Skip to main content

Approaches to Improving Salt Tolerance in Maize

  • Chapter
  • First Online:
Salt Stress in Plants

Abstract

Maize is a salt-sensitive crop and is affected even by low concentrations of salt, leading to loss in crop production Changing climate conditions (environmental stress) have forced plant biologists to explore alternate strategies to make maize plants salt tolerant. Breeding for salt resistance is difficult because it is a multigenic trait. When conventional breeding fails to meet the challenges imposed by these stresses, plant scientists shifted to marker-assisted selection and transgenic approaches. Genetic transformation have been proven to be successful. It has shown that over-expression of tonoplast Na+/H+ antiporters in plants resulted in improved salt resistance in plants. Currently, a vast number of gene regulatory elements, including si- and mi-RNA have been identified either leading to salt tolerance or resulting from salinity stress. Engaging the right elements on a case-by-case basis may provide answers to this long-standing problem. As with most complex systems, a combination of conventional breeding, exploiting physiological knowledge, transgenic approaches and field based testing is perhaps the way forward to address salinity problem in maize.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Bary AA, Rashed MA, El-seoudy AA (2005) Molecular genetic studies on some maize (Zea mays L.) inbreds. Egypt. J Genet Cytol 34:15–27

    Google Scholar 

  • Agrama HAS, Moussa ME (1996) Mapping QTLs in breeding for drought tolerance in maize (Zea mays L.). Euph 91:89–97

    Article  CAS  Google Scholar 

  • Ahmad P, Prasad MNV (2012a) Environmental adaptations and stress tolerance in plants in the era of climate change. Springer Science+Business Media, LLC, New York

    Book  Google Scholar 

  • Ahmad P, Prasad MNV (2012b) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer Science+Business Media, LLC, New York

    Book  Google Scholar 

  • Ahmad P, Sharma S (2008) Salt stress and phyto-biochemical responses of plants. Plant Soil Environ 54(3):89–99

    Google Scholar 

  • Ahmad P, Umar S (2011) Oxidative stress: role of antioxidants in plants. Studium Press, New Delhi

    Google Scholar 

  • Ahmad P, Sarwat M, Sharma S (2008) Reactive oxygen species, antioxidants and signaling in plants. J Plant Biol 51(3):167–173

    Article  CAS  Google Scholar 

  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010a) Roles of enzymatic and non-enzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30(3):161–175

    Article  PubMed  CAS  Google Scholar 

  • Ahmad P, Umar S, Sharma S (2010b) Mechanism of free radical scavenging and role of phytohormones during abiotic stress in plants. In: Ashraf M, Ozturk M, Ahmad MSA (eds) Plant adaptation and phytoremediation. Springer, Dordrecht/Heidelber/New York, pp 99–108

    Chapter  Google Scholar 

  • Ahmad P, Nabi G, Jeleel CA, Umar S (2011) Free radical production, oxidative damage and antioxidant defense mechanisms in plants under abiotic stress. In: Ahmad P, Umar S (eds) Oxidative stress: role of antioxidants in plants. Studium Press, New Delhi, pp 19–53

    Google Scholar 

  • Ahmad P, Ashraf M, Younis M, Hu X, Kumar A, Akram NA, Al-Qurainy F (2012) Role of transgenic plants in agriculture and biopharming. Biotechnol Adv 30(3):524–540

    Article  PubMed  CAS  Google Scholar 

  • Akram MS, Ashraf M, Akram NA (2009) Effectiveness of potassium sulfate in mitigating salt-induced adverse effects on different physio-biochemical attributes in sunflower (Helianthus annuus L.). Flora 204(6):471–483

    Article  Google Scholar 

  • Allakhverdiev SI, Sakamoto A, Nishiyama Y, Inaba M, Murata N (2000) Ionic and osmotic effects of NaCl induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiol 123:1047–1056

    Article  PubMed  CAS  Google Scholar 

  • Aroca R, Vernieri P, Irigoyen JJ, Sánchez-Díaz M, Tognoni F, Pardossi A (2003) Involvement of abscisic acid in leaf and root of maize (Zea mays L.) in avoiding chilling-induced water stress. Plant Sci 165:671–679

    Article  CAS  Google Scholar 

  • Ashraf M, McNeilly T (1990) Improvement of salt tolerance in maize by selection and breeding. Plant Breeding 104:101–107

    Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 66:3–16

    Article  CAS  Google Scholar 

  • Azevedo Neto AD, Prisco JT, Eneas-Filho J, Abreu CEB, Gomes-Filho E (2006) Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ Exp Bot 56:87–94

    Article  CAS  Google Scholar 

  • Badawi GH, Kawano N, Yamauchi Y, Shimada E, Sasaki R, Kubo A, Tanaka K (2004) Enhanced tolerance to salt stress and water deficit by over-expressing superoxide dismutase in tobacco chloroplasts. Plant Sci 166:919–928

    Article  CAS  Google Scholar 

  • Bänziger M, Araus JL (2007) Recent advances in breeding maize for drought and salinity stress tolerance. In: Jenks MA et al (eds) Advances in molecular breeding toward drought and salt tolerant crops. Springer, Dordrecht, pp 587–601

    Chapter  Google Scholar 

  • Bänziger M, Setimela PS, Hodson D, Vivek B (2006) Breeding for improved drought tolerance in maize adapted to southern Africa. Agric Water Manag 80:212–224

    Article  Google Scholar 

  • Beltrão J, Asher JB (1997) The effect of salinity on corn yield using the CERES-maize model. Irrig Drain Syst 11:15–28

    Article  Google Scholar 

  • Bernstein N, Lauchli A, Silk WK (1993a) Kinematics and dynamics of sorghum (Sorghum bicolor L.) leaf development at various Na/Ca salinities: I. Elongation growth. Plant Physiol 103:1107–1114

    PubMed  CAS  Google Scholar 

  • Bernstein N, Silk WK, Lauchli A (1993b) Growth and development of sorghum leaves under conditions of NaCl stress: spatial and temporal aspects of leaf growth inhibition. Planta 191:433–439

    Article  CAS  Google Scholar 

  • Boesani O, Zhu JH, Verslues PE, Sunkar R, Zhu JK (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123:1279–1291

    Article  CAS  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Gruissem W, Buchannan B, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1158–1249

    Google Scholar 

  • Brewster JL, de Valoir T, Dwyer ND, Winter E, Gustin MC (1993) An osmosensing signal transduction pathway in yeast. Science 259:1760–1763

    Article  PubMed  CAS  Google Scholar 

  • Campos H, Cooper M, Habben JE, Edmeades GO, Schussler JR (2004) Improving drought tolerance in maize: a view from industry. Field Crop Res 90:19–34

    Article  Google Scholar 

  • Colmer TD, Munns R, Flowers TJ (2005) Improving salt tolerance of wheat and barley: future prospects. Aust J Exp Agric 45:1425–1443

    Article  CAS  Google Scholar 

  • Cosgrove DJ, Bedinger P, Durachko DM (1997) Group I allergens of grass pollen as cell wall-loosening agents. Proc Natl Acad Sci USA 94:6559–6564

    Article  PubMed  CAS  Google Scholar 

  • Cramer GR (2002) Sodium–calcium interactions under salinity stress. In: Läuchli A, Lüttge U (eds) Salinity: environment–plants–molecules. Kluwer, Dordrecht, pp 205–227

    Google Scholar 

  • Cramer GR, Bowman DC (1991) Kinetics of maize leaf elongation. I. Increased yield threshold limits short-term, steady-state elongation rates after exposure to salinity. J Exp Bot 42:1417–1426

    Article  Google Scholar 

  • Cramer GR, Alberico GJ, Schidt C (1994) Salt tolerance is not associated with the sodium accumulation of two maize hybrids. Aust J Plant Physiol 21:675–692

    Article  CAS  Google Scholar 

  • Crawford NM, Kahn ML, Leustek T, Long SR (2000) Nitrogen and sulfur. In: Gruissem W, Buchannan B, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 786–849

    Google Scholar 

  • Cushman JC, Bohnert HJ (2000) Genomic approaches to plant stress tolerance. Curr Opin Plant Biol 3:117–124

    Article  PubMed  CAS  Google Scholar 

  • Ding D, Zhang L, Wang H, Liu Z, Zhang Z, Zheng Y (2009) Differential expression of miRNAs in response to salt stress in maize roots. Ann Bot 103:29–38

    Article  PubMed  CAS  Google Scholar 

  • Edmeades GO, Bolaños J, Hernandez M, Bello S (1993) Causes for silk delay in lowland tropical maize. Crop Sci 33:1029–1035

    Article  Google Scholar 

  • Edmeades GO, Bolaños J, Chapman SC, Lafitte HR, Bänziger M (1999) Selection improves drought tolerance in tropical maize populations: I. Gains in biomass, grain yield, and harvest index. Crop Sci 39:1306–1315

    Article  Google Scholar 

  • Edmeades GO, McMaster GS, White JW, Campos H (2004) Genomics and the physiologist: bridging the gap between genes and crop response. Field Crop Res 90:5–18

    Article  Google Scholar 

  • Edwards MC, Smith GN, Bowling DJF (1988) Guard-cells extrude protons prior to stomatal opening-a study using fluorescence microscopy and pH micro-electrodes. J Expt Bot 39:1541–1547

    Article  Google Scholar 

  • Falcon WP, Naylor RL (1998) The maize transition in Asia: unlocking the controversy. Am J Agric Econ 80:960–968

    Article  Google Scholar 

  • FAO (2000) Extent and causes of salt-affected soils in participating countries. FAO Rome, Italy. www.fao.org

  • FAO (2009) Maize, rice and wheat: area harvested, production quantity, yield. http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567

  • FAO (2011) The state of the world’s land and water resources for food and agriculture (SOLAW). Rome and Earthscan, London

    Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

    Article  PubMed  CAS  Google Scholar 

  • Flowers TJ, Yeo AR (1995) Breeding for salinity tolerance in crop plants: where next? Aust J Plant Physiol 22:875–884

    Article  Google Scholar 

  • Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Ann Rev Plant Physiol 28:89–121

    Article  CAS  Google Scholar 

  • Flowers TJ, Hajibagheri MA, Clipson NJW (1986) Halophytes. Q Rev Biol 61:313–337

    Article  Google Scholar 

  • Food and Agriculture Organization of the United Nations (1996) Report of the world food summit. Food and Agriculture Organization of the United Nations, Rome, 13–17 Nov 1996

    Google Scholar 

  • Foolad MR, Zhang LP, Lin GY (2001) Identification and validation of QTLs for salt tolerance during vegetative growth in tomato by selective genotyping. Genome 44:444–454

    Article  PubMed  CAS  Google Scholar 

  • Fortmeier R, Schubert S (1995) Salt tolerance of maize (Zea mays L.): the role of sodium exclusion. Plant Cell Environ 18:1041–1047

    Article  CAS  Google Scholar 

  • Francois LE, Maas EV, Donovan TJ, Youngs VL (1986) Effect of salinity on grain yield and quality, vegetative growth, and germination of semi-dwarf and durum wheat. Agron J 78:1053–1058

    Article  CAS  Google Scholar 

  • Fu J, Zhang DF, Liu YH, Ying S, Shi YS, Song YC, Li Y, Wang TY (2012) Isolation and characterization of maize PMP3 genes involved in salt stress tolerance. PLoS One 7:e31101

    Article  PubMed  CAS  Google Scholar 

  • Grattan SR, Grieve CM (1999) Salinity – mineral nutrient relations in horticultural crops. Sci Hortic 78:127–157

    Google Scholar 

  • Grant RF, Jackson BS, Kiniry JR, Arkin GF (1989) Water deficit timing effects on yield components in maize. Agron J 81:61–65

    Article  Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31:149–190

    Article  CAS  Google Scholar 

  • Gregorio GB, Senadhira D, Mendoza RD (1997) Screening rice for salinity tolerance. International Rice Research Institute, Los Banos

    Google Scholar 

  • Gu L, Liu Y, Zong X, Liu L, Li DP, Li DQ (2010) Overexpression of maize mitogen-activated protein kinase gene, ZmSIMK1 in Arabidopsis increases tolerance to salt stress. Mol Biol Rep 37:4067–4073

    Article  PubMed  CAS  Google Scholar 

  • Hartung W, Radin JW, Hendrix DL (1988) Abscisic acid movement into the apoplastic solution of water-stressed cotton leaves: role of apoplastic pH. Plant Physiol 86:908–913

    Article  PubMed  CAS  Google Scholar 

  • Heard J, Adams TR, Anstrom G, Benson R, Nelson D, Warner D, Ratcliffe O, Creelman R, Dotson S (2005) Increasing yield stability in corn under drought conditions: new insights from transgenic studies. In: Abstract L 8.02 InterDrought-II of the 2nd international conference on integrated approaches to sustain and improve plant production under drought stress: final program and abstract book, Avenue media, Bologna, Italy

    Google Scholar 

  • Hu X, Zhang Z, Xu P, Fu Z, Hu S, Song W (2010) Multifunctional genes: the cross-talk among the regulation networks of abiotic stress responses. Biol Plantarum 54:213–223

    Article  CAS  Google Scholar 

  • Iannelli AM, Breusegem FV, Montaguu MV, Inzé D, Massacci A (1998) Tolerance to low temperature and paraquat-mediated oxidative stress in two maize genotypes. J Expt Bot 50:523–532

    Google Scholar 

  • Imlay JA (2003) Pathways of oxidative damage. Annu Rev Microbiol 57:395–418

    Article  PubMed  CAS  Google Scholar 

  • Jahn T, Johansson F, Luche H, Volkmann D, Larsson C (1996) Reinvestigation of auxin and fusicoccin stimulation of the plasma-membrane H1-ATPase activity. Planta 199:359–365

    Article  CAS  Google Scholar 

  • Jamil M, Ashraf M, Rehman S, Ahmad M, Rha ES (2011) Salinity induced changes in cell membrane stability, protein and RNA contents. Afr J Biotechnol 11:6476–6483

    Google Scholar 

  • Jeanneau M, Gerentes D, Foueillassar X, Zivy ML, Vidal J, Toppan A, Perez P (2002) Improvement of drought tolerance in maize: towards the functional validation of the Zm-Asr1 gene and increase of water use efficiency by over-expressing C4–PEPC. Biochimie 84:1127–1135

    Article  PubMed  CAS  Google Scholar 

  • Jones JB (2003) Agronomic handbook: management of crops, soils and their fertility. CRC Press, Boca Raton, p 450

    Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    Article  PubMed  CAS  Google Scholar 

  • Katerji N, Van Hoorn JW, Hamdy A, Mastrorilli M (2000) Salt tolerance classification of crops according to soil salinity and to water stress day index. Agric Water Manag 43:99–109

    Article  Google Scholar 

  • Khan AA, Rao SA, McNeilly T (2003) Assessment of salinity tolerance based upon seedling root growth response functions in maize (Zea mays L.). Euphytica 131:81–89

    Article  CAS  Google Scholar 

  • Khraiwesh B, Zhu JK, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta 1819:137–4848

    Article  PubMed  CAS  Google Scholar 

  • Kim YK, Kim VN (2007) Processing of intronic microRNAs. EMBO J 26:775–783

    Article  PubMed  CAS  Google Scholar 

  • Kizis D, Lumbreras V, Pages M (2001) Role of AP2/EREBP transcription factors in gene regulation during abiotic stress. FEBS Lett 498:187–189

    Article  PubMed  CAS  Google Scholar 

  • Koyro HW, Ahmad P, Geissler N (2012) Abiotic stress responses in plants: an overview. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, Science+business media, New York, pp 1–28

    Chapter  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot. doi: 10.1093/jxb/err460

    Google Scholar 

  • Kumon K, Suda S (1985) Changes in the extracellular pH of the motor cells of Mimosa pudica L. during movement. Plant Cell Physiol 26:375–377

    CAS  Google Scholar 

  • Lafitte HR, Courtois B (2000) Genetic variation in performance under reproductive stage water deficit in a doubled-haploid rice population in upland fields. In: Ribaut JM, Poland D (eds) Molecular approaches for the genetic improvement of cereals for stable production in water-limited environments. A strategic planning workshop held on 21–25 June 1999. CIMMYT, El Batan, pp 97–102

    Google Scholar 

  • Lazof D, Bernstein N (1998) The NaCl-induced inhibition of shoot growth: the case for disturbed nutrition with special consideration of calcium nutrition. Adv Bot Res 29:113–189

    Article  Google Scholar 

  • Lebreton C, Laziejancie V, Steed A, Pekic S, Quarrie SA (1995) Identification of QTL for drought responses in maize and their testing casual relationships between traits. J Expt Bot 46:853–865

    Article  CAS  Google Scholar 

  • Li ZK, Xu JL (2007) Breeding for drought and salt tolerant rice (Oryza sativa L.): progress and perspectives. In: Jenks MA et al (eds) Advances in molecular breeding toward drought and salt tolerant crops. Springer, Dordrecht, pp 531–564

    Chapter  Google Scholar 

  • Li ZK, Fu BY, Gao YM, Xu JL, Ali J, Lafitte HR, Jiang YZ, Rey JD, Vijayakumar CHM, Maghirang R, Zheng TQ, Zhu LH (2005) Genome-wide introgression lines and a forward genetics strategy for functional genomic research of complex phenotypes in rice. Plant Mol Biol 59:33–52

    Article  PubMed  CAS  Google Scholar 

  • Li B, Li N, Duan X, Wei A, Yang A, Zhang J (2010) Generation of marker-free transgenic maize with improved salt tolerance using the FLP/FRT recombination system. J Biotechnol 145:206–213

    Article  PubMed  CAS  Google Scholar 

  • Maas EV, Hoffman GJ (1977) Crop salt tolerance – current assessment. J Irrig Drain, Div Am Soc Civ Eng 103:115–134

    Google Scholar 

  • Maas EV (1986) Salt tolerance of plants. Appl Agric Res 1:12–25

    Google Scholar 

  • Maiti RK, Delgado LE, Amaya S, Cardona I, Dimas OAM, Rosa-Ibarra MD, Castillo HD (1996) Genotypic variability in maize cultivars (Zea mays L.) for resistance to drought and salinity at the seedling stage. J Plant Physiol 148:741–744

    Article  CAS  Google Scholar 

  • McKersie BD, Leshem YY (1994) Stress cropping in cultivated plant. Kluwer, Dordrecht

    Book  Google Scholar 

  • McQueen-Mason SJ, Fry SC, Durachko DM, Cosgrove DJ (1993) The relationship between xyloglucan endotransglycosylase and in vitro cell wall extension in cucumber hypocotyls. Planta 190:327–331

    Article  PubMed  CAS  Google Scholar 

  • Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot 49:69–76

    Article  CAS  Google Scholar 

  • Mica E, Gianfranceschi L, Pe ME (2006) Characterization of five microRNA families in maize. J Exp Bot 57:2601–2612

    Article  PubMed  CAS  Google Scholar 

  • Mittova V, Tal M, Volokita M, Guy M (2002) Salt stress induces up-regulation of an efficient chloroplasts antioxidant system in the salt-tolerant wild tomato species Lycopersicon pennellii but not in the cultivated species. Plant Physiol 115:393–400

    Article  CAS  Google Scholar 

  • Mladenova YI (1990) Influence of salt stress on primary metabolism of Zea mays L. seedlings of model genotypes. Plant Soil 123:217–222

    Article  CAS  Google Scholar 

  • Mulkey TJ, Evans ML (1981) Geotropism in corn roots: evidence for its mediation by differential acid efflux. Science 212:70–71

    Article  PubMed  CAS  Google Scholar 

  • Munns R (1993) Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant Cell Environ 16:15–24

    Article  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  PubMed  CAS  Google Scholar 

  • Munns R, Schachtman DP, Condon AG (1995) The significance of a two-phase growth response to salinity in wheat and barley. Aust J Plant Physiol 22:561–569

    Article  CAS  Google Scholar 

  • Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043

    Article  PubMed  CAS  Google Scholar 

  • Neill SJ, Desikan D, Clarke A, Hancock JT (2002) Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. Plant Physiol 128:13–16

    Article  PubMed  CAS  Google Scholar 

  • Neumann P (1997) Salinity resistance and plant growth revisited. Plant Cell Environ 20:1193–1198

    Article  CAS  Google Scholar 

  • Neumann PM, Azaizeh H, Leon D (1994) Hardening of root cell walls: a growth inhibitory response to salinity stress. Plant Cell Environ 17:303–309

    Article  Google Scholar 

  • Neves-Piestun BG, Bernstein N (2001) Salinity-induced inhibition of leaf elongation in maize is not mediated by changes in cell wall acidification capacity. Plant Physiol 125:1419–1428

    Article  PubMed  CAS  Google Scholar 

  • New York Times (2011) U.S. approves corn modified for ethanol. http://www.nytimes.com/2011/02/12/business/12corn.html). Accessed 11 Feb 2011

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  PubMed  CAS  Google Scholar 

  • Orna AK, Yardena GD, Simcha LY, Rachel G, Gozal BH (2004) The salt-stress signal transduction pathway that activates the gpx1 promoter is mediated by intracellular H2O2, different from the pathway induced by extracellular H2O2. Plant Physiol 135:1685–1696

    Article  Google Scholar 

  • Pathan MS, Lee JD, Shannon G, Nguyen HT (2007) Recent advances in breeding for drought and salt stress tolerance in soybean. In: Jenks MA et al (eds) Advances in molecular breeding toward drought and salt tolerant crops. Springer, Dordrecht, pp 531–564

    Google Scholar 

  • Prashanth SR, Sadhasivam V, Parida A (2008) Over-expression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgenic Res 17:281–291

    Article  PubMed  CAS  Google Scholar 

  • Quan R, Shang M, Zhang H, Zhao Y, Zhang J (2004) Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize. Plant Biotechnol J 2:477

    Article  PubMed  CAS  Google Scholar 

  • Rao SA, McNeilly T (1999) Genetic basis of variation for salt tolerance in maize (Zea mays L). Euphytica 108:145–150

    Google Scholar 

  • Rawson HM, Richards RA, Munns R (1988) An examination of selection criteria for salt-tolerance in wheat, barley and triticale genotypes. Aust J Agri Res 39:759–772

    Article  Google Scholar 

  • Rayle DL, Cleland RE (1992) The acid growth theory of auxin-induced cell elongation is alive and well. Plant Physiol 99:1271–1274

    Article  PubMed  CAS  Google Scholar 

  • Reif JC, Xia XC, Melchinger AE, Warburton ML, Hoisington DA, Beck D, Bohn M, Frisch M (2004) Genetic diversity determined within and among CIMMYT maize populations of tropical, subtropical, and temperate germplasm by SSR markers. Crop Sci 44:326–334

    Article  CAS  Google Scholar 

  • Ribaut JM, Hoisington DA, Deutsch JA, Jiang C, Gonzalez-de-Leon D (1996) Identification of quantitative trait loci under drought conditions in tropical maize. 1. Flowering parameters and the anthesis-silking interval. Theor Appl Genet 92:905–914

    Article  CAS  Google Scholar 

  • Ribaut JM, Jiang C, Gonzalez-de-Leon D, Edmeades GO, Hoisington DA (1997) Identification of quantitative trait loci under drought conditions in tropical maize. 2. Yield components and marker assisted selection strategies. Theor Appl Genet 94:887–896

    Article  Google Scholar 

  • Ribaut JM, Bänziger M, Betrán FJ, Jiang C, Edmeades GO, Dreher K, Hoisington DA (2002) Use of molecular markers in plant breeding: drought tolerance improvement in tropical maize. In: Kang MS (ed) Quantitative genetics, genomics and plant breeding. Centre for Agricultural Bioscience International, Wallingford, pp 85–99

    Google Scholar 

  • Ribaut JM, Bänziger M, Setter T, Edmeades G, Hoisington D (2004a) Genetic dissection of drought tolerance in maize: a case study. In: Nguyen H, Blum A (eds) Physiology and biotechnology integration for plant breeding. Dekker, New York, pp 571–611

    Google Scholar 

  • Ribaut JM, Sawkins MC, Bänziger M, Vargas M, Huerta E, Martinez C, Moreno M (2004b) Marker-assisted selection in tropical maize based on consensus map, perspectives, and limitations, p. 267–268. In Poland D, Sawkins M, Ribaut J-M, Hoisington D (eds) Resilient crops for water limited environments. Proceedings of a workshop held at Cuernavaca, CIMMYT, Mexico, 24–28 May 2004

    Google Scholar 

  • Richards RA (1993) Should selection for yield in saline regions be made on saline or non-saline soils? Euphytica 32:431–438

    Article  Google Scholar 

  • Rozema J, Flowers TJ (2008) Crops for a salinized world. Science 322:1478–1480

    Article  PubMed  CAS  Google Scholar 

  • Saneoka H, Nagasaka C, Hahn DT, Yang WJ, Premachandra GS, Joly RJ, Rhodes D (1995) Salt tolerance of glycinebetaine-defcient and containing maize lines. Plant Physiol 107:631–638

    PubMed  CAS  Google Scholar 

  • Sanguineti MC, Tuberosa R, Landi P, Salvi S, Maccaferri M, Casarini E, Conti S (1999) QTL analysis of drought-related traits and grain yield in relation to genetic variation for leaf abscisic acid concentration in field-grown maize. J Exp Bot 50:1289–1297

    CAS  Google Scholar 

  • Shou H, Bordallo P, Wang K (2004) Expression of the Nicotiana protein kinase (NPK1) enhanced drought tolerance in transgenic maize. J Exp Bot 55:1013–1019

    Article  PubMed  CAS  Google Scholar 

  • Sinclair TR, Purcell LC (2005) Is a physiological perspective relevant in a ‘genocentric’ age? J Exp Bot 56:2777–2782

    Article  PubMed  CAS  Google Scholar 

  • Song XJ, Matsuoka M (2009) Bar the windows: an optimized strategy to survive drought and salt adversities. Genes Dev 23:1709–1713

    Article  PubMed  CAS  Google Scholar 

  • Stahlberg R, Van Volkenburgh E (1999) The effect of light on membrane potential, apoplastic pH and cell expansion in leaves of Pisum sativum L. var. Argenteum. Role of PM H+‐ATPase and photosynthesis. Planta 208:188–195

    Article  CAS  Google Scholar 

  • Sunkar R, Chinnusamy V, Zhu J, Zhu JK (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12:301–309

    Google Scholar 

  • Sunkar R, Zhou X, Zheng Y, Zhang W, Zhu JK (2008) Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol 8:25

    Article  PubMed  CAS  Google Scholar 

  • Szabolcs I (1994) Prospects of soil salinity for the 21st century. Paper presented at the 15th world congress of soil science, Acapulco, 10–16 July 1994, pp 123–141

    Google Scholar 

  • Tiwari SB, Hagen G, Guilfoyle TJ (2004) Aux/IAA proteins contain a potent transcriptional repression domain. Plant Cell 16:533–543

    Article  PubMed  CAS  Google Scholar 

  • Tomos AD, Pritchard J (1994) Biophysical and biochemical control of cell expansion in roots and leaves. J Exp Bot 45:1721–1731

    CAS  Google Scholar 

  • Tuberosa R, Sanguineti MC, Landi P, Giuliani MM, Salvi S, Conti S (2002a) Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. Plant Mol Biol 48:697–712

    Article  PubMed  CAS  Google Scholar 

  • Tuberosa R, Gill BS, Quarrie SA (2002b) Cereal genomics: ushering in a brave new world. Plant Mol Biol 48:445–449

    Article  PubMed  CAS  Google Scholar 

  • Urano K, Kurihara Y, Seki M, Shinozaki K (2010) ‘Omics’ analyses of regulatory networks in plant abiotic stress responses. Curr Opin Plant Biol 13:32–138

    Article  CAS  Google Scholar 

  • US Salinity Laboratory (Clyde W, 2006) Improving salt tolerance in small grain crops using physiological genomics approaches. American Society of Agronomy Meetings in Indianapolis, in 12–16 Nov 2006. Paper No. 60–6

    Google Scholar 

  • Van Volkenburgh E, Boyer JS (1985) Inhibitory effects of water deficit on maize leaf elongation. Plant Physiol 77:190–194

    Article  PubMed  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:1–10

    Article  CAS  Google Scholar 

  • Warner DC, Heard J, Bensen R, Nelson D (2005) Development of transgenes for improvement of drought stress tolerance in maize. In: Abstracts of the international annual meetings, ASA-CSSA-SSSA, Madison, WI, 2005

    Google Scholar 

  • Westgate ME, Boyer JS (1986) Reproduction at low silk and pollen water potentials in maize. Crop Sci 26:951–956

    Article  Google Scholar 

  • Westgate ME, Boyer JS (2004) Grain yields with limited water. J Exp Bot 55:2385–2394

    Article  PubMed  Google Scholar 

  • Xu DQ, Huang J, Guo SQ (2008) Over-expression of a TFIIIA-type zinc finger protein gene ZFP252 enhances drought and salt tolerance in rice (Oryza sativa L.). FEBS Lett 582:1037–1043

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci 10:615–620

    Article  PubMed  CAS  Google Scholar 

  • Yan B, Dai Q, Liu X, Huang S, Wang Z (1996) Flooding‐induced membrane damage, lipid oxidation and activated oxygen generation in corn leaves. Plant Soil 179:261–268

    Article  CAS  Google Scholar 

  • Yin XY, Yang AF, Zhang KW, Zhang JR (2004) Production and analysis of transgenic maize with improved salt tolerance by the introduction of AtNHX1 gene. Acta Bot Sin 46:854–861

    CAS  Google Scholar 

  • Yousuf PY, Hakeem KR, Chandna R, Ahmad P (2012) Role of glutathione reductase in plant abiotic stress. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer, Science + business media, New York, pp 149–158

    Chapter  Google Scholar 

  • Zacchini M, Rea E, Tullio M, Agazio M (2003) Increased antioxidative capacity in maize calli during and after oxidative stress induced by a long lead treatment. Plant Physiol Biochem 41:49–54

    Article  CAS  Google Scholar 

  • Zhang J, Nguyen H, Blum A (2000) Genetic analysis of osmotic adjustment in crop plants. J Exp Bot 50:291–302

    Google Scholar 

  • Zhang J, Jia W, Yang J, Ismail AM (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field Crop Res 97:111–119

    Article  Google Scholar 

  • Zhao B, Liang R, Ge L, Li W, Xiao H, Lin H, Ruan K, Jin Y (2007) Identification of drought-induced microRNAs in rice. Biochem Biophys Res Commun 354:585–590

    Google Scholar 

  • Zhao B, Ge L, Liang R, Li W, Rua K, Lin H, Jin Y (2009) Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor. BMC Mol Biol 10:29

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Wang G, Sutoh K, Zhu JK, Zhang W (2008) Identification of cold-inducible microRNAs in plants by transcriptome analysis. Biochim Biophys Acta 1779:780–788

    Google Scholar 

  • Zhu JK (2000) Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol 124:941–948

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK, Hasegawa PM, Bressan RA (1997) Molecular aspects of osmotic stress in plants. Crit Rev Plant Sci 16:253–277

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhinu V-S. Pillai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chellamma, S., Pillai, B.VS. (2013). Approaches to Improving Salt Tolerance in Maize. In: Ahmad, P., Azooz, M.M., Prasad, M.N.V. (eds) Salt Stress in Plants. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6108-1_11

Download citation

Publish with us

Policies and ethics