Skip to main content

Improving Salt Tolerance in Rice: Looking Beyond the Conventional

  • Chapter
  • First Online:
Book cover Salt Stress in Plants

Abstract

Several factors in the intensive cropping system have played significant role in deteriorating soil health in general. soil salinization is one of the major issues threatening crop productivity in major irrigated rice growing areas of the world. Salinity is a serious issue in rice, the crop that feeds half the world, since it is sensitive to salt accumulation. With the world population growing incessantly, there is an urgent need to increase rice productivity especially in salinized lands as well as to reutilize lands that are rendered unproductive due to salt accumulation. It is therefore essential to develop varieties that are phenologically capable of sustaining excess salt throughout its life span and produce higher yield. Although there is sufficient variability in rice germplasm for salt tolerance, conventional breeding has been far less fruitful in addressing this complex problem. With the deeper understanding of the intricate mechanisms of salt tolerance and the array of genes and useable quantitative trait loci that are being discovered, the breeding scenario towards salt tolerant rice is poised to take a more productive turn in near future. This chapter outlines the latest developments in rice breeding towards salt tolerance through employment of modern molecular techniques in conjunction with the conventional breeding approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas ST, Quraishi A, Chughtai MID (1994) Salt affected soils- problems and prospects. Pak J Agric Res 15:176–184

    Google Scholar 

  • Abdurakhmonov IY, Abdukarimov A (2008) Application of association mapping to understanding the genetic diversity of plant germplasm resources. Int J Plant Genomic. doi:10.1155/2008/574927

    Google Scholar 

  • Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol. doi:10.1038/nbt.2095

    Google Scholar 

  • Abeysiriwardena DS (2004) A simple screening technique for salinity tolerance in rice: germination rate under stress. Int Rice Res Note 29:78–79

    Google Scholar 

  • Abogadallah GM (2010) Antioxidative defense under salt stress. Plant Signal Behav 5:369–374

    Article  PubMed  CAS  Google Scholar 

  • Ahmad P (2010) Growth and antioxidant responses in mustard (Brassica juncea L.) plants subjected to combined effect of gibberellic acid and salinity. Arch Agro Soil Sci 56(5):575–588

    Article  CAS  Google Scholar 

  • Ahmad P, Prasad MNV (2012a) Environmental adaptations and stress tolerance in plants in the era of climate change. Springer Science  +  Business Media, LLC, New York

    Book  Google Scholar 

  • Ahmad P, Prasad MNV (2012b) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer Science  +  Business Media, LLC., New York

    Book  Google Scholar 

  • Ahmad P, Sarwat M, Sharma S (2008) Reactive oxygen species, antioxidants and signaling in plants. J Plant Biol 51(3):167–173

    Article  CAS  Google Scholar 

  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010) Roles of enzymatic and non-enzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30(3):161–175

    Article  PubMed  CAS  Google Scholar 

  • Ahmad P, Nabi G, Jeleel CA, Umar S (2011) Free radical production, oxidative damage and antioxidant defense mechanisms in plants under abiotic stress. In: Ahmad P, Umar S (eds) Oxidative stress: role of antioxidats in plants. Studium Press, New Delhi, pp 19–53

    Google Scholar 

  • Ahmad P, Ashraf M, Younis M, Hu X, Kumar A, Akram NA, Al-Qurainy F (2012a) Role of transgenic plants in agriculture and biopharming. Biotechnol Adv 30(3):524–540

    Article  PubMed  CAS  Google Scholar 

  • Ahmad P, Kumar A, Gupta A, Hu X, Hakeem KR, Azooz MM, Sharma S (2012b) Polyamines: role in plants under abiotic stress. In: Ashraf M, Ozturk M, Ahmad MSA, Aksoy A (eds) Crop production for agricultural improvement. Springer, Dordrecht/Heidelberg/London/New York, pp 490–512

    Google Scholar 

  • Ahmadi J, Fotokian MH (2011) Identification and mapping of quantitative trait loci associated with salinity tolerance in rice (Oryza sativa) using SSR markers. Iran J Biotechnol 9:21–30

    CAS  Google Scholar 

  • Ahmadi N, Negrão S, Katsantonis D, Frouin J, Ploux J, Letourmy P, Droc G, Babo P, Trindade H, Bruschi G, Greco R, Oliveira MM, PiVanelli P, Courtois B (2011) Targeted association analysis identified japonica rice varieties achieving Na+/K+ homeostasis without the allelic make-up of the salt tolerant indica variety Nona Bokra. Theor Appl Genet 123:881–895

    Article  PubMed  CAS  Google Scholar 

  • Ahmed M, Qamar I (2004) Productive rehabilitation and use of salt-affected land through afforestation (a review). Q Sci Vis 19:1–14

    Google Scholar 

  • Akbar M, Yabuno T (1977) Breeding for saline-resistant varieties of rice inheritance of delayed-type panicle sterility induced by salinity. Japan J Breed 27:237–240

    Google Scholar 

  • Alam R, Rahman MS, Seraj ZI, Thomson MJ, Ismail AM, Tumimbang-Raiz E, Gregorio GB (2011) Investigation of seedling-stage salinity tolerance QTLs using backcross lines derived from Oryza sativa L. Pokkali. Plant Breed 130:430–437

    Article  CAS  Google Scholar 

  • Alcázar R, Marco F, Cuevas JC, Patron M, Ferrando A, Carrasco P, Tiburcio AF, Altabella T (2006) Involvement of polyamines in plant response to abiotic stress. Biotechnol Lett 28:1867–1876

    Article  PubMed  CAS  Google Scholar 

  • Ali Y, Sarwar G, Aslam Z, Hussain F (2006) Genotypic and environmental interaction in advanced lines of rice under salt-affected soils of Punjab. Int J Environ Sci Tech 3:191–195

    Google Scholar 

  • Alpuerto V, Norton GW, Alwang J (2008) Economic impact analysis of marker-assisted breeding in rice. Paper presented at American agricultural economics association annual meeting, Orlando, 28p

    Google Scholar 

  • Amin M, Elias SM, Hossain A, Ferdousi A, Rahman MS, Tuteja N, Seraj ZI (2012) Over-expression of a DEAD-box helicase, PDH45, confers both seedling and reproductive stage salinity tolerance to rice (Oryza sativa L.). Mol Breed 30:345–354

    Article  CAS  Google Scholar 

  • Ammar MHM, Singh RK, Singh AK, Mohapatra T, Sharma TR, Singh NK (2007) Mapping QTLs related to salinity tolerance of rice at the young seedling stage. In: African Crop Science Conference Proceedings, vol 8, El-Minia, Egypt, pp 617–620

    Google Scholar 

  • Ansari R, Khan MA, Gul B (2007) Gainful utilization of salt affected lands: prospects and precautions. In: Kafi M, Khan MA (eds) Crop and forage production using saline waters, vol X., pp 103–108, NAM S&T Centre

    Google Scholar 

  • Asch F, Dingkuhn M, Dörffling K, Mièzan K (2000) Leaf K/Na ratio predicts salinity induced yield loss in irrigated rice. Euphytica 113:109–118

    Article  Google Scholar 

  • Babu NN, Sharma SK, Ellur RK, Singh VK, Pal M, Pathania S, Singh VK, Singh D, Gopalakrishnan S, Bhowmick PK, Nagarajan M, Vinod KK, Singh NK, Prabhu KV, Singh AK (2012) Marker assisted improvement of Pusa Basmati 1121 for salinity tolerance. International conference on plant biotechnology for food security: new frontiers, national agricultural science centre, New Delhi, pp 72–73

    Article  CAS  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Bhonsle SJ, Krishnan S (2011) Traditionally cultivated salt tolerant rice varieties grown in khazan lands of Goa, India and their grain quality characteristics. J Phytol 3:11–17

    Google Scholar 

  • Bhumbla DR, Abrol IP (1978) Saline and sodic soils. In: Soils and rice. International Rice Research Institute, Los Baños, pp 719–738

    Google Scholar 

  • Bonilla P, Dvorak J, Mackill DJ, Deal K, Gregorio GB (2002) RFLP and SSLP mapping of salinity tolerance genes in chromosome 1 of rice (Oryza sativa L.) using recombinant inbred lines. Philipp Agric Sci 85:68–76

    Google Scholar 

  • Borlaug NE, Dowswell CR (2005) Feeding a world of ten billion people: a 21st century challenge. In: Tuberosa R., Phillips RL, Gale M (eds) Proceedings of the international congress “In the wake of the double helix: from the green revolution to the gene revolution”. Bologna, pp 3–23, ©2005 Avenue media, Bologna, 27–31 May 2003

    Google Scholar 

  • Bot AJ, Nachtergaele FO, Young A (2000) Land resource potential and constraints at regional and country levels, vol 90, World soil resources reports. Food and Agriculture Organization of the United Nations, Rome, 113p

    Google Scholar 

  • Chandrasekharan H, Sarangi A, Nagarajan M, Singh VP, Rao DUM, Stalin P, Natarajan K, Chandrasekaran B, Anbazhagan S (2008) Variability of soil–water quality due to Tsunami-2004 in the coastal belt of Nagapattinam district, Tamilnadu. J Environ Manage 89:63–72

    Article  PubMed  CAS  Google Scholar 

  • Cha-um S, Srithandon S, Wanitchananan P, Kirdmanee C (2008) A progressive on salt-tolerant rice improvement using plant biotechnology in Thailand. In: Proceedings for the 5th international crop science congress, Jeju

    Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought – from genes to the whole plant. Funct Plant Biol 30:239–264

    Article  CAS  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Guo Z (2008) Tobacco OPBP1 enhances salt tolerance and disease resistance of transgenic rice. Int J Mol Sci 9:2601–2613

    Article  PubMed  CAS  Google Scholar 

  • Chen H, An R, Tang JH, Cui XH, Hao FS, Chen J, Wang XC (2007) Over-expression of a vacuolar Na+/H+ antiporter gene improves salt tolerance in an upland rice. Mol Breed 19:215–225

    Article  CAS  Google Scholar 

  • Claes B, Dekeyser R, Villarroel R, Bulcke MV, Bauw G, Montagu MV, Caplan A (1990) Characterization of a rice gene showing organ-specific expression in response to salt stress and drought. Plant Cell 2:19–27

    PubMed  CAS  Google Scholar 

  • Clarkson DT, Hanson JB (1980) The mineral nutrition of higher plants. Annu Rev Plant Physiol 31:239–298

    Article  CAS  Google Scholar 

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Phil Trans R Soc B 363:557–572

    Article  PubMed  CAS  Google Scholar 

  • Courtois B, Greco R, Bruschi G, Frouin J, Ahmadi N, Droc G, Hamelin C, Ruiz M, Evrard JC, Katsantonis D, Oliveira M, Negrão S, Cavigiolo S, Lupotto E, Piffanelli P (2011) Molecular characterization of the European rice collection in view of association mapping. Plant Genetic Resour 9:233–235

    Article  Google Scholar 

  • Dai X, Xu Y, Ma Q, Xu W, Wang T, Xue Y, Chong K (2007) Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol 143:1739–1751

    Article  PubMed  CAS  Google Scholar 

  • Darwish E, Testerink C, Khalil M, El-Shihy O, Munnik T (2009) Phospholipid signaling responses in salt-stressed rice leaves. Plant Cell Physiol 50:986–997

    Article  PubMed  CAS  Google Scholar 

  • Datta SK, Torrizo LB, Gregorio GB, Moon HP (2009) Haploid breeding in rice improvement. In: Datta SK (ed) Rice improvement in the genomics era. CRC Press/Taylor & Francis Group, Boca Raton, pp 71–104

    Google Scholar 

  • De Datta SK, Neue HU, Senadhira D, Quijano C (1993) Success in rice improvement for poor soils. In: Proceedings of the workshop on adaptation of plants to soil stress. University of Nebraska, Lincoln, Nebraska, pp 248–268

    Google Scholar 

  • de Souza GA, Ferreira BS, Dias JM, Queiroz KS, Branco AT, Bressan-Smith RE, Oliveira JG, Garcia AB (2003) Accumulation of SALT protein in rice plants as a response to environmental stresses. Plant Sci 164:623–628

    Article  CAS  Google Scholar 

  • Demiral T, Turkan I (2005) Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ Exp Bot 53:247–257

    Google Scholar 

  • Ding H, Zhang G, Guo Y, Chen S, Chen S (1998) RAPD tagging of a salt tolerant gene in rice. Chinese Sci Bull 43:330–332

    Article  Google Scholar 

  • Dregne H, Kassas M, Razanov B (1991) A new assessment of the world status of desertification. Desertif Control Bull (U N Environ Programme) 20:6–18

    Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763

    Article  PubMed  CAS  Google Scholar 

  • Elahi CMF, Seraj ZI, Rasul NM, Das KC, Biswas K, Salam MA, Gomosta AR, Tumimbang E, Adorada D, Gregorio G, Bennett J (2004) Breeding rice for salinity tolerance using the Pokkali allele: finding a linked DNA marker. In: Islam AS (ed) In vitro culture, transformation and molecular markers for crop improvement. Science, Enfield, pp 157–170

    Google Scholar 

  • El-Shabrawi H, Kumar B, Kaul T, Reddy MK, Singla-Pareek SL, Sopory SK (2010) Redox homeostasis, antioxidant defense, and methylglyoxal detoxification as markers for salt tolerance in Pokkali rice. Protoplasma 245:85–96

    Article  PubMed  CAS  Google Scholar 

  • Esechie HA, Al-Barhi B, Al-Gheity S, Al-Khanjari S (2002) Root and shoot growth in salinity-stressed alfalfa in response to nitrogen source. J Plant Nutr 25:2559–2569

    Article  CAS  Google Scholar 

  • Fang Y, Xie K, Hou X, Hu H, Xiong L (2010) Systematic analysis of GT factor family of rice reveals a novel subfamily involved in stress responses. Mol Genet Genomics 283:157–169

    Article  PubMed  CAS  Google Scholar 

  • Fernando LH (1949) The performance of salt resistant paddy, Pokkali in Ceylon. Trop Agric 105:124–126

    Google Scholar 

  • Fischer G, van Velthuizen H, Shah M, Nachtergaele F (2002) Global agro-ecological assessment for agriculture in the 21st century: methodology and results. International Institute for Applied Systems Analysis, Laxenburg

    Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

    Article  PubMed  CAS  Google Scholar 

  • Flowers TJ, Koyama ML, Flowers SA, Sudhakar C, Singh KP, Yeo AR (2000) QTL: their place in engineering tolerance of rice to salinity. J Exp Bot 51:99–106

    Article  PubMed  CAS  Google Scholar 

  • Fotokian M, Taleie A, Ghareyazie B, Postini K, Bushehri AAS, Li ZK (2005) QTL mapping of genes affecting salt tolerance in rice (Oryza sativa L.) using microsatellite markers. Iran J Crop Sci 6:13

    Google Scholar 

  • Fukuda A, Nakamura A, Tagiri A, Tanaka H, Miyao A, Hirochika H, Tanaka Y (2004) Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice. Plant Cell Physiol 45:146–159

    Article  PubMed  CAS  Google Scholar 

  • Gao S, Zhang H, Tian Y, Li F, Zhang Z, Lu X, Chen X, Huang R (2008) Expression of TERF1 in rice regulates expression of stress-responsive genes and enhances tolerance to drought and high-salinity. Plant Cell Rep 27:1787–1795

    Article  PubMed  CAS  Google Scholar 

  • Garcia AB, Engler JD, Iyer S, Gerats T, VanMontagu M, Caplan AB (1997) Effects of osmoprotectants upon NaCl stress in rice. Plant Physiol 115:159–169

    PubMed  CAS  Google Scholar 

  • Garciadeblás B, Senn ME, Bañuelos MA, Rodríguez-Navarro A (2003) Sodium transport and HKT transporters: the rice model. Plant J 34:788–801

    Article  PubMed  Google Scholar 

  • Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci U S A 99:15898–15903

    Article  PubMed  CAS  Google Scholar 

  • Gautam RK, Singh RK, Qadar A (2009) Incorporating salt tolerance in rice with more precision-status and prospects. J Soil Salin Water Qual 1:73–84

    Google Scholar 

  • Ge LF, Chao DY, Shi M, Zhu MZ, Gao JP, Lin HX (2008) Overexpression of the trehalose-6-phosphate phosphatase gene OsTPP1 confers stress tolerance in rice and results in the activation of stress responsive genes. Planta 228:191–201

    Article  PubMed  CAS  Google Scholar 

  • Gong J, He P, QLAN Q, Shen L, Zhu L, Chen S (1999) Identification of salt-tolerance QTL in rice (Oryza sativa L.). Chinese Sci Bull 44:68–71

    Article  Google Scholar 

  • Gong J, Zheng X, Du B, Qian Q, Chen S, Zhu L, He P (2001) Comparative study of QTLs for agronomic traits of rice (Oryza sativa L.) between salt stress and nonstress environment. Sci in China (Ser C) 44:73–82

    Article  CAS  Google Scholar 

  • Gopalakrishnan S, Sharma RK, Rajkumar KA, Joseph M, Singh VP, Singh AK, Bhat KV, Singh NK, Mohapatra T (2008) Integrating marker assisted background analysis with foreground selection for identification of superior bacterial blight resistant recombinants in Basmati rice. Plant Breeding 127:131–139

    Google Scholar 

  • Grattan SR, Zeng L, Shannon MC, Roberts SR (2002) Rice is more sensitive to salinity than previously thought. Calif Agric 56:189–195

    Article  Google Scholar 

  • Gregorio GB (1997) Tagging salinity tolerance genes in rice using amplified fragment length polymorphism (AFLP). Ph.D. thesis, University of the Philippines, Los Baños, 118p

    Google Scholar 

  • Gregorio GB, Senadhira D (1993) Genetic analysis of salinity tolerance in rice (Oryza sativa L.). Theor Appl Genet 86:333–338

    Google Scholar 

  • Gregorio GB, Senadhira D, Mendoza RD (1997) Screening rice for salinity tolerance, vol 22, IRRI discussion paper series. International Rice research Institute, Manila, 30p

    Google Scholar 

  • Gregorio GB, Senadhira D, Mendoza RD, Manigbas NL, Roxas JP, Guerta CQ (2002) Progress in breeding for salinity tolerance and associated abiotic stresses in rice. Field Crops Res 76:91–101

    Article  Google Scholar 

  • Hanson B, Grattan SR, Fulton A (1999) Agricultural salinity and drainage. University of California Pub 3375, Division of Agricultural and Natural Resources, University of California, Davis, 160 p

    Google Scholar 

  • Haq TU, Gorham J, Akhtar J, Akhtar N, Steele KA (2010) Dynamic quantitative trait loci for salt stress components on chromosome 1 of rice. Funct Plant Biol 37:634–645

    Article  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  PubMed  CAS  Google Scholar 

  • Hauser F, Horie T (2010) A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant Cell Environ 33:552–565

    Article  PubMed  CAS  Google Scholar 

  • Heenan DP, Lewin LG, McCaffery DW (1988) Salinity tolerance in rice varieties at different growth stages. Aust J Exp Agric 28:343–349

    Article  Google Scholar 

  • Heffner EL, Sorrells ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49:1–12

    Article  CAS  Google Scholar 

  • Henry RJ, Edwards M, Waters DLE, Krishnan GS, Bundock P, Sexton TR, Masouleh AR, Nock CJ, Pattiemore J (2012) Molecular markers for plants derived from large scale sequencing. J Biosci 37:829–841

    Google Scholar 

  • Horie T, Hauser F, Schroeder JI (2009) HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends Plant Sci 14:660–668

    Article  PubMed  CAS  Google Scholar 

  • Horie T, Brodsky DE, Costa A, Kaneko T, Schiavo FL, Katsuhara M, Schroeder JI (2011a) K+ transport by the OsHKT2;4 transporter from rice with atypical Na+ transport properties and competition in permeation of K+ over Mg2+ and Ca2+ ions. Plant Physiol 156:1493–1507

    Article  PubMed  CAS  Google Scholar 

  • Horie T, Sugawara M, Okada T, Taira K, Kaothien-Nakayama P, Katsuhara M, Shinmyo A, Nakayama H (2011b) Rice sodium-insensitive potassium transporter, OsHAK5, confers increased salt tolerance in tobacco BY2 cells. J Biosci Bioeng 111:346–356

    Article  PubMed  CAS  Google Scholar 

  • Hoshida H, Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Takabe T (2000) Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase. Plant Mol Biol 43:103–111

    Article  PubMed  CAS  Google Scholar 

  • Hossain MA, Lee Y, Cho JI, Ahn CH, Lee SK, Jeon JS, Kang H, Lee CH, An G, Park PB (2010) The bZIP transcription factor OsABF1 is an ABA responsive element binding factor that enhances abiotic stress signaling in rice. Plant Mol Biol 72:557–566

    Article  CAS  Google Scholar 

  • Hu TZ (2008) OsLEA3, a late embryogenesis abundant protein gene from rice, confers tolerance to water deficit and salt stress to transgenic rice. Russian J Plant Physiol 55:530–537

    Article  CAS  Google Scholar 

  • Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103:12987–12992

    Article  PubMed  CAS  Google Scholar 

  • Hu H, You J, Fang J, Zhu X, Qi Z, Xiong L (2008) Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol 67:169–181

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Spielmeyer W, Lagudah ES, James RA, Platten JD, Dennis ES, Munns R (2006) A sodium transporter (HKT7) is a candidate for Nax1, a gene for salt tolerance in durum wheat. Plant Physiol 142:1718–1727

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Yang X, Wang MM, Tang HJ, Ding LY, Shen Y, Zhang HS (2007) A novel rice C2H2-type zinc finger protein lacking DLNbox/ EAR-motif plays a role in salt tolerance. Biochim Biophys Acta 1769:220–227

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Wang MM, Jiang Y, Wang QH, Huang X, Zhang HS (2008a) Stress repressive expression of rice SRZ1 and characterization of plant SRZ gene family. Plant Sci 174:227–235

    Article  CAS  Google Scholar 

  • Huang S, Spielmeyer W, Lagudah ES, Munns R (2008b) Comparative mapping of HKT genes in wheat, barley, and rice, key determinants of Na+ transport, and salt tolerance. J Exp Bot 59:927–937

    Article  PubMed  CAS  Google Scholar 

  • Huang XY, Chao DY, Gao JP, Zhu MZ, Shi M, Lin HX (2009) A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes Dev 23:1805–1817

    Article  PubMed  CAS  Google Scholar 

  • Islam SMT, Tammi RS, Singla-Pareek SL, Seraj ZI (2010) Enhanced salinity tolerance and improved yield properties in Bangladeshi rice Binnatoa through Agrobacterium-mediated transformation of PgNHX1 from Pennisetum glaucum. Acta Physiol Plant 32:657–663

    Article  CAS  Google Scholar 

  • Islam MR, Salam MA, Hassan L, Collard BCY, Singh RK, Gregorio GB (2011) QTL mapping for salinity tolerance at seedling stage in rice. Emir J Food Agric 23:137–146

    Google Scholar 

  • Ismail AM, Heuer S, Thomson MJ, Wissuwa M (2007) Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Mol Biol 65:547–570

    Article  PubMed  CAS  Google Scholar 

  • Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47:141–153

    Article  PubMed  CAS  Google Scholar 

  • Jabnoune M, Espeout S, Mieulet D, Fizames C, Verdeil JL, Conéjéro G, Rodríguez-Navarro A, Sentenac H, Guiderdoni E, Abdelly C, Véry AA (2009) Diversity in expression patterns and functional properties in the rice HKT transporter family. Plant Physiol 150:1955–1971

    Article  PubMed  CAS  Google Scholar 

  • Jain M, Tyagi AK, Khurana JP (2008) Constitutive expression of a meiotic recombination protein gene homolog, OsTOP6A1, from rice confers abiotic stress tolerance in transgenic Arabidopsis plants. Plant Cell Rep 27:767–778

    Article  PubMed  CAS  Google Scholar 

  • James RA, Blake C, Byrt CS, Munns R (2011) Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. J Exp Bot 62:2939–2947

    Article  PubMed  CAS  Google Scholar 

  • Jang IC, Oh SJ, Seo JS, Choi WB, Song SI, Kim CH, Kim YS, Seo HS, Choi YD, Nahm BH, Kim JK (2003) Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol 131:516–524

    Article  PubMed  CAS  Google Scholar 

  • Javed MA, Huyop FZ, Wagiran A, Salleh FM (2011) Identification of QTLs for morph-physiological traits related to salinity tolerance at seedling stage in indica rice. Procedia Environ Sci 8:389–395

    Article  CAS  Google Scholar 

  • Jena KK, Mackill DJ (2008) Molecular markers and their use in marker-assisted selection in rice. Crop Sci 48:1266–1276

    Article  Google Scholar 

  • Jeong MJ, Lee SK, Kim BG, Kwon TR, Cho WS, Park YT, Lee JO, Kwon HB, Byun MO, Park SC (2006) A rice (Oryza sativa L.) MAP kinase gene, OsMAPK44, is involved in response to abiotic stresses. Plant Cell Tissue Organ Cult 85:151–160

    Article  CAS  Google Scholar 

  • Jeong JS, Kim YS, Baek KH, Jung H, Ha SH, Do Choi Y, Kim M, Reuzeau C, Kim JK (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol 153:185–197

    Article  PubMed  CAS  Google Scholar 

  • Joshi RK, Nayak S (2010) Gene pyramiding-a broad spectrum technique for developing durable stress resistance in crops. Biotechnol Mol Biol Rev 5:51–60

    CAS  Google Scholar 

  • Kalaiyarasi R, Palanisamy GA, Vaidyanathan P (2002) The potentials and scope of utilizing TGMS lines in inter-subspecies crosses of rice (Oryza sativa L.). J Genet Breed 56:137–143

    Google Scholar 

  • Kanneganti V, Gupta AK (2008) Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice. Plant Mol Biol 66:445–462

    Article  PubMed  CAS  Google Scholar 

  • Karthikeyan A, Pandian SK, Ramesh M (2011) Transgenic indica rice cv. ADT 43 expressing a Δ1-pyrroline-5-carboxylate synthetase (P5CS) gene from Vigna aconitifolia demonstrates salt tolerance. Plant Cell Tissue Organ Cult 107:383–395

    Article  CAS  Google Scholar 

  • Kavi-Kishor PB (1988) Effect of salt stress on callus cultures of Oryza sativa L. J Exp Bot 39:235–240

    Article  Google Scholar 

  • Khan MSA, Hamid A, Karim MA (1997) Effect of sodium chloride on germination and seedling characters of different types of rice (Oryza sativa L.). J Agron Crop Sci 179:163–169

    Article  CAS  Google Scholar 

  • Khatun S, Flowers TJ (1995) Effects of salinity on seed set in rice. Plant Cell Environ 18:61–67

    Article  Google Scholar 

  • Kim ST, Kim SG, Hwang DH, Kang SY, Koo SC, Cho MJ, Kang KY (2004) Expression of a salt-induced protein (SALT) in suspension-cultured cells and leaves of rice following exposure to fungal elicitor and phytohormones. Plant Cell Rep 23:256–262

    Article  PubMed  CAS  Google Scholar 

  • Kim DM, Ju HG, Kwon TR, Oh CS, Ahn SN (2009) Mapping QTLs for salt tolerance in an introgression line population between japonica cultivars in rice. J Crop Sci Biotechnol 12:121–128

    Article  Google Scholar 

  • Koyama ML, Levesley A, Koebner RMD, Flowers TJ, Yeo AR (2001) Quantitative trait loci for component physiological traits determining salt tolerance in rice. Plant Physiol 125:406–422

    Article  PubMed  CAS  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608

    Article  PubMed  CAS  Google Scholar 

  • Kumar V, Shriram V, Kishor PBK, Jawali N, Shitole MG (2010) Enhanced proline accumulation and salt stress tolerance of transgenic indica rice by over-expressing P5CSF129A gene. Plant Biotechnol Rep 4:37–48

    Article  Google Scholar 

  • Kumar G, Kushwaha HR, Purty RS, Kumari S, Singla-Pareek SL, Pareek A (2012) Cloning, structural and expression analysis of OsSOS2 in contrasting cultivars of rice under salinity stress. Genes Genomes Genomics 6:34–41

    Google Scholar 

  • Kumari S, Sabharwal VP, Kushwaha HR, Sopory SK, Singla-Pareek SL, Pareek A (2009) Transcriptome map for seedling stage specific salinity stress response indicates a specific set of genes as candidate for saline tolerance in Oryza sativa L. Funct Integr Genomics 9:109–123

    Article  PubMed  CAS  Google Scholar 

  • Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta 228:367–381

    Article  PubMed  CAS  Google Scholar 

  • Lang N, Buu BC, Ismail A (2008) Molecular mapping and marker-assisted selection for salt tolerance in rice (Oryza sativa L.). Omonrice 16:50–56

    Google Scholar 

  • Lang N, Buu BC, Ismail AM (2011) Enhancing and stabilizing the productivity of salt- affected areas by incorporating genes for tolerance of abiotic stresses in rice. Omonrice 18:41–49

    Google Scholar 

  • Lee SY, Ahn JH, Cha YS, Yun DW, Lee MC, Ko JC, Lee KS, Eun MY (2007) Mapping QTLs related to salinity tolerance of rice at the young seedling stage. Plant Breed 126:43–46

    Article  Google Scholar 

  • Li HW, Zang BS, Deng XW, Wang XP (2011) Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta 234:1007–1018

    Article  PubMed  CAS  Google Scholar 

  • Li G, Zhao WG, Kwon TR, Kwon SW, Park YJ (2012) Genome-wide association mapping of salt tolerance in rice seedlings. In: Plant and animal genome XX conference, San Diego

    Google Scholar 

  • Lin H, Yanagihara S, Zhuang J, Senboku T, Zheng K, Yashima S (1998) Identification of QTL for salt tolerance in rice via molecular markers. Chinese J Rice Sci 12:72–78

    Article  Google Scholar 

  • Lin HX, Zhu MZ, Yano M, Gao JP, Liang ZW, Su WA, Hu XH, Ren ZH, Chao DY (2004) QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theor Appl Genet 108:253–260

    Article  PubMed  CAS  Google Scholar 

  • Liu AL, Zou J, Zhang XW, Zhou XY, Wang WF, Xiong XY, Chen LY, Chen XB (2010a) Expression profiles of class a rice heat shock transcription factor genes under abiotic stresses. J Plant Biol 53:142–149

    Article  CAS  Google Scholar 

  • Liu S, Zheng L, Xue Y, Zhang Q, Wang L, Shou HJ (2010b) Overexpression of OsVP1 and OsNHX1 increases tolerance to drought and salinity in rice. Plant Biol 53:444–452

    Article  CAS  Google Scholar 

  • Lu Z, Liu D, Liu S (2007) Two rice cytosolic ascorbate peroxidases differentially improve salt tolerance in transgenic Arabidopsis. Plant Cell Rep 26:1909–1917

    Article  PubMed  CAS  Google Scholar 

  • Lynch PT, Finch RP, Davey MR, Cocking EC (1991) Rice tissue culture and its application. In: Khush GS, Toenniessen GH (eds) Rice biotechnology. CAB International, Wallingford, pp 135–155

    Google Scholar 

  • Ma X, Qian Q, Zhu D (2005) Expression of a calcineurin gene improves salt stress tolerance in transgenic rice. Plant Mol Biol 58:483–495

    Article  PubMed  CAS  Google Scholar 

  • Maas EV (1990) Agricultural salnity assessment and management. In: Tanji KK (ed) ASCE manuals and reports on engineering. American Society of Civil Engineers, New York, pp 262–304

    Google Scholar 

  • Maas EV, Grattan SR (1999) Crop yields as affected by salinity. In: Skaggs RW, van Schilfgaarde J (eds) Agricultural drainage, vol 38, Agronomy monograph. American Society of Agronomy: Crop Science Society of America: Soil Science Society of America, Madison, pp 55–108

    Google Scholar 

  • Maas EV, Hoffman GJ (1977) Crop salt tolerance – current assessment. J Irrig Drain Div ASCE 103:115–134

    Google Scholar 

  • Malik V, Wu R (2005) Transcription factor AtMyb2 increased salt-stress tolerance in rice Oryza sativa L. Rice Genet Newslett 22:63–67

    Google Scholar 

  • Mandhania S, Madan S, Sawhney V (2006) Antioxidant defense mechanism under salt stress in wheat seedlings. Biol Plantarum 227:227–231

    Article  Google Scholar 

  • Martínez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu JK, Pardo JM, Quintero FJ (2007) Conservation of the salt overly sensitive pathway in rice. Plant Physiol 143:1001–1012

    Article  PubMed  CAS  Google Scholar 

  • Masood MS, Seiji Y, Shinwari ZK, Anwar R (2004) Mapping quantitative trait loci (QTLs) for salt tolerance in rice (Oryza sativa) using RFLPs. Pak J Bot 36:825–834

    Google Scholar 

  • Mian AA (2010) Improving salt stress resistance in cereals. Ph.D. thesis, University of York, Heslington, 120p

    Google Scholar 

  • Mishra B (1994) Breeding for salt tolerance in crops. In: Rao DLN, Singh NT, Gupta RK, Tyagi NK (eds) Salinity management for sustainable agriculture: 25 years of research at CSSRI. Central Soil Salinity Research Institute, Karnal, pp 226–259

    Google Scholar 

  • Mizuno H, Kawahara Y, Sakai H, Kanamori H, Wakimoto H, Yamagata H, Oono Y, Wu J, Ikawa H, Itoh T, Matsumoto T (2010) Massive parallel sequencing of mRNA in identification of unannotated salinity stress-inducible transcripts in rice (Oryza sativa L.). BMC Genomics 11:683

    Article  PubMed  CAS  Google Scholar 

  • Moeljopawiro S, Ikehashi H (1981) Inheritance of salt tolerance in rice. Euphytica 30:291–300

    Article  Google Scholar 

  • Mohammadi-Nejad G, Singh RK, Arzani A, Rezaie AM, Sabouri H, Gregorio GB (2010) Evaluation of salinity tolerance in rice genotypes. Int J Plant Prod 4:199–207

    CAS  Google Scholar 

  • Mohanty A, Kathuria H, Ferjani A, Sakamoto A, Mohanty P, Murata N, Tyagi AK (2002) Transgenics of an elite indica rice variety Pusa Basmati 1 harbouring the codA gene are highly tolerant to salt stress. Theor Appl Genet 106:51–57

    PubMed  CAS  Google Scholar 

  • Moons A, Prinsen E, Bauw G, Van Montagu M (1997) Antagonistic effects of abscisic acid and jasmonates on salt stress-inducible transcripts in rice roots. Plant Cell 9:2243–2259

    PubMed  CAS  Google Scholar 

  • Moradi F, Ismail AM (2007) Responses of photosynthesis, chlorophyll fluorescence and ROS-Scavenging systems to salt stress during seedling and reproductive stages in rice. Ann Bot 99:1161–1173

    Article  PubMed  CAS  Google Scholar 

  • Moradi F, Ismail AM, Egdane A, Gregorio GB (2003) Salinity tolerance of rice during reproductive development and association with tolerance at the seedling stage. Indian J Plant Physiol 8:105–116

    Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  PubMed  CAS  Google Scholar 

  • Nagamiya K, Motohashi T, Nakao K, Prodhan SH, Hattori E, Hirose S, Ozawa K, Ohkawa Y, Takabe T, Takabe T, Komamine A (2007) Enhancement of salt tolerance in transgenic rice expressing an Escherichia coli catalase gene, katE. Plant Biotechnol Rep 1:49–55

    Article  Google Scholar 

  • Nakagawa H, Ohmiya K, Hattori T (1996) A rice bZIP protein, designated OSBZ8, is rapidly induced by abscisic acid. Plant J 9:217–227

    Article  PubMed  CAS  Google Scholar 

  • Nakashima K, Tran LS, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress responsive gene expression in rice. Plant J 51:617–630

    Article  PubMed  CAS  Google Scholar 

  • Negrão S, Courtois B, Ahmadi N, Abreu I, Saibo N, Oliveira MM (2011) Recent updates on salinity stress in rice: from physiological to molecular responses. Crit Rev Plant Sci 30:329–377

    Article  CAS  Google Scholar 

  • Niones JM (2004) Fine mapping of the salinity tolerance gene on chromosome 1 of rice (Oryza sativa L.) using near-isogenic lines. M.Sc. thesis, University of the Philippines, Los Baños, 78p

    Google Scholar 

  • Obata T, Kitamoto HK, Nakamura A, Fukuda A, Tanaka Y (2007) Rice shaker potassium channel OsKAT1 confers tolerance to salinity stress on yeast and rice cells. Plant Physiol 144:1978–1985

    Article  PubMed  CAS  Google Scholar 

  • Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, Kim M, Kim YK, Nahm BH, Kim JK (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol 138:341–351

    Article  PubMed  CAS  Google Scholar 

  • Oh SJ, Kwon CW, Choi DW, Song SI, Kim JK (2007) Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice. Plant Biotechnol J 5:646–656

    Article  PubMed  CAS  Google Scholar 

  • Oh SJ, Kim YS, Kwon CW, Park HK, Jeong JS, Kim JK (2009) Overexpression of the transcription factor AP37 in rice improves grain yield under drought conditions. Plant Physiol 150:1368–1379

    Article  PubMed  CAS  Google Scholar 

  • Ohta M, Hayashi Y, Nakashima A, Hamada A, Tanaka A, Nakamura T, Hayakawa T (2002) Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Lett 532:279–282

    Article  PubMed  CAS  Google Scholar 

  • Oldeman LR, Van Englen VWP, Pulles JHM (1991) The extent of human-induced soil degradation. In: Oldeman LR, Hakkeling RTA, Sombroek WG (eds) World map of status of human-induced soil degradation: an explanatory note. International Soil Reference and Information Centre (ISRIC), Wageningen, pp 27–33

    Google Scholar 

  • Oomen RJ, Benito B, Sentenac H, Rodríguez-Navarro A, Talón M, Véry AA, Domingo C (2012) HKT2;2/1, a K+-permeable transporter identified in a salt tolerant rice cultivar through surveys of natural genetic polymorphism. Plant J. doi:10.1111/j.1365-313X.2012.05031.x

    Google Scholar 

  • Oono K (1984) Tissue culture and genetic engineering in rice. In: Tsanoda S, Takahashi N (eds) Biology of rice. Japan Science Society Press, Japan, pp 339–358

    Chapter  Google Scholar 

  • Ouyang SQ, Liu YF, Liu P, Lei G, He SJ, Ma B, Zhang WK, Zhang JS, Chen SY (2010) Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants. Plant J 62:316–329

    Article  PubMed  CAS  Google Scholar 

  • Pandit A, Vandna R, Subhashis B, Shikha S, Vinod K, Chauhan M, Gautam RK, Singh R, Sharma PC, Singh AK, Gaikwad K, Sharma TR, Mohapatra T, Singh NK (2010) Combining QTL mapping and transcriptome profiling of bulked RILs for identification of functional polymorphism for salt tolerance genes in rice (Oryza sativa L.). Mol Genet Genomic 284:121–136

    Article  CAS  Google Scholar 

  • Pardo JM (2010) Biotechnology of water and salinity stress tolerance. Curr Opin Biotechnol 21:185–196

    Article  PubMed  CAS  Google Scholar 

  • Parvaiz A, Satyawati S (2008) Salt stress and phyto-biochemical responses of plants. Plant Soil Environ 54:89–99

    Article  PubMed  CAS  Google Scholar 

  • Pattanagul W, Thitisaksakul M (2008) Effects of salinity stress on growth and carbohydrate metabolism in three rice (Oryza sativa L.) cultivars differing in salinity tolerance. Indian J Exp Biol 46:736–742

    PubMed  CAS  Google Scholar 

  • Peleg Z, Apse MP, Blumwald E (2011) Engineering salinity and water-stress tolerance in crop plants: getting closer to the field. Adv Bot Res 57:405–443

    Article  CAS  Google Scholar 

  • Pessarakli M, Szabolcs I (1999) Soil salinity and sodicity as particular plant/crop stress factors. In: Pessarakli M (ed) Handbook of plant and crop stress. Marcel Dekker, New York, pp 1–16

    Chapter  Google Scholar 

  • Pillai SM (1999) Traditional and improved traditional shrimp farming in the Pokkali fields of Kerala. J Indian Soc Coast Agric Res 17:171–181

    Google Scholar 

  • Platten JD, Cotsaftis O, Berthomieu P, Bohnert H, Davenport RJ, Fairbairn DJ, Horie T, Leigh RA, Lin HX, Luan S, Mäser P, Pantoja O, Rodríguez-Navarro A, Schachtman DP, Schroeder JI, Sentenac H, Uozumi N, Véry AA, Zhu JK, Dennis ES, Tester M (2006) Nomenclature for HKT transporters, key determinants of plant salinity tolerance. Trends Plant Sci 11:372–374

    Article  PubMed  CAS  Google Scholar 

  • Plett D, Safwat G, Gilliham M, Skrumsager Møller I, Roy S, Shirley N, Jacobs A, Johnson A, Tester M (2010) Improved salinity tolerance of rice through cell type-specific expression of AtHKT1;1. PLoS One 5:e12571

    Article  PubMed  CAS  Google Scholar 

  • Ponnamperuma FN, Bandyopadhya AK (1980) Soil salinity as a constraint to food production in the humid tropics. In: Priorities for alleviating soil-related constraints to food production in the tropics. International Rice Research Institute, Manila

    Google Scholar 

  • Prasad SR, Bagali PG, Hittalmani S, Shashidhar HE (2000) Molecular mapping of quantitative trait loci associated with seedling tolerance to salt stress in rice (Oryza sativa L.). Curr Sci 78:162–164

    CAS  Google Scholar 

  • Prashanth SR, Sadhasivam V, Parida A (2008) Over expression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgenic Res 17:281–291

    Article  PubMed  CAS  Google Scholar 

  • Puranik S, Sahu PP, Srivastava PS, Prasad M (2012) NAC proteins: regulation and role in stress tolerance. Trends Plant Sci 17:369–381

    Article  PubMed  CAS  Google Scholar 

  • Qiu D, Lin P, Guo SZ (2007) Effects of salinity on leaf characteristics and CO2/H2O exchange of Kandelia candel (L.) Druce seedlings. J Forest Sci 53:13–19

    CAS  Google Scholar 

  • Rahman MS, Das KC, Dipok KD, Kuntal BM, Badrul HC, Nilufer HK, Salam MA, Seraj ZI (2010) Breeding and anther derived lines of rice (Oryza sativa L.) for saline coastal areas of Bangladesh. Bangladesh J Bot 39:71–78

    Article  Google Scholar 

  • Ram NVR, Nabors MW (1985) Plant regeneration from tissue cultures of Pokkali rice is promoted by optimizing callus to medium volume ratio and by a medium conditioning factor produced by embryogenic callus. Plant Cell Tissue Organ Cult 4:241–248

    Article  Google Scholar 

  • Ray PKS, Islam A (2008) Genetic analysis of salinity tolerance in rice. Bangladesh J Agric Res 33:519–529

    Google Scholar 

  • Reddy PJ, Vaidyanath K (1986) In vitro characterization of salt stress effects and the selection of salt tolerant plants in rice Oryza sativa. Theor Appl Genet 71:757–760

    Article  Google Scholar 

  • Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141–1146

    Article  PubMed  CAS  Google Scholar 

  • Ribaut J-M, de Vicente MC, Delannay X (2010) Molecular breeding in developing countries: challenges and perspectives. Curr Opin Plant Biol 13:1–6

    Article  Google Scholar 

  • Richards LA (1954) Diagnosis and improvement of saline and alkali soils, vol 60, USDA handbook. U.S. Department of Agriculture, Washington, DC

    Google Scholar 

  • Rodríguez-Navarro A, Rubio F (2006) High-affinity potassium and sodium transport systems in plants. J Exp Bot 57:1149–1160

    Article  PubMed  Google Scholar 

  • Rohila JS, Jain RK, Wu R (2002) Genetic improvement of basmati rice for salt and drought tolerance by regulated expression of a barley HVA1 cDNA. Plant Sci 163:525–532

    Article  CAS  Google Scholar 

  • Roy M, Wu R (2001) Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice. Plant Sci 160:869–875

    Article  PubMed  CAS  Google Scholar 

  • Roy M, Wu R (2002) Overexpression of S-adenosylmethionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance. Plant Sci 163:987–992

    Article  CAS  Google Scholar 

  • RoyChoudhury A, Roy C, Sengupta DN (2007) Transgenic tobacco plants overexpressing the heterologous lea gene Rab16A from rice during high salt and water deficit display enhanced tolerance to salinity stress. Plant Cell Rep 26:1839–1859

    Article  PubMed  CAS  Google Scholar 

  • Sabouri H, Biabani A (2009) Toward the mapping of agronomic characters on a rice genetic map: quantitative trait loci analysis under saline condition. Biotechnology 8:144–149

    Article  Google Scholar 

  • Sabouri H, Sabouri A (2008) New evidence of QTLs attributed to salinity tolerance in rice. Afr J Biotechnol 7:4376–4383

    CAS  Google Scholar 

  • Sabouri H, Rezai AM, Moumeni A, Kavousi A, Katouzi M, Sabouri A (2009) QTLs mapping of physiological traits related to salt tolerance in young rice seedlings. Biol Plantarum 53:657–662

    Article  Google Scholar 

  • Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23:319–327

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto A, Alia, Murata N (1998) Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol Biol 38:1011–1019

    Article  PubMed  CAS  Google Scholar 

  • Salam MA, Rahman MA, Bhuiyan MAR, Uddin K, Sarker MRA, Yasmeen R, Rahman MS (2007) BRRI dhan 47: a salt-tolerant variety for the boro season. Int Rice Res News 32:42–43

    Google Scholar 

  • Sankar PD, Subbaraman N, Narayanan SL (2008) Heterosis, combining ability and gene action studies in TGMS based rice hybrids under normal and salt affected environments. Indian J Agric Res 42:177–182

    Google Scholar 

  • Schmidt R, Schippers JH, Welker A, Mieulet D, Guiderdoni E, Mueller-Roeber B (2012) Transcription factor OsHsfC1b regulates salt tolerance and development in Oryza sativa ssp. japonica. AoB Plants: pls011, doi:10.1093/aobpla/pls011

    Google Scholar 

  • Senadheera P, Singh RK, Maathuis FJM (2009) Differentially expressed membrane transporters in rice roots may contribute to cultivar dependent salt tolerance. J Exp Bot 60:2553–2563

    Article  PubMed  CAS  Google Scholar 

  • Senadhira D, Neue HU, Akbar M (1994) Development of improved donors for salinity tolerance in rice through somaclonal variation. SABRAO J 26:12–25

    Google Scholar 

  • Senadhira D, Zapata-Arias FJ, Gregorio GB, Alejar MS, de la Cruz HC, Padolina TF, Galvez AM (2002) Development of the first salt-tolerant rice cultivar through indica/indica anther culture. Field Crop Res 76:103–110

    Article  Google Scholar 

  • Shendge PY, Chavan VM, Deshpande JD (1959) Breeding of saline resistant varieties in Bombay state. Rice News Lett 8:18–19

    Google Scholar 

  • Shylaraj KS, Sasidharan NK (2005) VTL 5: a high yielding salinity tolerant rice variety for the coastal saline ecosystems of Kerala. J Tropic Agric 43:25–28

    Google Scholar 

  • Singh AK, Ansari MW, Pareek AH, Singla-Pareek S (2008) Raising salinity tolerant rice: recent progress and future perspectives. Physiol Mol Biol Plants 14:137–154

    Article  PubMed  CAS  Google Scholar 

  • Singh RK, Mishra B, Ismail AM, Gregorio GB (2009) Breeding rice for salt-affected areas of India. In: Hossain M, Bennett J, Mackill D, Hardy B (eds) Progress in crop improvement research. International Rice Research Institute, Los Baños, pp 78–90

    Google Scholar 

  • Singh RK, Redoña E, Refuerzo L, Govindjee (2010) Varietal improvement for abiotic stress tolerance in crop plants: special reference to salinity in rice. In: Pareek A, Sopory SK, Bohnert HJ (eds) Abiotic stress adaptation in plants: physiological, molecular and genomic foundation. Springer, Dordrecht/London, pp 387–415

    Google Scholar 

  • Singh AK, Gopalakrishnan S, Singh VP, Prabhu KV, Mohapatra T, Singh NK, Sharma TR, Nagarajan M, Vinod KK, Singh D, Singh UD, Chander S, Atwal SS, Seth R, Singh VK, Ellur RK, Singh A, Anand D, Khanna A, Yadav S, Goel N, Singh A, Shikari AB, Singh A, Marathi B (2011) Marker assisted selection: a paradigm shift in Basmati breeding. Indian J Genet Plant Breed 71:120–128

    CAS  Google Scholar 

  • Singh VK, Singh A, Singh SP, Ellur RK, Singh D, Gopalakrishnan S, Nagarajan M, Vinod KK, Singh UD, Rathore R, Prasanthi SK, Agrawal PK, Bhatt JC, Mohapatra T, Prabhu KV, Singh AK (2012) Incorporation of blast resistance gene in elite basmati rice restorer line PRR78, using marker assisted selection. Field Crop Res 128:8–16

    Article  PubMed  CAS  Google Scholar 

  • Singla-Pareek SL, Yadav SK, Pareek A, Reddy MK, Sopory SK (2008) Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II. Transgenic Res 17:171–180

    Article  PubMed  CAS  Google Scholar 

  • Song SY, Chen Y, Chen J, Dai XY, Zhang WH (2011) Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress. Planta 234:331–345

    Article  PubMed  CAS  Google Scholar 

  • STRASA (2011) Salt-tolerant rice. http://irri.org. Accessed 19 June 2012

  • Su J, Wu R (2004) Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Sci 166:941–948

    Article  CAS  Google Scholar 

  • Su J, Hirji R, Zhang L, He C, Selvaraj G, Wu R (2006) Evaluation of the stress-inducible pro­duction of choline oxidase in transgenic rice as a strategy for producing the stress-protectant glycine betaine. J Exp Bot 57:1129–1135

    Article  PubMed  CAS  Google Scholar 

  • Subbaiyan GK, Waters DLE, Katiyar SK, Sadananda AR, Vaddadi S, Henry RJ (2012) Genome-wide DNA polymorphisms in elite indica rice inbreds discovered by whole-genome sequencing. Plant Biotechnol J 10:623–634

    CAS  Google Scholar 

  • Summart J, Thanonkeo P, Panichajakul S, Prathepha P, McManus MT (2010) Effects of salt stress on growth, inorganic ion and proline accumulation in Thai aromatic rice, Khao Dawk Mali 105, callus culture. Afr J Biotechnol 9:145–152

    CAS  Google Scholar 

  • Sun SJ, Guo SQ, Yang X, Bao YM, Tang HJ, Sun H, Huang J, Zhang HS (2010) Functional analysis of a novel Cys2/His2-type zinc finger protein involved in salt tolerance in rice. J Exp Bot 61:2807–2818

    Article  PubMed  CAS  Google Scholar 

  • Szczerba MW, Britto DT, Kronzucker HJ (2009) K+ transport in plants: Physiology and molecular biology. J Plant Phy 166:447–466

    Article  CAS  Google Scholar 

  • Tagawa T, Ishizaka N (1963) Physiological studies on the tolerance of rice plants to salinity. Proc Crop Sci Soc Jpn 31:249–252

    Article  CAS  Google Scholar 

  • Takasaki H, Maruyama K, Kidokoro S, Ito Y, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K, Nakashima K (2010) The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol Genet Genomics 284:173–183

    Article  PubMed  CAS  Google Scholar 

  • Takehisa H, Shimoda Y, Fukuta Y, Ueda T, Yano M, Yamaya T, Kameya T, Sato T (2004) Identification of quantitative trait loci for plant growth of rice in paddy field flooded with salt water. Field Crops Res 89:85–95

    Article  Google Scholar 

  • Tal M (1993) In vitro methodology for increasing salt tolerance in crop plants. Acta Hort 336:69–78

    Google Scholar 

  • Tam DM, Lang NT (2004) Selection of salt tolerance genotypes from doubled haploids in rice. Omonrice 12:33–37

    Google Scholar 

  • Tanaka Y, Hibin T, Hayashi Y, Tanaka A, Kishitani S, Takabe T, Yokota S, Takabe T (1999) Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplasts. Plant Sci 148:131–138

    Article  CAS  Google Scholar 

  • Thomson MJ, Ocampo M, Egdane J, Rahman MA, Sajise AG, Adorada DL, Raiz ET, Blumwald E, Seraj ZI, Singh RK, Gregorio GB, Ismail AM (2010) Characterizing the Saltol quantitative trait locus for salinity tolerance in rice. Rice 3:148–160

    Article  Google Scholar 

  • Tian L, Tan L, Liu F, Cai H, Sun C (2011) Identification of quantitative trait loci associated with salt tolerance at seedling stage from Oryza rufipogon. J Genet Genom 38:593–601

    Article  Google Scholar 

  • Verma D, Singla-Pareek SL, Rajagopal D, Reddy MK, Sopory SK (2007) Functional validation of a novel isoform of Na+/H+ antiporter from Pennisetum glaucum for enhancing salinity tolerance in rice. J Biosci 32:621–628

    Article  PubMed  CAS  Google Scholar 

  • World Bank (2006) Pakistan strategic country environmental assessment. Vol II technical annex: the cost of environmental degradation in Pakistan – An analysis of physical and monetary losses in environmental health and natural resources. South Asia Environment and Social Development Unit, South Asia Region. 42p

    Google Scholar 

  • Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Zeng L, Wanamaker SI, Mandal J, Xu J, Cui X, Close TJ (2005) Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage. Plant Physiol 139:822–835

    Article  PubMed  CAS  Google Scholar 

  • Walia H, Wilson C, Zeng L, Ismail AM, Condamine P, Close TJ (2007) Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage. Plant Mol Biol 63:609–623

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Huang D, Lu R, Liu J, Qian Q, Peng X (2000) Salt tolerance of transgenic rice (Oryza sativa L.) with mtlD gene and gutD gene. Chinese Sci Bull 45:1685–1690

    Article  CAS  Google Scholar 

  • Wang XS, Zhu HB, Jin GL, Liu HL, Wu WR, Zhu J (2007) Genome-scale identification and analysis of LEA genes in rice (Oryza sativa L.). Plant Sci 172:414–420

    Article  CAS  Google Scholar 

  • Wang ZF, Wang JF, Bao YM, Wu YY, Su X, Zhang HS (2010) Inheritance of rice seed germination ability under salt stress. Rice Sci 17:105–110

    Article  Google Scholar 

  • Wang Z, Wang J, Bao Y, Wu Y, Zhang H (2011) Quantitative trait loci controlling rice seed germination under salt stress. Euphytica 178:297–307

    Article  Google Scholar 

  • Witcombe JR, Hollington PA, Howarth CJ, Reader S, Steele KA (2008) Breeding for abiotic stresses for sustainable agriculture. Phil Trans Roy Soc B 363:703–716

    Article  CAS  Google Scholar 

  • Wu L, Fan Z, Guo L, Li Y, Zhang W, Qu LJ, Chen Z (2003) Over-expression of an Arabidopsis δ-OAT gene enhances salt and drought tolerance in transgenic rice. Chinese Sci Bull 48:2594–2600

    Article  CAS  Google Scholar 

  • Wu L, Fan Z, Guo L, Li Y, Chen ZL, Qu LJ (2005) Over-expression of the bacterial nhaA gene in rice enhances salt and drought tolerance. Plant Sci 168:297–302

    Article  CAS  Google Scholar 

  • Xiang Y, Huang Y, Xiong L (2007) Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol 144:1416–1428

    Article  PubMed  CAS  Google Scholar 

  • Xiang Y, Tang N, Du H, Ye H, Xiong L (2008) Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol 148:1938–1952

    Article  PubMed  CAS  Google Scholar 

  • Xiong L, Yang Y (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell 15:745–759

    Article  PubMed  CAS  Google Scholar 

  • Xu D, Duan X, Wang B, Hong B, Ho T, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110:249–257

    PubMed  CAS  Google Scholar 

  • Xu DQ, Huang J, Guo SQ, Yang X, Bao YM, Tang HJ, Zhang HS (2008) Overexpression of a TFIIIA-type zinc finger protein gene ZFP252 enhances drought and salt tolerance in rice (Oryza sativa L.). FEBS Lett 582:1037–1043

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Yano M (2008) Detection and molecular cloning of genes underlying quantitative phenotypic variations in rice. In: Hirano HY, Hirai A, Sano Y, Sasaki T (eds) Rice biology in the genomics era. Springer, Berlin, pp 295–308

    Chapter  Google Scholar 

  • Yamamoto T, Yonemaru J, Yano M (2009) Towards the understanding of complex traits in rice: substantially or superficially? DNA Res 16:141–154

    Article  PubMed  CAS  Google Scholar 

  • Yao X, Horie T, Xue S, Leung HY, Katsuhara M, Brodsky DE, Wu Y, Schroeder JI (2010) Differential sodium and potassium transport selectivities of the rice OsHKT2;1 and OsHKT2;2 transporters in plant cells. Plant Physiol 152:341–355

    Article  PubMed  CAS  Google Scholar 

  • Yokotani N, Ichikawa T, Kondou Y, Matsui M, Hirochika H, Iwabuchi M, Oda K (2008) Expression of rice heat stress transcription factor OsHsfA2e enhances tolerance to environmental stresses in transgenic Arabidopsis. Planta 227:957–967

    Article  PubMed  CAS  Google Scholar 

  • Yokotani N, Ichikawa T, Kondou Y, Matsui M, Hirochika H, Iwabuchi M, Oda K (2009) Tolerance to various environmental stresses conferred by the salt-responsive rice gene ONAC063 in transgenic Arabidopsis. Planta 229:1065–1075

    Article  PubMed  CAS  Google Scholar 

  • Zang J, Sun Y, Wang Y, Yang J, Li F, Zhou Y, Zhu L, Jessica R, Mohammadhosein F, Xu J, Li Z (2008) Dissection of genetic overlap of salt tolerance QTLs at the seedling and tillering stages using backcross introgression lines in rice. Sci China C Life Sci 51:583–591

    Article  PubMed  Google Scholar 

  • Zapata FJ, Alejar MS, Torrizo LB, Novero AU, Singh VP, Senadhira D (1991) Field performance of anther-culture-derived lines from F1 crosses of indica rices under saline and non-saline conditions. Theor Appl Genet 83:6–11

    Article  Google Scholar 

  • Zeng L, Shannon MC (2000) Salinity effects on seedling growth and yield components of rice. Crop Sci 40:996–1003

    Article  Google Scholar 

  • Zeng L, Shannon MC, Lesch SM (2001) Timing of salinity stress affects rice growth and yield components. Agric Water Manage 48:191–206

    Article  Google Scholar 

  • Zhang GY, Guo Y, Chen SL, Chen SY (1995) RFLP tagging of a salt-tolerance gene in rice. Plant Sci 110:227–234

    Article  CAS  Google Scholar 

  • Zhang ZH, Liu Q, Song HX, Rong XM, Ismail AM (2012) Responses of different rice (Oryza sativa L.) genotypes to salt stress and relation to carbohydrate metabolism and chlorophyll content. Afr J Agric Res 7:19–27

    Google Scholar 

  • Zhao F, Zhang H (2006) Salt and paraquat stress tolerance results from co-expression of the Suaeda salsa glutathione S-transferase and catalase in transgenic rice. Plant Cell Tissue Organ Cult 86:349–358

    Article  CAS  Google Scholar 

  • Zhao F, Guo S, Zhang H, Zhao Y (2006a) Expression of yeast SOD2 in transgenic rice results in increased salt tolerance. Plant Sci 170:216–224

    Article  CAS  Google Scholar 

  • Zhao FY, Zhang XJ, Li PH, Zhao YX, Zhang H (2006b) Co-expression of the Suaeda salsaSsNHX1 and Arabidopsis AVP1 confer greater salt tolerance to transgenic rice than the single SsNHX1. Mol Breed 17:341–353

    Article  CAS  Google Scholar 

  • Zheng X, Chen B, Lu G, Han B (2009) Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Biophys Res Commun 379:985–989

    Article  PubMed  CAS  Google Scholar 

  • Zhou W, Li Y, Zhao BC, Ge RC, Shen YZ, Wang G, Huang ZJ (2009) Overexpression of TaSTRG gene improves salt and drought tolerance in rice. J Plant Physiol 166:1660–1671

    Article  PubMed  CAS  Google Scholar 

  • Zhou HK, Hayat Y, Fang1 LJ, Guo RF, JM H, HM X (2010) Analysis of genetic and genotype  ×  environment interaction effects for agronomic traits of rice (Oryza sativa L.) in salt tolerance. Pak J Bot 42:3239–3246

    Google Scholar 

  • Zhu JK (2001) Cell signaling under salt, water and cold stresses. Curr Opin Plant Biol 4:401–406

    Article  PubMed  CAS  Google Scholar 

  • Zhu BC, Su J, Chan MC, Verma DPS, Fan YL, Wu R (1998) Overexpression of a delta(1)-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water- and salt-stress in transgenic rice. Plant Sci 139:41–48

    Article  CAS  Google Scholar 

  • Zou M, Guan Y, Ren H, Zhang F, Chen F (2008) A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Mol Biol 66:675–683

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Vinod .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vinod, K.K., Krishnan, S.G., Babu, N.N., Nagarajan, M., Singh, A.K. (2013). Improving Salt Tolerance in Rice: Looking Beyond the Conventional. In: Ahmad, P., Azooz, M.M., Prasad, M.N.V. (eds) Salt Stress in Plants. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6108-1_10

Download citation

Publish with us

Policies and ethics