lamatina L (2001) Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol 126:1196–1204

    Article  Google Scholar 

  • Gurmani AR, Bano A, Salim M (2007) Effect of abscisic acid and benzyladenine on growth and ion accumulation of wheat under salinity stress. J Bot 39:141–149

    Google Scholar 

  • Gurmani AR, Bano A, Khan SU, Din J, Zhang JL (2011) Alleviation of salt stress by seed treatment with abscisic acid (ABA), 6-benzylaminopurine (BA) and chlormequat chloride (CCC) optimizes ion and organic matter accumulation and increases yield of rice (Oryza sativa L.). Austr J Crop Sci 5:1278–1285

    CAS  Google Scholar 

  • Hamayun M, Khan SA, Khan AL, Shinwari ZK, Hussain J, Sohn E-Y, Kang S-M, Kim Y-H, Khan MA, Lee I-J (2010) Effect of salt stress on growth hormones of soybean cultivar Hwangkeumkong. Pak J Bot 42:3103–3112

    CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Ann Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  Google Scholar 

  • Hassine AB, Ghanem ME, Bouzid S, Lutts S (2009) Abscisic acid has contrasting effects on salt excretion and polyamine concentrations of an inland and a coastal population of the Mediterranean xero-halophyte species Atriplex halimus. Ann Bot 104:925–936

    Article  PubMed  CAS  Google Scholar 

  • He T, Cramer GR (1996) Abscisic acid concentrations are correlated with leaf area reductions in two salt-stressed rapidcycling Brassica species. Plant and Soil 179:25–33

    Article  CAS  Google Scholar 

  • Himmelbach A, Iten M, Grill E (1998) Signalling of abscisic acid to regulate plant growth. Philos Trans R Soc Lond B 353:1439–1444

    Article  CAS  Google Scholar 

  • Holland D, Ben-Hayyim G, Faltin Z, Camoin L, Strosberg AD, Eshdat Y (1993) Molecular characterization of salt-stress-associated protein in citrus: protein and cDNA sequence homology to mammalian glutathione peroxidases. Plant Mol Biol 21:923–927

    Article  PubMed  CAS  Google Scholar 

  • Hong ZL, Lakkineni K, Zhang ZM, Verma DPS (2000) Removal of feed back inhibition of DELTA-1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136

    Article  PubMed  CAS  Google Scholar 

  • Hose E, Steudle E, Hartung W (2000) Abscisic acid and hydraulic conductivity of maize roots: a study using cell- and root-pressure probes. Planta 211:874–882

    Article  PubMed  CAS  Google Scholar 

  • Javid MG, Sorooshzadeh A, Moradi F, Sanavy SAMM, Allahdadi I (2011) The role of phytohormones in alleviating salt stress in crop plants. Austr J Crop Sci 5:726–734

    CAS  Google Scholar 

  • Jebara M, Harzalli-Jebara AL, Payre H, Aouani ME, Drevon JJ (2006) Influence of salinity and abscisic acid on the O2 uptake by N2-fixing nodules of common bean. Biol Plantarum 50:717–721

    Article  CAS  Google Scholar 

  • Katembe WJ, Ungar IA, Mitchell JP (1998) Effect of salinity on germination and seedling growth of two Atriplex species (Chenopodiaceae). Ann Bot 82:167–175

    Article  Google Scholar 

  • Kaya C, Tuna AL, Yokas I (2009) The role of plant hormones in plants under salinity stress. In: Ashraf M, Ozturk M, Athar HR (eds) Salinity and water stress: improving crop efficiency. Springer, Berlin, pp 45–50

    Chapter  Google Scholar 

  • Khadri M, Tejera NA, Lluch C (2006) Alleviation of salt stress in common bean (Phaseolus vulgaris) by exogenous abscisic acid supply. J Plant Growth Regul 25:110–119

    Article  CAS  Google Scholar 

  • Khadri M, Tejera NA, Lluch C (2007) Sodium chloride–ABA interaction in two common bean (Phaseolus vulgaris) cultivars differing in salinity tolerance. Environ Exp Bot 60:211–218

    Article  CAS  Google Scholar 

  • Koca M, Bor M, Ozdemir F, Turkan I (2007) The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ Exp Bot 60:344–351

    Article  CAS  Google Scholar 

  • Kong Y, Zhou G, Wang Y (2001) Physiological characteristics and alternative respiratory pathway under stress in two wheat cultivars differing in salt tolerance. Russ J Plant Physiol 48:595–600

    Article  CAS  Google Scholar 

  • Lazcano-Ferrat I, Lovatt CJ (1999) Relationship between relative water content, nitrogen pools, and growth of Phaseolus vulgaris L. and P. acutifolius A. Gray during water deficit. Crop Sci 39:467–475

    Article  CAS  Google Scholar 

  • Li C, Fang B, Yang C, Shi D, Wang D (2009) Effects of various salt-alkaline mixed stresses on the state of mineral elements in nutrient solutions and the growth of alkali resistant halophyte Chloris virgata. J Plant Nutr 32:1137–1147

    Article  CAS  Google Scholar 

  • Lin B-J, Wang H-J, Wang J-S, Zaharia LI, Abrams SR (2005) Abscisic acid regulation of heterophylly in Marsilea guadrifolia: Effects of R-(−) and S-(+) isomers. J Exp Bot 56:2935–2948

    Article  PubMed  CAS  Google Scholar 

  • Lovelli S, Scopa A, Perniola M, Tommaso TD, Sofo A (2012) Abscisic acid root and leaf concentration in relation to biomass partitioning in salinized tomato plants. J Plant Physiol 169(3):226–233

    Article  PubMed  CAS  Google Scholar 

  • Lovelock C, Ball M (2002) Influence of salinity on photosynthesis of halophytes. In: Lauchli A, Luttge U (eds) Salinity: environment – plants – molecules, Kluwer Academic Publishers, Dordrecht, pp. 315–339

    Chapter  Google Scholar 

  • Mackerness SAH, John CF, Jordan B, Thomas B (2001) Early signaling components in ultraviolet-B responses: distinct roles for different reactive oxygen species and nitric oxide. FEBS Lett 489:237–242

    Article  CAS  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  PubMed  CAS  Google Scholar 

  • Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant-pathogen interactions. Curr Opin Plant Biol 8:409–414

    Article  PubMed  CAS  Google Scholar 

  • Mengual VA, Serra MLF, Marín PE, Casanova AJM, Miret JAJ, Cadenas AG (2003) Influence of abscisic acid and other plant growth regulators on citrus defence mechanism to salt stress. Spanish J Agr Res 1:59–65

    Google Scholar 

  • Mills D, Zhang G, Benzioni A (2001) Effect of different salts and of ABA on growth and mineral uptake in Jojoba shoots grown in vitro. J Plant Physiol 158:1031–1039

    Article  CAS  Google Scholar 

  • Montero E, Cabot C, Barcelo J, Poschenrieder C (1997) Endogenous abscisic acid levels are linked to decreased growth of bush bean treated NaCl. Physiol Plant 101:17–22

    Article  CAS  Google Scholar 

  • Montero E, Cabot C, Poschenrieder C, Barcelo J (1998) Relative importance of osmotic stress and ion-specific effects on ABA-mediated inhibition of leaf expansion growth in Phaseolus vulgaris. Plant Cell Environ 21:54–62

    Article  CAS  Google Scholar 

  • Moons A, Bauw G, Prinsen E, Van Montagu M, Van Der Straeten D (1995) Molecular and physiological responses to abscisic acid and salt in roots of salt-sensitive and salt-tolerant indica rice varieties. Plant Physiol 107:177–186

    Article  PubMed  CAS  Google Scholar 

  • Moons A, Prinsen E, Bauw G, Van Montagu M (1997) Antagonistic effects of abscisic acid and jasmonates on salt stress inducible transcripts in rice roots. Plant Cell 9:2243–2259

    PubMed  CAS  Google Scholar 

  • Mulholland BJ, Taylor IB, Jackson AC, Thompson AJ (2003) Can ABA mediate responses of salinity stressed tomato. Environ Exp Bot 50:17–28

    Article  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  PubMed  CAS  Google Scholar 

  • Munns R (2005) Gene and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  PubMed  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  • Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Ann Rev Plant Biol 56:165–185

    Article  CAS  Google Scholar 

  • Ohori T, Fujiyama H (2011) Water deficit and abscisic acid production of Salicornia bigelovii under salinity stress. Soil Sci Plant Nutr 57:566–572

    Article  CAS  Google Scholar 

  • Parvaiz A, Satyawati S (2008) Salt stress and phyto-biochemical responses of plants – a review. Plant Soil Environ 54:89–99

    CAS  Google Scholar 

  • Pilet PE (1998) Some cellular and molecular properties of abscisic acid: its particular involvement in growing plant roots. Cell Mol Life Sci 54:851–865

    Article  CAS  Google Scholar 

  • Rai M, Harish NS, Gupta A, Ram MPK, Jaiswal U (2011) The role of abscisic acid in plant tissue culture: a review of recent progress. Plant Cell Tiss Org 106:179–190

    Article  CAS  Google Scholar 

  • Rajaravindran M, Natarajan S (2012) Effects of salinity stress on growth and antioxidant enzymes of the halophyte Sesuvium portulacastrum. Int J Res Plant Sci 2(1):23–28

    Google Scholar 

  • Roychoudury A, Basu S, Sarkar SN, Sengupta DN (2008) Comparative physiological and molecular responses of a common aromatic indica rice cultivar to high salinity with non-aromatic indica rice cultivars. Plant Cell Rep 27:1395–1410

    Article  CAS  Google Scholar 

  • Ruan H-H, Shen W-B, Ye M-B, Xu L-L (2002) Protective effects of nitric oxide on salt stress-induced oxidative damages to wheat (Triticum aestivum L.) leaves. Chin Sci Bull 47:677–681

    Article  CAS  Google Scholar 

  • Ruan H-H, Shen W-B, Xu L-L (2004a) Nitric oxide modulates the activities of plasma membrane ATPase and PPase in wheat seedling roots and promotes the salt tolerance against salt stress. Acta Bot Sin 46:415–422

    CAS  Google Scholar 

  • Ruan H-H, Shen W-B, Xu L-L (2004b) Nitric oxide involved in the abscisic acid induced proline accumulation in wheat seedling leaves nder salt stress. Acta Bot Sin 46:1307–1315

    CAS  Google Scholar 

  • Saeedipour S (2011) Salinity tolerance of rice lines related to endogenous abscisic acid (ABA) level synthesis under stress. Afr J Plant Sci 5:628–633

    CAS  Google Scholar 

  • Saeedipour S (2012) Is salinity tolerance of rice lines concerned to endogenous ABA content or to the cellular ability for ABA synthesis under stress? Afr J Biotechnol 11(49):10938–10943

    CAS  Google Scholar 

  • Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Cur Sci 86:407–421

    CAS  Google Scholar 

  • Sarmad J, Shariati M, Haghjou MM (2007) Relationship between endogenous abscisic acid and β-carotene synthesis in unicellular green alga Dunaliella. American-Eurasian J Agric Environ Sci 2:559–564

    Google Scholar 

  • Savouré A, Hua XJ, Bertauche N, Montagu MV, Verbruggen N (1997) Abscisic acid-independent and abscisic acid-dependent regulation of proline biosynthesis following cold and osmotic stresses in Arabidopsis thaliana. Mol Gen Genet 254:104–109

    Article  PubMed  Google Scholar 

  • Seckin B, Sekmen AH, Turkan I (2009) An enhancing effect of exogenous mannitol on the antioxidant enzyme activities in roots of wheat under salt stress. J Plant Growth Regul 28:12–20

    Article  CAS  Google Scholar 

  • Shabala L, Mackay A, Tian Y, Jacobsen S-E, Zhou D, Shabala S (2012) Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium quinoa). Physiol Plant. doi:10.1111/j.1399-3054.2012.01599

    Google Scholar 

  • Shafi M, Bakht J, Khan MJ, Khan MA, Raziudin M (2011) Role of abscisic acid and proline in salinity tolerance of wheat genotypes. Pak J Bot 43(2):1111–1118

    CAS  Google Scholar 

  • Sharma S, Verslues PE (2010) Mechanisms independent of abscisic acid (ABA) or proline feedback have a predominant role in transcriptional regulation of proline metabolism during low water potential and stress recovery. Plant Cell Environ 33:1838–1851

    Article  PubMed  CAS  Google Scholar 

  • Sharma S, Thakur M, Rana M, Singh K (2004) Effect of plant growth hormones and abiotic stresses on germination, growth and phosphatase activities in Sorghum bicolor (L.) Moench seeds. Afr J Biotechnol 3:308–312

    CAS  Google Scholar 

  • Shaterian J, Georges F, Hussain A, Waterer D, De Jong H, Tanino KK (2005) Root to shoot communication and abscisic acid in calreticulin (CR) gene expression and salt-stress tolerance in grafted diploid potato clones. Environ Exp Bot 53:323–332

    Article  CAS  Google Scholar 

  • Sibole JV, Montero E, Cabot C, Poschenrieder C, Barcelo J (1998) Role of sodium in the ABA-mediated long-term growth response of bean to salt stress. Physiol Plant 104:299–305

    Article  CAS  Google Scholar 

  • Smith GS, Klages KU, Green TGA, Walton EF (1995) Changes in abscisic acid concentration, surface conductance, and water content of developing kiwifruit. Sci Hortic 61:13–27

    Article  CAS  Google Scholar 

  • Sulian LV, Jiang P, Chen X, Fan P, Wang X, Li Y (2012) Multiple compartmentalization of sodium conferred salt tolerance in Salicornia europaea. Plant Physiol Biochem 51:47–52

    Article  CAS  Google Scholar 

  • Summart J, Thanonkeo P, Panichajakul S, Prathepha P, McManus MT (2010) Effect of salt stress on growth, inorganic ion and proline accumulation in Thai aromatic rice, Khao Dawk Mali 105, callus culture. Afr J Biotechnol 9:145–152

    CAS  Google Scholar 

  • Swiatek A, Azmi A, Witters E, Van Onckelen H (2003) Stress messengers jasmonic acid and ­abscisic acid negatively regulate plant cell cycle. Bulg J Plant Physiol 29:172–178

    Google Scholar 

  • Tabur S, Demir K (2010) Role of some growth regulators on cytogenetic activity of barley under salt stress. J Plant Growth Regul 60:99–104

    Article  CAS  Google Scholar 

  • Talanova VV, Topchieva LV, Titov AF (2006) Effect of abscisic acid on the resistance of cucumber seedlings to combined exposure to high temperature and chloride. Biol Bull 33:619–622

    Article  CAS  Google Scholar 

  • Tao Z, Kou Y, Liu H, Li X, Xiao J, Wang S (2011) OsWRKY45 alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice. J Exp Bot 1:1–12

    Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  PubMed  CAS  Google Scholar 

  • Thompson DS, Wilkinson S, Bacon MA, Davies WJ (1997) Multiple signals and mechanisms that regulate leaf growth and stomatal behaviour during water deficit. Physiol Plant 100:303–313

    Article  CAS  Google Scholar 

  • Todoroki Y, Hirai N, Koshimizu K (1995) 8′, 8′-Difluoro- and 8′, 8′, 8′ – trifluoroabscisic acids as highly potent, long-lasting analogs of abscisic acid. Phytochemistry 38:561–568

    Article  CAS  Google Scholar 

  • Uchida A, Jagendorf AT, Hibino T, Takabe T, Takabe T (2002) Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci 163:515–523

    Article  CAS  Google Scholar 

  • Ueno O (1998) Induction of Kranz anatomy and C%-like biochemical characteristics in a submerged amphibious plant by abscisic acid. Plant Cell 10:571–583

    PubMed  CAS  Google Scholar 

  • Ungar IA (1996) Effect of salinity on seed germination, growth, and ion accumulation of Atriplex patula (Chenopodiaceae). Am J Bot 83:604–607

    Article  Google Scholar 

  • Ünyayar S, Keleş Y, Ünal E (2004) Proline and ABA levels in two sunflower genotypes subjected to water stress. Bulg J Plant Physiol 30:34–47

    Google Scholar 

  • Upreti KK, Murti GSR (2010) Response of grape rootstocks to salinity: changes in root growth, polyamines and abscisic acid. Biol Plantarum 54:730–734

    Article  CAS  Google Scholar 

  • Verslues PE, Bray EA (2006) Role of abscisic acid (ABA) and Arabidopsis thaliana ABA-insensitive loci in low water potential-induced ABA and proline accumulation. J Exp Bot 57:201–212

    Article  PubMed  CAS  Google Scholar 

  • Voisin AS, Reidy B, Parent B, Rolland G, Redondo E, Gerentes D, Tardieu F, Muller B (2006) Are ABA, ethylene or their interaction involved in the response of leaf growth to soil water deficit? An analysis using naturally occurring variation or genetic transformation of ABA production in maize. Plant Cell Environ 29:1829–1840

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Mopper S, Hasenstein KH (2001) Effects of salinity on endogenous ABA, IAA, JA, AND SA in Iris hexagona. J Chem Ecol 27:327–342

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Sui X, Hu L, Sun J, Wei Y, Zhang Z (2010) Effects of exogenous abscisic acid pre-treatment of cucumber (Cucumis sativus) seeds on seedling growth and water-stress tolerance. New Zealand J Crop Hort Sci 38:7–18

    Article  CAS  Google Scholar 

  • Xiong L, Schumaker KS, Zhu J-K (2002) Cell signaling during cold, drought and salt stress. Plant Cell 14:165–183

    Article  CAS  Google Scholar 

  • Yang H, Li H, Rao L, Long G, Shi G, Peng G (2011) Effects of exogenous ABA on antioxidant enzymes in detached citrus leaves treated by rapid freezing. Afr J Biotech 10:9779–9785

    CAS  Google Scholar 

  • Yang Z, Yu J, Merewitz E, Huang B (2012) Differential effects of abscisic acid and glycine betaine on physiological responses to drought and salinity stress for two perennial grass species. J Am Soc Hort Sci 137:96–106

    CAS  Google Scholar 

  • Yoshida K, Igarashi E, Mukai K, Hirata K, Miyamoto K (2003) Induction of tolerance to oxidative stress in the green alga, Chlamydomonas reinhardtii, by abscisic acid. Plant Cell Environ 26:451–457

    Article  CAS  Google Scholar 

  • Yurekli F, Porgali B, Turkan I (2004) Variation in abscisic acid, indole-3-acetic acid, gibberellic acid and zeatin concentrations in two bean species subjected to salt stress. Acta Biol Cracov S Bot 46:201–212

    Google Scholar 

  • Zaharia LI, Walker-Simmon MK, Rodríguez CN, Abrams SR (2005) Chemistry of abscisic acid, abscisic acid catabolites and analogs. J Plant Growth Regul 24:274–284

    Article  CAS  Google Scholar 

  • Zhang J, Jia W, Yang J, Ismail AM (2006) Role of ABA in integrating plant responses to drought and salt stress. Field Crop Res 97:111–119

    Article  Google Scholar 

  • Zhang F, Wang Y, Wang D (2007) Role of nitric oxide and hydrogen peroxide during the salt resistance response. Plant Signal Behav 2:473–474

    Article  PubMed  Google Scholar 

  • Zhang HJ, Dong HZ, Li WJ, Zhang JDM (2012) Effects of soil salinity and plant density on yield and leaf senescence of field-grown cotton. Agr Crop Sci 198:27–37

    Article  CAS  Google Scholar 

  • Zhou R, Cutler AJ, Ambrose SJ, Galka MM, Nelson KM (2004) A new abscisic acid catabolic pathway. Plant Physiol 134:361–369

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Goliński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Waśkiewicz, A., Beszterda, M., Goliński, P. (2013). ABA: Role in Plant Signaling Under Salt Stress. In: Ahmad, P., Azooz, M.M., Prasad, M.N.V. (eds) Salt Stress in Plants. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6108-1_8

Download citation

Publish with us

Policies and ethics