Skip to main content

Effects of Salt Stress on Photosynthesis Under Ambient and Elevated Atmospheric CO2 Concentration

  • Chapter
  • First Online:
Book cover Salt Stress in Plants

Abstract

Soil salinization is one of the most important factors which limit plant productivity. About 3.6 billion of the world’s 5.2 billion hectares of dryland used for agriculture have already suffered erosion, soil degradation, and salinization. Global climate change caused by rising atmospheric trace gases such as CO2 and forced migration add to the urgency of this global problem. Therefore, solutions are desperately needed, such as the improvement of drought and salinity resistance of crops or the use of (xero-) halophytes instead of glycophytic crops. As photosynthesis is a prerequisite for biomass production, this chapter focuses on information related to this essential sequence of reactions, thereby discussing the different levels of photosynthesis. At first, there are primary reactions of photosynthesis, namely absorption of light energy and (1) its conversion to redox energy, conserved in the coenzyme NADPH, and (2) energy of chemical bounds, conserved in the coenzyme ATP. On the second level, we find reactions of the Calvin cycle, nitrate and sulfate reduction as well as sugar, lipid, and amino acid metabolism. Typical reactions on the third level are transmembrane and inter tissues transport of metabolites. The fourth level of photosynthesis relates to physiological aspects of gas exchange and water relations.

Apart from these general effects of salinity on photosynthesis, we will review the probable photosynthetic performance of salt stressed plants under future atmospheric conditions, namely under elevated CO2 concentration. Special emphasis will be put on gas exchange and photosynthesis of C3 and C4 plants because these two photosynthesis types show different responses to elevated CO2, leading to different interactions with salinity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Nasser LE, Abdel-Aal AE (2002) Effect of elevated CO2 and drought on proline metabolism and growth of saf-flower (Carthamus mareoticus L.) seedlings without improving water status. Pak J Biol Sci 5:523–528

    Article  Google Scholar 

  • Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ 30:258–270

    Article  PubMed  CAS  Google Scholar 

  • Alla MMN, Khedr A-HA, Serag MM, Abu-Alnaga AZ, Nada RM (2012) Regulation of metabolomics in Atriplex halimus growth under salt and drought stress. Plant Growth Regul 67:281–304

    Article  CAS  Google Scholar 

  • Allen JF (1992) Protein phosphorylation in regulation of photosynthesis. Biochim Biophys Acta 1098:275–335

    Article  PubMed  CAS  Google Scholar 

  • Allen JF (2002) Plastoquinone redox control of chloroplast thylakoid protein phosphorylation and distribution of excitation energy between photosystems: discovery, background, implications. Photosynth Res 73:139–148

    Article  PubMed  CAS  Google Scholar 

  • Allen JF, Bennett J (1981) Photosynthetic protein phosphorylation in intact chloroplasts Inhibition by DCMU and by the onset of CO2-fixation. FEBS Lett 123:67–70

    Article  CAS  Google Scholar 

  • Allen JF, Forsberg J (2001) Molecular recognition in thylakoid structure and function. Trends Plant Sci 6:317–326

    Article  PubMed  CAS  Google Scholar 

  • Allnutt FCT, Dilley RA, Kelly T (1989) Effect of high KCl concentrations on membrane localized metastable proton buffering domains in thylakoids. Photosynth Res 20:161–172

    CAS  Google Scholar 

  • Amthor JS (1999) Increasing atmospheric CO2 concentration, water use and water stress: scaling up from the plant to the landscape. In: Mooney HA, Luo Y (eds) Carbon dioxide and environmental stress. Academic, San Diego, pp 33–59

    Chapter  Google Scholar 

  • Arp WJ, Drake BG, Pockman WT, Curtis PS, Whigham DF (1993) Interaction between C3 and C4 salt marsh species during four years of exposure to elevated atmospheric CO2. Vegetation 104(105):133–143

    Article  Google Scholar 

  • Ashihara H, Adachi K, Otawa M, Yasumoto E, Fukushima Y, Kato M, Sano H, Sasamoto H, Baba S (1997) Compatible solutes and inorganic ions in the mangrove plant Avicennia marina and their effects on activities of enzymes. Z Naturforsch 52c:433–440

    Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Azaizeh H, Steudle E (1991) Effects of salinity on water transport of excised maize (Zea mays L.) roots. Plant Physiol 97:1136–1145

    Article  PubMed  CAS  Google Scholar 

  • Badawi GH, Yamauchi Y, Shimada E, Sasaki R, Kawano N, Tanaka K, Tanaka K (2004) Enhanced tolerance to salt stress and water deficit by overexpressing superoxide dismutase in tobacco (Nicotiana tabacum) chloroplasts. Plant Sci 166:919–928

    Article  CAS  Google Scholar 

  • Baena-González E, Sheen J (2008) Convergent energy and stress signaling. Trends Plant Sci 13:474–482

    Article  PubMed  CAS  Google Scholar 

  • Ball MC, Munns R (1992) Plant responses to salinity under elevated atmospheric concentrations of CO2. Aust J Bot 40:515–525

    Article  CAS  Google Scholar 

  • Benavides MP, Marconi PL, Gallego SM, Comba ME, Tomaro ML (2000) Relationship between antioxidant defence systems and salt tolerance in Solanum tuberosum. Aust J Plant Physiol 27:273–278

    CAS  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2002) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    Article  CAS  Google Scholar 

  • Boekema E, Fromme P, Gräber P (1988) On the structure of the ATP-synthase from chloroplasts. Ber Bunsenges Phys Chem 92:1031–1036

    CAS  Google Scholar 

  • Bohnert HJ, Jensen RG (1996) Strategies for engineering water stress tolerance in plants. Trends Biotechnol 14:89–97

    Article  CAS  Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111

    PubMed  CAS  Google Scholar 

  • Bokhari SA, Wan X-Y, Yang YW, Zhou L, Tang WL, Liu JY (2007) Proteomic response of rice seedling leaves to elevated CO2 levels. J Proteome Res 6:4624–4633

    Article  PubMed  CAS  Google Scholar 

  • Boyer PD (2000) Catalytic site forms and controls in ATP synthase catalysis. Biochim Biophys Acta 1458:252–262

    Article  PubMed  CAS  Google Scholar 

  • Chang H, Siegel BZ, Siegel SM (1984) Salinity induced changes in isoperoxidase in taro, Colocasia esculenta. Phytochemistry 23:233–235

    Article  CAS  Google Scholar 

  • Chang I-H, Cheng K-T, Huang P-C, Lin Y-Y, Cheng L-J, Cheng T-S (2012) Oxidative stress in greater duckweed (Spirodela polyrhiza) caused by long-term NaCl exposure. Acta Physiol Plant 34:1165–1176

    Article  CAS  Google Scholar 

  • Cha-um S, Chuencharoen S, Mongkolsiriwatana C, Ashraf M, Kirdmanee C (2012) Screening sugarcane (Saccharum sp.) genotypes for salt tolerance using multivariate cluster analysis. Plant Cell Tiss Organ Cult 110:23–33

    Article  CAS  Google Scholar 

  • Chen G, Asada K (1989) Ascorbate peroxidase in tea leaves: occurrence of two isoenzymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol 30:987–998

    CAS  Google Scholar 

  • Chen Z, Gallie DR (2006) Dehydroascorbate reductase affects leaf growth, development, and function. Plant Physiol 142:775–787

    Article  PubMed  CAS  Google Scholar 

  • Cornic G, Briantais J-M (1991) Partitioning of photosynthetic electron flow between CO2 and O2 reduction in a C3 leaf (Phaseolus vulgaris) at different CO2 concentrations and during water stress. Planta 183:178–184

    Article  CAS  Google Scholar 

  • Cramer GR (2003) Differential effects of salinity on leaf elongation kinetics of three grass species. Plant Soil 253:233–244

    Article  CAS  Google Scholar 

  • Crowe JH, Hoekstra FA, Crowe CM (1992) Anhydrobiosis. Annu Rev Plant Physiol 54:579–599

    Article  CAS  Google Scholar 

  • Cseke LJ, Tsai CJ, Rogers A, Nelsen MP, White HL, Karnosky DF, Podila GK (2009) Transcriptomic comparison in the leaves of two aspen genotypes having similar carbon assimilation rates but different partitioning patterns under elevated [CO2]. New Phytol 182:891–911

    Article  PubMed  CAS  Google Scholar 

  • Curtis PS, Drake BG, Whigham DF (1989) Nitrogen and carbon dynamics in C3 and C4 estuarine marsh plants grown under elevated CO2 in situ. Oecologia 78:297–301

    Article  Google Scholar 

  • Davies JM (1997) Vacuolar energization: pumps, shunts and stress. J Exp Bot 48:633–641

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Adams WW III (1996) The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1:21–26

    Article  Google Scholar 

  • Dhindsa RS, Matowe W (1981) Drought tolerance in two mosses: correlated with enzymatic defense against lipid peroxidation. J Exp Bot 32:79–91

    Article  CAS  Google Scholar 

  • Drake BG, Gonzalez-Meler MA, Long SP (1997) More efficient plants. a consequence of rising atmospheric CO2? Annu Rev Plant Physiol 48:609–639

    Article  CAS  Google Scholar 

  • Edmonson DL, Kahne HJ, Andrews TJ (1990) Substrate isomerization inhibits ribulosebisphosphate carboxylase/oxygenase during catalysis. FEBS Lett 260:62–66

    Article  Google Scholar 

  • Erickson JE, Megonigal JP, Peresta G, Drake BG (2007) Salinity and sea level mediate elevated CO2 effects on C3–C4 plant interactions and tissue nitrogen in a Chesapeake Bay tidal wetland. Glob Change Biol 13:202–215

    Article  Google Scholar 

  • Fangmeier A, Jäger HJ (2001) Wirkungen erhöhter CO2-Konzentrationen. In: Guderian R (ed) Handbuch der Umweltveränderungen und Ökotoxikologie, vol 2a, Terrestrische Ökosysteme: Immissionsökologische Grundlagen – Wirkungen auf Boden – Wirkungen auf Pflanzen. Springer, Berlin, pp 382–433

    Google Scholar 

  • Fidalgo F, Santos A, Santos I, Salema R (2004) Effects of long-term salt stress on antioxidant defense systems, leaf water relations and chloroplast ultrastructure of potato plants. Ann Appl Biol 145:185–192

    Article  CAS  Google Scholar 

  • Field TS, Lee DW, Holbrook NM (2001) Why leaves turn red in autumn: the role of anthocyanins in senescing leaves of Red-Osier Dogwood. Plant Physiol 127:566–574

    Article  CAS  Google Scholar 

  • Flexas J, Escalona JM, Evain S, Gulías J, Moya I, Osmond CB, Medrano H (2002) Steady-state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net CO2 assimilation and stomatal conductance during water-stress in C3 plants. Physiol Plant 114:231–240

    Article  PubMed  CAS  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  PubMed  CAS  Google Scholar 

  • Ford CW (1984) Accumulation of low molecular solutes in water stressed tropical legumes. Phytochemistry 23:1007–1015

    Article  CAS  Google Scholar 

  • Foyer CH, Bloom AJ, Queval G, Noctor G (2009) Photorespiratory metabolism: genes, mutants, energetics, and redox signaling. Annu Rev Plant Biol 60:455–488

    Article  PubMed  CAS  Google Scholar 

  • Fridovich I (1986) Biological effects of the superoxide radical. Arch Biochem Biophys 247:1–11

    Article  PubMed  CAS  Google Scholar 

  • Geissler N, Hussin S, Koyro H-W (2009a) Interactive effects of NaCl salinity and elevated atmospheric CO2 concentration on growth, photosynthesis, water relations and chemical composition of the potential cash crop halophyte Aster tripolium L. Environ Exp Bot 65:220–231

    Article  CAS  Google Scholar 

  • Geissler N, Hussin S, Koyro H-W (2009b) Elevated atmospheric CO2 concentration ameliorates effects of NaCl salinity on photosynthesis and leaf structure of Aster tripolium L. J Exp Bot 60:137–151

    Article  PubMed  CAS  Google Scholar 

  • Geissler N, Hussin S, Koyro H-W (2010) Elevated atmospheric CO2 concentration enhances salinity tolerance in Aster tripolium L. Planta 231:583–594

    Article  PubMed  CAS  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron-transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    Article  CAS  Google Scholar 

  • Gerbaud A, André M (1980) Effect of CO2, O2 and light on photosynthesis and photorespiration in wheat. Plant Physiol 66:1032–1036

    Article  PubMed  CAS  Google Scholar 

  • Gibson SI (2000) Plant sugar-response pathways. Part of a complex regulatory web. Plant Physiol 124:1532–1539

    Article  PubMed  CAS  Google Scholar 

  • Gil R, Lull C, Boscaiu M, Bautista I, Lidon A, Vicente O (2011) Soluble carbohydrates as osmolytes in several halophytes from a mediterranean salt marsh. Not Bot Horti Agrobo 39:9–17

    CAS  Google Scholar 

  • Giménez C, Mitchell VJ, Lawlor DW (1992) Regulation of photosynthetic rate of two sunflower hybrids under water stress. Plant Physiol 98:516–524

    Article  PubMed  Google Scholar 

  • Glenn EP, Brown JJ, O´Leary JW (1998) Irrigating crops with sea water. Sci Am 279:76–81

    Google Scholar 

  • Groth G, Mills DA, Christiansen E, Richter ML, Huchzermeyer B (2000) Characterization of a phosphate binding domain on the α subunit of chloroplast ATP synthase using the photoaffinity phosphate analog 4-azido-2-nitrophenyl phosphate. Biochemistry 39:13781–13787

    Article  PubMed  CAS  Google Scholar 

  • Gudesblat GE, Iusem ND, Morris PC (2007) Guard cell-specific inhibition of Arabidopsis MAPK3 expression causes abnormal stomatal responses to abscisic acid and hydrogen peroxide. New Phytol 173:713–721

    Article  PubMed  CAS  Google Scholar 

  • Gunasekera D, Berkowitz GA (1993) Use of transgenic plants with ribulose 1,5-bisphosphate carboxylase/oxygenase antisense DNA to evaluate the rate limitation of photosynthesis under water stress. Plant Physiol 103:629–635

    PubMed  CAS  Google Scholar 

  • Hagemann M, Murata N (2003) Glucosylglycerol, a compatible solute, sustains cell division under salt stress. Plant Physiol 131:1628–1637

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (1982) The toxic effects of oxygen on plant tissues. In: Oberly LW (ed) Superoxide dismutase, vol I. CRC Press, Boca Raton, pp 89–123

    Google Scholar 

  • Halliwell B (1987) Oxidative damage, lipid peroxidation, and antioxidant protection in chloroplasts. Chem Phys Lipids 44:327–340

    Article  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1986) Free radicals in biology and medicine. Oxford University Press, London

    Google Scholar 

  • Han N, Shao Q, Lu C-M, Wang B-S (2005) The leaf tonoplast V-H+-ATPase activity of a C3 halophyte Suaeda salsa is enhanced by salt stress in a Ca-dependent mode. J Plant Physiol 162:267–274

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  PubMed  CAS  Google Scholar 

  • Havaux M, Dall’Osto L, Bassi R (2007) Zeaxanthin has enhanced antioxidant capacity with respect to all other xanthophylls in Arabidopsis leaves and functions independent of binding to PSII antennae. Plant Physiol 145:1506–1520

    Article  PubMed  CAS  Google Scholar 

  • Hesse H, Jank-Ladwig R, Strotmann H (1976) On the reconstitution of photophosphorylation in CF1- extracted chloroplasts. Z Naturforsch 31c:445–451

    CAS  Google Scholar 

  • Hikosaka K, Onoda Y, Kinugasa T, Nagashima H, Anten NPR, Hirose T (2005) Plant responses to elevated CO2 concentration at different scales: leaf, whole plant, canopy, and population. Ecol Res 20:243–253

    Article  CAS  Google Scholar 

  • Homeyer U, Litek K, Huchzermeyer B, Schultz G (1989) Uptake of phenylalanine into isolated barley vacuoles is driven by both tonoplast adenosine triphosphatase and pyrophosphatase: evidence for a hydrophobic L-amino acid carrier system. Plant Physiol 89:1388–1393

    Article  PubMed  CAS  Google Scholar 

  • Horton P (2000) Prospects for crop improvement through the genetic manipulation of photosynthesis: morphological and biochemical aspects of light capture. J Exp Bot 51:475–485

    Article  PubMed  CAS  Google Scholar 

  • Horton P, Foyer C (1983) Relationship between protein phosphorylation and electron transport in the reconstituted chloroplast system. Biochem J 210:517–521

    PubMed  CAS  Google Scholar 

  • Horton P, Ruban AV, Walters RG (1996) Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol 47:665–684

    Article  Google Scholar 

  • Hose E, Clarkson DT, Steudle E, Schreiber L, Hartung W (2001) The exodermis: a variable apoplastic barrier. J Exp Bot 52:2245–2264

    Article  PubMed  CAS  Google Scholar 

  • Hsiao TC, Jackson RB (1999) Interactive effects of water stress and elevated CO2 on growth, photosynthesis, and water use efficiency. In: Luo Y, Mooney HA (eds) Carbon dioxide and environmental stress. Academic, San Diego, pp 3–31

    Chapter  Google Scholar 

  • Hu YC, Schmidhalter U (2005) Drought and salinity: a comparison of their effects on mineral nutrition of plants. J Plant Nutr Soil Sci 168:541–549

    Article  CAS  Google Scholar 

  • Huchzermeyer B (1988a) Phosphate binding to isolated chloroplast coupling factor (CF1). Z Naturforsch 43c:213–216

    Google Scholar 

  • Huchzermeyer B (1988b) Nucleotide binding and ATPase activity of membrane bound chloroplast coupling factor (CF1). Z Naturforsch 43c:133–139

    Google Scholar 

  • Huchzermeyer B (2000) Biochemical principles of salt tolerance. In: Lieth H (ed) Sustainable halophyte utilization in the mediterranean and subtropical dry regions. University of Osnabrück Publication, Osnabrück, pp 130–133

    Google Scholar 

  • Huchzermeyer B, Heins T (2000) Energy metabolism and salt stress. In: Lieth H, Moschenko M (eds) INCO-DC annual report. University of Osnabrück Publication, Osnabrück, pp 48–73

    Google Scholar 

  • Huchzermeyer B, Koyro H-W (2005) Salt and drought stress effects on photosynthesis. Enzyme cohesion and high turn over metabolite shuttling, essential for functioning of pathways, is impaired by changes in cytosolic water potential. In: Pessarakli M (ed) Handbook of photosynthesis, 2nd edn. CRC Press/Taylor and Francis, Boca Raton, pp 751–777

    Google Scholar 

  • Huchzermeyer B, Löhr A (1990) Diphenylether herbicides, a tool in elucidating the mechanism of photophosphorylation. Z Naturforsch 45c:552–557

    Google Scholar 

  • Huchzermeyer B, Strotmann H (1977) Acid/base-induced exchange of adenine nucleotides on chloroplast coupling factor (CF1). Z Naturforsch 32c:803–809

    CAS  Google Scholar 

  • Huchzermeyer B, Willms I (1985) Regulation of coupling factor activities by some component of chloroplast electron transport system. ICSU Short Rep 3:318–319

    Google Scholar 

  • Huchzermeyer B, Löhr A, Willms I (1986) A direct interaction between photosystem I and the chloroplast coupling factor. Biochem J 234:217–220

    PubMed  CAS  Google Scholar 

  • Huchzermeyer B, Hausmann N, Paquet-Durant F, Koyro H-W (2004) Biochemical and physiological mechanisms leading to salt tolerance. Trop Ecol 45:141–150

    CAS  Google Scholar 

  • Ignatova LK, Novichkova NS, Mudrik VA, Lyubimov VY, Ivanov BN, Romanova AK (2005) Growth, photosynthesis, and metabolism of sugar beet at an early stage of exposure to elevated CO2. Russ J Plant Physiol 52:158–164

    Article  CAS  Google Scholar 

  • Imlay JA, Linn S (1988) DNA damage and oxygen radical toxicity. Science 240:1302–1309

    Article  PubMed  CAS  Google Scholar 

  • IPCC (2007) Climate change 2007. The physical science basis. contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge\New York

    Google Scholar 

  • Iyengar ERR, Reddy MP (1996) Photosynthesis in highly salt tolerant plants. In: Pesserakli M (ed) Handbook of photosynthesis. Marcel Dekker, New York, pp 897–909

    Google Scholar 

  • Jaggard KW, Qi A, Ober ES (2010) Possible changes to arable crop yields by 2050. Philos T Roy Soc B 365:2835–2851

    Article  Google Scholar 

  • Jansen MAK, Mattoo AK, Edelmann M (2001) D1-D2 protein degradation in the chloroplast. Eur J Biochem 260:527–532

    Article  Google Scholar 

  • Jin CW, Du ST, Chen WW, Li GX, Zhang YS, Zheng SJ (2009) Elevated carbon dioxide improves plant iron nutrition through enhancing the iron-deficiency-induced responses under iron-limited conditions in tomato. Plant Physiol 150:272–280

    Article  PubMed  CAS  Google Scholar 

  • Johnson MP, Pérez-Bueno M, Zia A, Horton P, Ruban AV (2009) The zeaxanthin-independent and zeaxanthin-dependent qE components of nonphotochemical quenching involve common conformational changes within the photosystem II antenna in Arabidopsis. Plant Physiol 149:1061–1075

    Article  PubMed  CAS  Google Scholar 

  • Kavi Kishore PB, Sangam S, Amrutha RN, Laxmi PS, Naidu KR, Rao KRSS, Reddy KJ, Theriappan P, Sreenivasulu N (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438

    Google Scholar 

  • Kennedy BF, De Fillippis LF (1999) Physiological and oxidative response to NaCl of the salt tolerant Grevillea ilicifolia and the salt sensitive Grevillea arenaria. J Plant Physiol 155:746–754

    Article  CAS  Google Scholar 

  • Keren N, Berg A, Van Kan PJM, Levanon H, Ohad I (1997) Mechanism of photosystem II photoinactivation and D1 protein degradation at low light: the role of back electron flow. Proc Natl Acad Sci USA 94:1579–1584

    Article  PubMed  CAS  Google Scholar 

  • Kerpesi I, Galiba G (2000) Osmotic and salt stress induced alteration in soluble carbohydrate content in wheat seedlings. Crop Sci 40:482–487

    Article  Google Scholar 

  • Khan MA, Ungar IA, Showalter AM, Dewald HD (1998) NaCl-induced accumulation of glycinebetaine in four subtropical halophytes from Pakistan. Physiol Plant 102:487–492

    Article  CAS  Google Scholar 

  • Kirschbaum MUF (2004) Direct and indirect climate change effects on photosynthesis and transpiration. Plant Biol 6:242–253

    Article  PubMed  CAS  Google Scholar 

  • Koca H, Bor M, Özdemir F, Türkan I (2007) The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ Exp Bot 60:344–351

    Article  CAS  Google Scholar 

  • Koyro H-W (2000) Untersuchungen zur Anpassung der Wildrübe (Beta vulgaris ssp. maritima) an Trockenstreß oder NaCl-Salinität. Habilitation thesis, Justus Liebig University Giessen

    Google Scholar 

  • Koyro H-W, Huchzermeyer B (1999) Salt and drought stress effects on metabolic regulation in maize. In: Pessarakli M (ed) Handbook of plant and crop stress, 2nd edn. Marcel Dekker, New York, pp 843–878

    Google Scholar 

  • Koyro H-W, Huchzermeyer B (2004) Ecophysiological needs of the potential biomass crop Spartina townsendii GROV. Trop Ecol 45:123–139

    Google Scholar 

  • Koyro H-W, Huchzermeyer B (2005) Recent developments in stress tolerance breeding in maize. In: Ashraf M, Harris PJC (eds) Abiotic stresses: plant resistance through breeding and molecular approaches. Food Products Press, the Haworth Press, New York, pp 545–576

    Google Scholar 

  • Koyro H-W, Geißler N, Hussin S, Debez A, Huchzermeyer B (2008) Strategies of halophytes to survive in a salty environment. In: Khan NA, Singh S (eds) Abiotic stress and plant responses. I. K. International Publishing House, New Delhi, pp 83–104

    Google Scholar 

  • Kozaki A, Takebe G (1996) Photorespiration protects C3 plants from photooxidation. Nature 384:557–560

    Article  CAS  Google Scholar 

  • Kuhn M, Böger P (1990) Studies on the light-induced loss of the D1 protein in photosystem-II membrane fragments. Photosynth Res 23:291–296

    Article  CAS  Google Scholar 

  • Kurkova EB, Kalinkina LG, Baburina OK, Myasoedov NA, Naumova TG (2002) Responses of Seidlitzia rosmarinus to salt stress. Biol Bull 29:221–228

    Article  CAS  Google Scholar 

  • Laible PD, Zipfel W, Owens TG (1994) Excited state dynamics in chlorophyll-based antennae: the role of transfer equilibrium. Biophys J 66:844–860

    Article  PubMed  CAS  Google Scholar 

  • Laisk A, Oja V (1974) Leaf photosynthesis in short pulses of CO2.The carboxylation reaction in vivo. Sov Plant Physiol 21:1123–1131

    CAS  Google Scholar 

  • Lam E, Malkin R (1989) Lateral distribution and diffusion of plastocyanin in chloroplast thylakoids. J Cell Biol 108:1397–1405

    Article  Google Scholar 

  • Larcher W (2003) Physiological plant ecology, 4th edn. Springer, New York

    Book  Google Scholar 

  • Laszlo JA, Baker GM, Dilley RA (1984) Nonequilibration of membrane-associated protons with the internal aqueous space in dark-maintained chloroplast thylakoids. J Bioenerg Biomembr 1:37–51

    Article  Google Scholar 

  • Lawlor DW (2001) Photosynthesis. BIOS Scientific Publishers, Oxford

    Google Scholar 

  • Lawlor DW (2002a) Limitation to photosynthesis in water-stressed leaves: Stomata vs. metabolism and the role of ATP. Ann Bot 89:871–885

    Article  PubMed  CAS  Google Scholar 

  • Lawlor DW (2002b) Carbon and nitrogen assimilation in relation to yield: mechanisms are the keys to understanding production systems. J Exp Bot 53:773–787

    Article  PubMed  CAS  Google Scholar 

  • Lawlor DW, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ 25:275–294

    Article  PubMed  CAS  Google Scholar 

  • Lawlor DW, Fock H (1978) Photosynthesis, respiration and carbon assimilation in water-stressed maize at two oxygen concentrations. J Exp Bot 29:579–593

    Article  CAS  Google Scholar 

  • Lawlor DW, Khanna-Chopra R (1984) Regulation of photosynthesis during water stress. In: Sybesma C (ed) Advances in photosynthesis research, vol 4. Martinus-Nijhoff/Dr. W. Junk Publishers, The Hague, pp 379–382

    Google Scholar 

  • Leakey ADB (2009) Rising atmospheric carbon dioxide concentration and the future of C4 crops for food and fuel. Proc Roy Soc Lond B 276:2333–2343

    Article  CAS  Google Scholar 

  • Leakey ADB, Uribelarrea M, Ainsworth EA (2006) Photosynthesis, productivity, and yield of maize are not affected by open air elevation of CO2 concentration in the absence of drought. Plant Physiol 140:779–790

    Article  PubMed  CAS  Google Scholar 

  • Lee DH, Kim YS, Lee CB (2001) The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.). J Plant Physiol 158:737–745

    Article  CAS  Google Scholar 

  • Lee G, Carrow RN, Duncan RR (2004) Photosynthetic responses to salinity stress of halophytic seashore paspalum ecotypes. Plant Sci 166:1417–1425

    Article  CAS  Google Scholar 

  • Lee G, Carrow RN, Duncan RR, Eiteman MA, Rieger MW (2008) Synthesis of organic osmolytes and salt tolerance mechanisms in Paspalum vaginatum. Environ Exp Bot 63:19–27

    Article  CAS  Google Scholar 

  • Lenssen GM, Lamers J, Stroetenga M, Rozema J (1993) Interactive effects of atmospheric CO2 enrichment, salinity and flooding on growth of C3 (Elymus athericus) and C4 (Spartina anglica) salt marsh species. Vegetatio 104(105):379–388

    Article  Google Scholar 

  • Li XP, Björlmann O, Shih C, Grossmann AR, Rosenquist M, Jansson S, Niyogi KK (2000) A pigment binding protein essential for regulation of photosynthetic light harvesting. Nature 403:391–395

    Article  PubMed  CAS  Google Scholar 

  • Li JH, Dugas WA, Hymus GJ, Johnson DP, Hinkle CR, Drake BG, Hungate BA (2003) Direct and indirect effects of elevated CO2 on transpiration from Quercus myrtifolia in a scrub-oak ecosystem. Glob Change Biol 9:96–105

    Article  Google Scholar 

  • Li XP, Gilmore AM, Caffari S, Bassi R, Golan T, Kramer D, Niyogi KK (2004) Regulation of light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. J Biol Chem 279:22866–22874

    Article  PubMed  CAS  Google Scholar 

  • Lillo C (2004) Light regulation of nitrate uptake, assimilation and metabolism. Plant Ecophysiol 3:149–184

    Article  CAS  Google Scholar 

  • Löhr A, Huchzermeyer B (1985) Regulation of photosynthetic efficiency by some component of chloroplast electron transport chain. ICSU Short Rep 3:332–333

    Google Scholar 

  • Löhr A, Willms I, Huchzermeyer B (1985) A regulatory effect of the electron transport chain on the ATP synthase. Arch Biochem Biophys 236:832–840

    Article  Google Scholar 

  • Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants FACE the future. Annu Rev Plant Biol 55:591–628

    Article  PubMed  CAS  Google Scholar 

  • Lopes MS, Araus JL, van Heerden PDR, Foyer CH (2011) Enhancing drought tolerance in C4 crops. J Exp Bot 62:3135–3153

    Article  PubMed  CAS  Google Scholar 

  • Lu CM, Zhang JH (1999) Effects of salt stress on PSII function and photoinhibition in the cyanobacterium Spirulina platensis. J Plant Physiol 155:740–745

    Article  CAS  Google Scholar 

  • Lu C, Qiu N, Lu Q, Wang B, Kuang T (2002) Does salt stress lead to increased susceptibility of photosystem II to photoinhibition and changes in photosynthetic pigment composition in the halophyte Suaeda salsa grown outdoors? Plant Sci 163:1063–1068

    Article  CAS  Google Scholar 

  • Lu Q, Wen X, Lu C, Zhang Q, Kuang T (2003) Photoinhibition and photoprotection in senescent leaves of field-grown wheat plants. Plant Physiol Biochem 41:749–754

    Article  CAS  Google Scholar 

  • Lüttge U, Kluge M, Thiel G (2010) Botanik. Die umfassende Biologie der Pflanzen. Wiley-VHC, Weinheim

    Google Scholar 

  • Lynch J, Thiel G, Läuchli A (1988) Effects of salinity on the extensibility and Ca availability in the expanding region of growing barley leaves. Bot Acta 101:355–361

    CAS  Google Scholar 

  • Ma F, Chen X-B, Sang M, Wang P, Zhang J-P, Li L-B, Kuang T-Y (2009) Singlet oxygen formation and chlorophyll a triplet excited state deactivation in cytochrome b6f complex from Bryopsis corticulans. Photosynth Res 100:19–28

    Article  PubMed  CAS  Google Scholar 

  • Malkin S, Braun G (1993) The degree of functional separation between the two photosystems in isolated thylakoid membranes deduced from inhibition studies of the imbalance in photoactivities. Photosynth Res 36:89–94

    Article  CAS  Google Scholar 

  • Marabottini R, Schraml C, Paolacci AR, Sorgona A, Raschi A, Rennenberg H, Badiani M (2001) Foliar antioxidant status of adult Mediterranean oak species (Quercus ilex L. and Q. pubescens Willd.) exposed to permanent CO2-enrichment and to seasonal water stress. Environ Pollut 113:413–423

    Article  Google Scholar 

  • Marchi S, Tognetti R, Vaccari FP, Lanini M, Kaligarić M, Miglietta F, Raschi A (2004) Physiological and morphological responses of grassland species to elevated atmospheric CO2 concentrations in FACE-systems and natural CO2 springs. Funct Plant Biol 31:181–194

    Article  CAS  Google Scholar 

  • Mateos-Naranjo E, Redondo-Gómez S, Andrades-Moreno L, Davy AJ (2010) Growth and photosynthetic responses of the cordgrass Spartina maritima to CO2 enrichment and salinity. Chemosphere 81:725–731

    Article  PubMed  CAS  Google Scholar 

  • Matsubara S, Gilmore AM, Osmond CB (2001) Diurnal and acclimatory responses of violaxanthin and lutein epoxide in the Australian Mistletoe Amyema miquelii. Aust J Plant Physiol 28:793–800

    CAS  Google Scholar 

  • Matt P, Geiger M, Walch-Liu P, Engels C, Krapp A, Stitt M (2001) Elevated carbon dioxide increases nitrate uptake and nitrate reductase activity when tobacco is growing on nitrate, but increases ammonium uptake and inhibits nitrate reductase activity when tobacco is growing on ammoniumnitrate. Plant Cell Environ 24:1119–1137

    Article  CAS  Google Scholar 

  • Medrano H, Parry MAJ, Socias X, Lawlor DW (1997) Long term water stress inactivates Rubisco in subterranean clover. Ann Appl Biol 131:491–501

    Article  CAS  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: desertification Synthesis. World Resources Institute, Washington, DC, http://www.maweb.org/documents/document.355.aspx.pdf

  • Mishra G, Zhang W, Deng F, Zhao J, Wang X (2006) A bifurcating pathway directs abscisic acid effects on stomatal closure and opening in Arabidopsis. Science 312:264–266

    Article  PubMed  CAS  Google Scholar 

  • Mitchell P (1967) Proton current flow in mitochondrial systems. Nature 214:1327–1328

    Article  PubMed  CAS  Google Scholar 

  • Mitsuya S, Kawasaki M, Taniguchi M, Miyake H (2003) Relationship between salinity-induced damages and aging in rice leaf tissues. Plant Prod Sci 6:213–218

    Article  Google Scholar 

  • Mittal S, Kumari N, Sharma V (2012) Differential response of salt stress on Brassica juncea: photosynthetic performance, pigment, proline, D1 and antioxidant enzymes. Plant Physiol Biochem 54:17–26

    Article  PubMed  CAS  Google Scholar 

  • Mittova V, Tal M, Volokita M, Guy M (2002) Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersicon pennellii but not in the cultivated species. Physiol Plant 115:393–400

    Article  PubMed  CAS  Google Scholar 

  • Mittova V, Tal M, Volokita M, Guy M (2003) Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. Plant Cell Environ 26:845–856

    Article  PubMed  CAS  Google Scholar 

  • Moorthy P, Kathiresan K (1999) Effects of UV-B radiation on photosynthesis reactions in Rhizophora apiculata. Plant Growth Regul 28:49–54

    Article  CAS  Google Scholar 

  • Morgan JA, Lecain DR, Mosier AR, Milchunas DG (2001) Elevated CO2 enhances water relations and productivity and affects gas exchange in C3 and C4 grasses of the Colorado shortgrass steppe. Glob Change Biol 7:451–466

    Article  Google Scholar 

  • Munns R (1993) Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant Cell Environ 16:15–24

    Article  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  PubMed  CAS  Google Scholar 

  • Munns R, Gardner PA, Tonnet ML, Rawson HM (1989) Growth and development in NaCl-treated plants. II Do Na+ or Cl concentrations in dividing or expanding tissues determine growth in barley. Aust J Plant Physiol 15:529–540

    Article  Google Scholar 

  • Munns R, Husain S, Rivelli AR, James RA, Condon AG, Lindsay MP, Lagudah ES, Schachtman DP, Hare RA (2002) Avenues for increasing salt tolerance of crops, and the role of physiologically based selection traits. Plant Soil 247:93–105

    Article  CAS  Google Scholar 

  • Murillo-Amador B, Jones HG, Kaya C, Aquilar RL, Garcia-Hermández JL, Toyo-Diéguez E, Àvilla-Serrano NY, Rueda-Puente E (2006) Effects of foliar application of calcium nitrate on growth and physiological attributes of cowpea (Vigna unguiculata L. Walp.) grown under salt stress. Environ Exp Bot 58:188–196

    Article  CAS  Google Scholar 

  • Neves-Piestun BG, Bernstein N (2001) Salinity-induced inhibition of leaf elongation in maize is not mediated by changes in cell wall acidification capacity. Plant Physiol 125:419–1428

    Article  Google Scholar 

  • Niessen M, Thiruveedhi K, Rosenkranz R, Kebeish R, Hirsch H-J, Kreuzaler F, Peterhänsel C (2007) Mitochondrial glycolate oxidation contributes to photorespiration in higher plants. J Exp Bot 58:2709–2715

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Mol Biol 49:249–272

    Article  CAS  Google Scholar 

  • North GB, Nobel PS (1991) Changes in hydraulic conductivity and anatomy caused by drying and rewetting roots of Agave desertii, Agavaceae. Am J Bot 78:906–915

    Article  Google Scholar 

  • Nublat A, Desplans J, Cassea F, Berthomieua P (2001) sas1, an Arabidopsis mutant overaccumulating sodium in the shoot, shows deficiency in the control of the root radial transport of sodium. Plant Cell 13:125–137

    PubMed  CAS  Google Scholar 

  • Oksanen E, Sober S, Karnosky DF (2001) Impacts of elevated CO2 and/or O3 on leaf ultrastructure of aspen (Populus tremuloides) and birch (Betula papyrifera) in the Aspen FACE experiment. Environ Pollut 115:437–446

    Article  PubMed  CAS  Google Scholar 

  • Oksanen E, Riikonen J, Kaakinen S, Holopainen T, Vapaavuori E (2005) Structural characteristics and chemical composition of birch (Betula pendula) leaves are modified by increasing CO2 and ozone. Glob Change Biol 11:732–748

    Article  Google Scholar 

  • Orthen B, Popp M, Smirnoff N (1994) Hydroxyl radical scavenging properties of cyclitols. Proc R Soc Edinb Sect B 102:269–272

    Google Scholar 

  • Osmond CB, Bagder M, Maxwell K, Björkman O, Leegood R (1997) Too many photons: photorespiration, photoinhibition and photooxidation. Trends Plant Sci 2:119–120

    Article  Google Scholar 

  • Pahlich E, Kerres R, Jäger H-J (1983) Influence of water stress on the vacuole/extravacuole distribution of proline in protoplasts of Nicotiana rustica. Plant Physiol 72:590–591

    Article  PubMed  CAS  Google Scholar 

  • Paramanova NV, Shevyakova NI, VlV K (2004) Ultrastructure of chloroplasts and their storage inclusions in the primary leaves of Mesembryanthemum crystallinum affected by putrescine and NaCl. Russ J Plant Physiol 51:86–96

    Article  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotox Environ Saf 60:324–349

    Article  CAS  Google Scholar 

  • Parida A, Das AB, Das P (2002) NaCl stress causes changes in photosynthetic pigments, proteins and other metabolic components in the leaves of a true mangrove, Bruguiera parviflora, in hydroponic cultures. J Plant Biol 45:28–36

    Article  CAS  Google Scholar 

  • Park S, Li J, Pittman JK, Berkowitz GA, Yang H, Undurraga S, Morris J, Hirschi KD, Gaxiola RA (2005) Up-regulation of a H+-pyrophosphatase (H+-PPase) as a strategy to engineer drought-resistant crop plants. Proc Natl Acad Sci USA 102:18830–18835

    Article  PubMed  CAS  Google Scholar 

  • Parry MAJ, Andolojc JP, Khan S, Lea PJ, Keys AJ (2002) Rubisco activity: effects of drought stress. Ann Bot 89:833–839

    Article  PubMed  CAS  Google Scholar 

  • Paul MJ, Knight JS, Habash D, Parry MAJ, Lawlor DW, Barnes SA, Loynes A, Gray JC (1995) Reduction in phosphoribulokinase activity by antisense RNA in transgenic tobacco: effects on CO2 assimilation and growth in low irradiance. Plant J 7:535–542

    Article  CAS  Google Scholar 

  • Pérez-López U, Robredo A, Lacuesta M, Sgherri C, Muňoz-Rueda A, Navari-Izzo F, Mena-Petite A (2009) The oxidative stress caused by salinity in two barley cultivars is mitigated by elevated CO2. Physiol Plant 135:29–42

    Article  PubMed  CAS  Google Scholar 

  • Petrouleas V, Deligiannakis Y, Diner BA (1994) Binding of carboxylate anions at the non-heme Fe(II) of PSII. Competition with bicarbonate and effects on the QA/QB electron transfer rate. Biochim Biophys Acta 1188:271–277

    Article  Google Scholar 

  • Pitschke A, Hirt H (2009) Disentangling the complexity of mitogen-activated protein kinases and reactive oxygen species signaling. Plant Physiol 149:606–615

    Article  CAS  Google Scholar 

  • Polle A (1996) Protection from oxidative stress in trees as affected by elevated CO2 and environmental stress. In: Koch G, Mooney H (eds) Terrestrial ecosystem response to elevated CO2. Academic, New York, pp 299–315

    Google Scholar 

  • Polley HW, Johnson HB, Mayeux HS, Brown DA, White JWC (1996) Leaf and plant water use efficiency of C4 species grown at glacial to elevated CO2 concentrations. Int J Plant Sci 157:164–170

    Article  CAS  Google Scholar 

  • Popp M, Larther F, Weigel P (1985) Osmotic adaptation in Australian mangroves. Vegetation 61:247–254

    Article  Google Scholar 

  • Pursiheimo S, Mulo P, Rintamäki E, Aro E-M (2001) Coregulation of light-harvesting complex II phosphorylation and lhcb mRNA accumulation in winter rye. Plant J 26:317–327

    Article  PubMed  CAS  Google Scholar 

  • Rahman MS, Miyake H, Takeoka Y (2002) Effects of exogenous glycinebetaine on growth and ultrastructure of salt-stressed rice seedlings (Oryza sativa L.). Plant Prod Sci 5:33–44

    Article  CAS  Google Scholar 

  • Rees D, Noctor GD, Horton P (1990) The effect of high-energy-state excitation quenching on maximum and dark level chlorophyll fluorescence yield. Photosynth Res 25:199–211

    Article  CAS  Google Scholar 

  • Richter ML, Hein R, Huchzermeyer B (2000) Important subunit interactions in chloroplast ATP synthase. Biochim Biophys Acta 1458:326–342

    Article  PubMed  CAS  Google Scholar 

  • Riesmeier JW, Flügge U-I, Schulz B, Heineke D, Heldt H-W, Willmitzer L, Frommer WB (1993) Antisense repression of the chloroplast triose phosphate translocator affects carbon partitioning in transgenic potato plants. Proc Natl Acad Sci USA 90:6160–6164

    Article  PubMed  CAS  Google Scholar 

  • Robinson SP, Portis AR (1988) Involvement of stromal ATP in the light activation of ribulose-1,5-bisphosphate carboxylase/oxygenase in intact chloroplasts. Plant Physiol 86:293–298

    Article  PubMed  CAS  Google Scholar 

  • Robredo A, Pérez-López U, de la Maza HS, González-Moro B, Lacuesta M, Mena-Petite A, Muňos-Rueda A (2007) Elevated CO2 alleviates the impact of drought on barley improving water status by lowering stomatal conductance and delaying its effects on photosynthesis. Environ Exp Bot 59:252–263

    Article  CAS  Google Scholar 

  • Rogers A, Allen DJ, Davey PA, Morgan PB, Ainsworth EA, Bernacchi CJ, Cornic G, Dermody O, Dohleman FG, Heaton EA, Mahoney J, Zhu XG, Delucia EH, Ort DR, Long SP (2004) Leaf photosynthesis and carbohydrate dynamics of soybeans grown throughout their life-cycle under free-air carbon dioxide enrichment. Plant Cell Environ 27:449–458

    Article  CAS  Google Scholar 

  • Romanello GA, Chuchra-Zbytniuk KL, Vandermer JL, Touchette BW (2008) Morphological adjustments promote drought avoidance in the wetland plant Acorus americanus. Aquat Bot 89:390–396

    Article  Google Scholar 

  • Romanowska E, Albertsson P-Å (1994) Isolation and characterization of the cytochrome bf complex from whole thylakoids, grana, and stroma lamellae vesicles from spinach chloroplasts. Plant Cell Physiol 35:557–568

    CAS  Google Scholar 

  • Rozema J (1993) Plant responses to atmospheric carbon dioxide enrichment: interactions with some soil and atmospheric conditions. Vegetation 104(105):173–190

    Article  Google Scholar 

  • Rozema J, Dorel F, Janissen R, Lenssen G, Broekman R, Arp W, Drake BG (1991) Effect of elevated atmospheric CO2 on growth, photosynthesis and water relations of salt marsh grass species. Aquat Bot 39:45–55

    Article  Google Scholar 

  • Ruban AV, Young AJ, Horton P (1993) Induction of non-photochemical energy dissipation and absorbance changes in leaves. Evidence for changes in the state of the light-harvesting system of photosystem II in vivo. Plant Physiol 102:741–750

    PubMed  CAS  Google Scholar 

  • Salvucci ME, Ogren WL (1996) The mechanism of Rubisco activase: insights from studies of the properties and structure of the enzyme. Photosynth Res 47:1–11

    Article  CAS  Google Scholar 

  • Schmidt A, Jäger K (1992) Open questions about sulfur metabolism in plants. Annu Rev Plant Physiol Mol Biol 43:325–349

    Article  CAS  Google Scholar 

  • Schmidt CL, Malkin R (1993) Low molecular weight subunits associated with the cytochrome b6f complexes from spinach and Chlamydomonas reinhardtii. Photosynth Res 38:73–81

    Article  CAS  Google Scholar 

  • Schreiber U (1997) Chlorophyll fluorescence and photosynthetic energy conversion: simple introductory experiments with the teaching-PAM chlorophyll fluorometer. H. Walz GmbH, Effeltrich

    Google Scholar 

  • Schreiber U, Gademann R, Bird P, Ralph PJ, Larkum AWD, Kühl M (2002) Apparent light requirement for activation of photosynthesis upon rehydration of desiccated beachrock microbial mats. J Phycol 38:125–134

    Article  Google Scholar 

  • Schultz G, Huchzermeyer Y, Reupke B, Bickel H (1976) On the intra cellular site of biosynthesis of alpha tocopherol in Hordeum-Vulgare. Phytochemistry (Oxford) 15:1383–1386

    Article  CAS  Google Scholar 

  • Schwanz P, Polle A (2001) Differential stress responses of antioxidative systems to drought in pendunculate oak (Quercus robur) and maritime pine (Pinus pinaster) grown under high CO2 concentrations. J Exp Bot 52:133–143

    Article  PubMed  CAS  Google Scholar 

  • Schwanz P, Picon C, Vivin P, Dreyer D, Guehl J, Polle A (1996) Responses of antioxidative systems to drought stress in pendunculate oak and maritime pine as modulated by elevated CO2. Plant Physiol 110:393–402

    PubMed  CAS  Google Scholar 

  • Schwarz M, Gale J (1984) Growth responses to salinity at high levels of carbon dioxide. J Exp Bot 35:193–196

    Article  CAS  Google Scholar 

  • Sgherri CLM, Salvateci P, Menconi M, Raschi A, Navari-Izzo F (2000) Interaction between drought and elevated CO2 in the response of alfalfa plants to oxidative stress. J Plant Physiol 156:360–366

    Article  CAS  Google Scholar 

  • Sheen J (2002) Phosphorelay and transcription control in cytokinin signal transduction. Science 296:1650–1652

    Article  PubMed  CAS  Google Scholar 

  • Singh SK, Sharma HC, Goswami AM, Datta SP, Singh SP (2000) In vitro growth and leaf composition of grapevine cultivars as affected by sodium chloride. Biol Plant 43:283–286

    Article  CAS  Google Scholar 

  • Soussi M, Lluch C, Ocana A (1998) Effects of salt stress on growth, photosynthesis and nitrogen fixation in chick pea (Cicer arietinum L.). J Exp Bot 49:1329–1337

    CAS  Google Scholar 

  • Spychalla JP, Desborough SL (1990) Superoxide dismutase, catalase, and alpha-tocopherol content of stored potato tubers. Plant Physiol 94:1214–1218

    Article  PubMed  CAS  Google Scholar 

  • Staehelin LA (1975) Chloroplast membrane structure. Intramembrane particles of different sizes make contact in stacked membrane regions. Biochim Biophys Acta 408:1–11

    Article  PubMed  CAS  Google Scholar 

  • Stepien P, Klobus G (2005) Antioxidant defense in the leaves of C3 and C4 plants under salinity stress. Physiol Plant 125:31–40

    Article  CAS  Google Scholar 

  • Strasser RJ, Tsimilli-Michael M, Srivaslava A (2004) Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou GC, Govindjee (eds) Chlorophyll Fluorescence: a signature of photosynthesis. Kluwer, Amsterdam, pp 1–42

    Google Scholar 

  • Streenivasulu N, Grimm B, Wobus U, Weschke W (2000) Differential response of antioxidant compounds to salinity stress in salt-tolerant and salt-sensitive seedlings of fox-tail millet (Setaria italica). Physiol Plant 109:435–442

    Article  Google Scholar 

  • Strotmann H, Bickel S, Huchzermeyer B (1976) Energy-dependent release of adenine nucleotides tightly bound to chloroplast coupling factor CF1. FEBS Lett 61:194–198

    Article  PubMed  CAS  Google Scholar 

  • Süss K-H, Arkona C, Manteuffel R, Adler K (1993) Calvin cycle multienzyme complexes are bound to chloroplast thylakoid membranes of higher plants in situ. Proc Natl Acad Sci USA 90:5514–5518

    Article  PubMed  Google Scholar 

  • Syvertsen JP, Boman B, Tucker DPH (1989) Salinity in Florida citrus production. Proc Fla State Hort Soc 102:61–64

    Google Scholar 

  • Taiz L (1992) The plant vacuole. J Exp Biol 172:113–122

    PubMed  CAS  Google Scholar 

  • Takagi M, El-Shemy H, Sasaki S, Toyama S, Kanai S, Saneoka H, Fujita K (2009) Elevated CO2 concentration alleviates salinity stress in tomato plant. Acta Agr Scand B-S P 59:87–96

    Article  CAS  Google Scholar 

  • Tanji KK (2002) Salinity in the soil environment. In: Läuchli A, Lüttge U (eds) Salinity: environment – plants – molecules. Kluwer, Dordrecht, pp 21–51

    Google Scholar 

  • Tezara W, Mitchell VJ, Driscoll SP, Lawlor DW (1999) Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 401:914–917

    Article  CAS  Google Scholar 

  • Thomas SC (2005) Increased leaf reflectance in tropical trees under elevated CO2. Glob Change Biol 11:197–202

    Article  Google Scholar 

  • Tingey DT, McKane RB, Olszyk DM, Johnson MG, Rygiewicz PT, Lee H (2003) Elevated CO2 and temperature alter nitrogen allocation in Douglas-fir. Glob Change Biol 9:1038–1050

    Article  Google Scholar 

  • Tipping C, Murray DR (1999) Effects of elevated atmospheric CO2 concentration on leaf anatomy and morphology in Panicum species representing different photosynthetic modes. Int J Plant Sci 160:1063–1073

    Article  PubMed  Google Scholar 

  • Touchette BW, Smith GA, Rhodes KL, Poole M (2009) Tolerance and avoidance: two contrasting physiological responses to salt stress in mature marsh halophytes Juncus roemerianus Scheele and Spartina alterniflora Loisel. J Exp Mar Biol Ecol 380:106–112

    Article  CAS  Google Scholar 

  • Trebst A, Soll-Bracht E (1996) Cycloheximids retards high light driven D1 protein degradation in Chlamydomonas rheinhardtii. Plant Sci 115:191–197

    Article  CAS  Google Scholar 

  • Türkan I, Demiral T (2009) Recent developments in understanding salinity tolerance. Environ Exp Bot 67:2–9

    Article  CAS  Google Scholar 

  • Urban O (2003) Physiological impacts of elevated CO2 concentration ranging from molecular to whole plant responses. Photosynthetica 41:9–20

    Article  CAS  Google Scholar 

  • van Breusegem F, Dat JF (2006) Reactive oxygen species in plant cell death. Plant Physiol 141:384–390

    Article  PubMed  CAS  Google Scholar 

  • van Breusegem F, Bailey-Serves J, Miller R (2008) Unraveling the tapestry of networks involving reactive oxygen species in plants. Plant Physiol 147:978–984

    Article  PubMed  CAS  Google Scholar 

  • Verma S, Mishra SN (2005) Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defense system. J Plant Physiol 162:669–677

    Article  PubMed  CAS  Google Scholar 

  • von Caemmerer S (2000) Biochemical models of leaf photosynthesis. CSIRO Publishing, Collingwood

    Google Scholar 

  • Wand SJE, Midgley GF, Jones MH, Curtis PS (1999) Response of wild C4 and C3 grass (Poaceae) to elevated atmospheric CO2 concentration: a meta-analytic test of current theories and perceptions. Glob Change Biol 5:723–741

    Article  Google Scholar 

  • Wang Y, Nil N (2000) Changes in chlorophyll, ribulose bisphosphate carboxylase-oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress. J Hort Sci Biotechnol 75:623–627

    CAS  Google Scholar 

  • Wang XW, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Assmann SM, Fedoroff NV (2008a) Characterization of the Arabidopsis heterotrimeric G protein. J Biol Chem 283:13913–13922

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Liu Y, Bruffett K, Lee J, Hause G, Walker JC, Zhang S (2008b) Haplo-isuffiency of MPK3 in MPK6 mutant background uncovers a novel function of these two MAPKs in Arabidopsis ovule development. Plant Cell 20:602–613

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Heckathorn SA, Wang X, Philpott SM (2012) A meta-analysis of plant physiological and growth responses to temperature and elevated CO2. Oecologia 169:1–13

    Article  PubMed  Google Scholar 

  • Ward JK, Tissue DT, Thomas RB, Strain BR (1999) Comparative responses of model C3 and C4 plants in low and elevated CO2. Glob Change Biol 5:857–867

    Article  Google Scholar 

  • Wilken M, Huchzermeyer B (1999) Suppression of mycelia formation by NO produced endogenously in Candida tropicalis. Eur J Cell Biol 78:209–213

    Article  PubMed  CAS  Google Scholar 

  • Wingler A, Lea PJ, Quick P, Leegood RC (2000) Photorespiration: metabolic pathways and their role in stress protection. Philos Trans R Soc Lond B Biol Sci 355:1517–1529

    Article  PubMed  CAS  Google Scholar 

  • Wise RR, Naylor AW (1987) Chilling-enhanced photooxidation: evidence for the role of singlet oxygen and endogenous antioxidants. Plant Physiol 83:278–282

    Article  PubMed  CAS  Google Scholar 

  • Wullschleger SD, Tschaplinski TJ, Norby RJ (2002) Plant water relations at elevated CO2 – implications for water-limited environments. Plant Cell Environ 25:319–331

    Article  PubMed  Google Scholar 

  • Yancey P, Clark ME, Had SC, Bowlus RD, Somero GN (1982) Living with the water stress: evolution of osmolyte system. Science 217:1214–1222

    Article  PubMed  CAS  Google Scholar 

  • Yue B, Xue W, Xiong L, Yu X, Luo L, Cui K, Jin D, Xing Y, Zhang Q (2006) Genetic basis of drought resistance at reproductive stage in rice: separation of drought tolerance from drought avoidance. Genetics 172:1213–1228

    Article  PubMed  Google Scholar 

  • Zelitch I (1973) Alternate pathways of glycolate synthesis in tobacco and maize and its relation to rates of photorespiration. Plant Physiol 51:299–305

    Article  PubMed  CAS  Google Scholar 

  • Zelitch I, Schultes NP, Peterson RB, Brown P, Brutnell TP (2009) High glycolate oxidase activity is required for survival of maize in normal air. Plant Physiol 149:195–204

    Article  PubMed  CAS  Google Scholar 

  • Zhen A, Bie Z, Huang Y, Liu Z, Lei B (2011) Effects of salt-tolerant rootstock grafting on ultrastructure, photosynthetic capacity, and H2O2-scavenging system in chloroplasts of cucumber seedlings under NaCl stress. Acta Physiol Plant 33:2311–2319

    Article  CAS  Google Scholar 

  • Zhifang G, Loescher WH (2003) Expression of a celery mannose 6-phosphate reductase in Arabidopsis thaliana enhances salt tolerance and induces biosynthesis of both mannitol and a glucosyl-mannitol dimer. Plant Cell Environ 26:275–283

    Article  CAS  Google Scholar 

  • Zhu Z, Zhang R, Liu T, Zheng H (2011) Solute accumulation and osmotic adjustment characteristics of the mangrove Avicennia marina under NaCl-induced salinity stress. Bot Mar 54:335–341

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Geissler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Geissler, N., Huchzermeyer, B., Koyro, HW. (2013). Effects of Salt Stress on Photosynthesis Under Ambient and Elevated Atmospheric CO2 Concentration. In: Ahmad, P., Azooz, M.M., Prasad, M.N.V. (eds) Salt Stress in Plants. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6108-1_15

Download citation

Publish with us

Policies and ethics