Skip to main content

Quasi-parallel Supercritical Shocks

  • Chapter

Part of the book series: ISSI Scientific Report Series ((ISSI,volume 12))

Abstract

Quasi-parallel shocks are probably more common in nature than quasi-perpendicular. They exist for shock normal angles >45. Their main distinctions from the latter are, first, their turbulent nature implying that the shock transition is less sharp and thus less well defined; second, the existence of an extended turbulent foreshock instead of a shock foot. This foreshock has distinct properties which are discussed. It consists of an electron and an ion foreshock. The main population is a diffuse ion component. The turbulence in the foreshock is generated by the (reflected and accelerated) foreshock particle populations. We discuss the various processes of wave generation referring to observations and sophisticated numerical simulations. An important point in quasi-parallel shock physics is the reformation of the shock which works completely differently from quasi-perpendicular shocks. Here it is provided by upstream low-frequency electromagnetic waves excited by the diffuse ion component. Steeping of these waves during shockward propagation and addition of the large amplitude waves at the shock transition reforms the shock front. The old shock front is expelled downstream where it causes downstream turbulence. During the reformation process the shock normal angle locally turns to low values. Thus the shock becomes locally quasi-perpendicular for the ions supporting particle reflection. Finally hot flow anomalies are briefly discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amata E, Savin SP, Consolini G, Trencchi L, Ambrosino D, Treumann R, Marcucci MF (2009) High kinetic energy density jets in the Earth’s magnetosheath: preliminary results. Mem Soc Astron Ital 80:259–265

    ADS  Google Scholar 

  • Anderson RR et al (1981) Plasma waves associated with energetic particles streaming into the solar wind from the Earth’s bow shock. J Geophys Res 86:4493–4510. doi:10.1029/JA086iA06p04493

    Article  ADS  Google Scholar 

  • Archer M, Horbury TS, Lucek EA, Mazelle C, Balogh A, Dandouras I (2005) Size and shape of ULF waves in the terrestrial foreshock. J Geophys Res 110:A05208. doi:10.1029/2004JA010791

    Article  Google Scholar 

  • Asbridge JR, Bame SJ, Strong IB (1968) Outward flow of protons from the Earth’s bow shock. J Geophys Res 73:5777–5782

    Article  ADS  Google Scholar 

  • Axford WI, Leer E, Skadron G (1977) The acceleration of cosmic rays by shock waves. In: Proc XVth int conf cosmic rays, vol 11, pp 132–134

    Google Scholar 

  • Bale SD, Mozer FS (2007) Measurement of large parallel and perpendicular electric fields on electron spatial scales in the terrestrial bow shock. Phys Rev Lett 98:205001. doi:10.1103/PhysRevLett.98.205001

    Article  ADS  Google Scholar 

  • Barnes A (1970) Theory of generation of bow-shock-associated hydromagnetic waves in the upstream interplanetary medium. Cosm Electrodyn 1:90–114

    ADS  Google Scholar 

  • Behlke R, André M, Bale SD, Pickett JS, Cattell CA, Lucek EA, Balogh A (2004) Solitary structures associated with short large-amplitude magnetic structures (SLAMS) upstream of the Earth’s quasi-parallel bow shock. Geophys Res Lett 31:L16805. doi:10.1029/2004GL019524

    Article  ADS  Google Scholar 

  • Behlke R, André M, Buchert SC, Vaivads A, Eriksson AI, Lucek EA, Balogh A (2003) Multi-point electric field measurements of short large-amplitude magnetic structures (SLAMS) at the Earth’s quasi-parallel bow shock. Geophys Res Lett 30:1177. doi:10.1029/2002GL015871

    Article  ADS  Google Scholar 

  • Blanco-Cano X, Schwartz SJ (1997) Identification of low-frequency kinetic wave modes in the Earth’s ion foreshock. Ann Geophys 15:273–288. doi:10.1007/s00585-997-0273-1

    ADS  Google Scholar 

  • Burgess D (1989) Cyclic behavior at quasi-parallel collisionless shocks. Geophys Res Lett 16:345–348. doi:10.1029/GL016i005p00345

    Article  ADS  Google Scholar 

  • Burgess D (1997) What do we really know about upstream waves? Adv Space Res 20:673–682. doi:10.1016/S0273-1177(97)00455-9

    Article  ADS  Google Scholar 

  • Burgess D, Lucek EA, Scholer M, Bale SD, Balikhin MA, Balogh A, Horbury TS, Krasnoselskikh VV, Kucharek H, Lembège B, Möbius E, Schwartz SJ, Thomsen MF, Walker SN (2005) Quasi-parallel shock structure and processes. Space Sci Rev 118:205–222. doi:10.1007/s11214-005-3832-3

    Article  ADS  Google Scholar 

  • Burgess D, Schwartz SJ (1988) Colliding plasma structures – current sheet and perpendicular shock. J Geophys Res 93:11327–11340. doi:10.1029/JA093iA10p11327

    Article  ADS  Google Scholar 

  • Cairns IH (1988) A semiquantitative theory for the 2f(p) radiation observed upstream from the Earth’s bow shock. J Geophys Res 93:858–866. 3958–3968. doi:10.1029/JA093iA05p03958

    Article  ADS  Google Scholar 

  • Czaykowska A, Bauer TM, Treumann RA, Baumjohann W (1998) Mirror waves downstream of the quasi-perpendicular bow shock. J Geophys Res 103:4747–4753. doi:10.1029/97JA03245

    Article  ADS  Google Scholar 

  • Czaykowska A, Bauer TM, Treumann RA, Baumjohann W (2000) Average observed properties of the Earth’s quasi-perpendicular and quasi-parallel bow shock. arxiv:physics/0009046

  • Czaykowska A, Bauer TM, Treumann RA, Baumjohann W (2001) Magnetic field fluctuations across the Earth’s bow shock. Ann Geophys 19:275–287. doi:10.5194/angeo-19-275-2001

    Article  ADS  Google Scholar 

  • Décréau PME, Fergeau P, Krasnoselskikh E, Le Guirriec E, Lévêque M, Martin Ph, Randriamboarison O, Rauch JL, Sené FX, Séran HC, Trotignon JG, Canu P, Cornilleau N, de Féraudy H, Alleyne H, Yearby K, Mögensen P B, Gustafson G, André M, Gurnett DA, Darrouzet F, Lemaire J, Harvey CC, Travnicek P (Whisper Experimenters Group) (2001) Early results from the Whisper instrument on Cluster: an overview. Ann Geophys 19:1241–1258. doi:10.5194/angeo-19-1241-2001

    Article  ADS  Google Scholar 

  • Dickel JR, Wang S (2004) Non-thermal X-ray and radio emission from the SNR N 157B. Adv Space Res 33:446–449. doi:10.1016/j.asr.2003.08.023

    Article  ADS  Google Scholar 

  • Dum CT (1990) Simulation studies of plasma waves in the electron foreshock – the generation of Langmuir waves by a gentle bump-on-tail electron distribution. J Geophys Res 95:8095–8131. doi:10.1029/JA095iA06p08095

    Article  ADS  Google Scholar 

  • Dubouloz N, Scholer M (1995) Two-dimensional simulations of magnetic pulsations upstream of the Earth’s bow shock. J Geophys Res 100:9461–9474. doi:10.1029/94JA03239

    Article  ADS  Google Scholar 

  • Dubouloz N, Treumann RA, Pottelette R, Malingre M (1993) Turbulence generated by a gas of electron acoustic solitons. J Geophys Res 98:17415–17422. doi:10.1029/93JA01611

    Article  ADS  Google Scholar 

  • Eastman TE, Anderson RR, Parks GK (1981) Upstream particles observed in the Earth’s foreshock region. J Geophys Res 86:4379–4395. doi:10.1029/JA086iA06p04379

    Article  ADS  Google Scholar 

  • Eastwood JP, Balogh A, Dunlop MW, Horbury TS, Dandouras I (2002) Cluster observations of fast magnetosonic waves in the terrestrial foreshock. Geophys Res Lett 29:2046. doi:10.1029/2002GL015582

    Article  ADS  Google Scholar 

  • Eastwood JP, Balogh A, Lucek EA, Mazelle C, Dandouras I (2003) On the existence of Alfvén waves in the terrestrial foreshock. Ann Geophys 21:1457–1465. doi:10.5194/angeo-21-1457-2003

    Article  ADS  Google Scholar 

  • Eastwood JP, Balogh A, Lucek EA, Mazelle C, Dandouras I (2005a) Quasi-monochromatic ULF foreshock waves as observed by the four-spacecraft Cluster mission: 2. Oblique propagation. J Geophys Res 110:A11220. doi:10.1029/2004JA010618

    Article  ADS  Google Scholar 

  • Eastwood JP, Balogh A, Mazelle C, Dandouras I, Rème H (2004) Oblique propagation of 30 s period fast magnetosonic foreshock waves: a Cluster case study. Geophys Res Lett 31:L04804. doi:10.1029/2003GL018897

    Article  Google Scholar 

  • Eastwood JP, Lucek EA, Mazelle C, Meziane K, Narita Y, Pickett J, Treumann RA (2005b) The foreshock. Space Sci Rev 118:41–94. doi:10.1007/s11214-005-3824-3

    Article  ADS  Google Scholar 

  • Eastwood JP, Sibeck DG, Angelopoulos V, Phan TD, Bale SD, McFadden JP, Cully CM, Mende SB, Larson D, Frey S, Carlson CW, Glassmeier KH, Austser HU, Roux A, Le Contel O 2008 THEMIS observations of a hot flow anomaly: solar wind, magnetosheath, and ground-based measurements. Geophys Res Lett 35:L17S03. doi:10.1029/2008GL033475

    Article  Google Scholar 

  • Edmiston JP, Kennel CF, Eichler D (1982) Escape of heated ions upstream of quasi-parallel shocks. Geophys Res Lett 9:531–534. doi:10.1029/GL009i005p00531

    Article  ADS  Google Scholar 

  • Etcheto J, Faucheux M (1984) Detailed study of electron plasma waves upstream of the Earth’s bow shock. J Geophys Res 89:6631–6653. doi:10.1029/JA089iA08p06631

    Article  ADS  Google Scholar 

  • Fairfield DH (1974) Whistler waves observed upstream from collisionless shocks. J Geophys Res 79:1368–1378. doi:10.1029/JA079i010p01368

    Article  ADS  Google Scholar 

  • Fairfield DH, Feldman WC (1975) Standing waves at low Mach number laminar bow shocks. J Geophys Res 80:515–522. doi:10.1029/JA080i004p00515

    Article  ADS  Google Scholar 

  • Feldman WC (1985) Electron velocity distributions near collisionless shocks. In: Tsurutani BT, Stone RG (eds) Collisionless shocks in the heliosphere: reviews of current research. AGU, Washington, pp 195–205

    Chapter  Google Scholar 

  • Feldman WC, Anderson RC, Asbridge JR, Bame SJ, Gosling JT, Zwickle RD (1982b) Plasma electron signature of magnetic connection to the Earth’s bow shock – ISEE 3. J Geophys Res 87:632–642. doi:10.1029/JA087iA02p00632

    Article  ADS  Google Scholar 

  • Feldman WC, Anderson RC, Bame SJ, Gary SP, Goslong JT, McComas DJ, Thomsen MF, Paschmann G, Hoppe MM (1983) Electron velocity distributions near the Earth’s bow shock. J Geophys Res 87:96–110. doi:10.1029/JA088iA01p00096

    Article  ADS  Google Scholar 

  • Feldman WC, Bame SJ, Gary SP, Gosling JT, McComas D, Thomsen MF, Paschmann G, Sckopke N, Hoppe MM, Russell CT (1982a) Electron neating within the Earth’s bow shock. Phys Rev Lett 49:199–201

    Article  ADS  Google Scholar 

  • Fitzenreiter RJ, Klimas AJ, Scudder JD (1984) Detection of bump-on-tail reduced electron velocity distributions at the electron foreshock boundary. Geophys Res Lett 11:496–499. doi:10.1029/GL011i005p00496

    Article  ADS  Google Scholar 

  • Fuselier SA, Thomsen MF, Gosling JT, Bame SJ, Russell CT (1987) Fast shocks at the edges of hot diamagnetic cavities upstream from the Earth’s bow shock. J Geophys Res 92:3187–3194. doi:10.1029/JA092iA04p03187

    Article  ADS  Google Scholar 

  • Gary SP (1992) The mirror and ion cyclotron anisotropy instabilities. J Geophys Res 97:8519–8529. doi:10.1029/1992JA8519

    Article  ADS  Google Scholar 

  • Gary SP (1993) Theory of space plasma instabilities. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Gary SP, Thomsen MF, Yin L, Winske D (1995) Electromagnetic proton cyclotron instability: interactions with magnetospheric protons. J Geophys Res 100:21961–21972. doi:10.1029/1995JA21961

    Article  ADS  Google Scholar 

  • Ginzburg VL, Zheleznyakov VV (1958) On the possible mechanisms of sporadic solar radio emission (radiation in an isotropic plasma). Sov Astron 2:653

    ADS  Google Scholar 

  • Gosling JT, Asbridge JR, Bame SJ, Paschmann G, Sckopke N (1978) Observations of two distinct populations of bow shock ions in the upstream solar wind. Geophys Res Lett 5:957–960. doi:10.1029/GL005i011p00957

    Article  ADS  Google Scholar 

  • Gosling JT, Bame SJ, Feldman WC, Paschmann G, Sckopke N, Russell CT (1984) Suprathermal ions upstream from interplanetary shocks. J Geophys Res 89:5409–5418. doi:10.1029/JA089iA07p05409

    Article  ADS  Google Scholar 

  • Greenstadt EW, Baum LW (1986) Earth’s compressional foreshock boundary revisited observations by the ISEE 1 magnetometer. J Geophys Res 91:9001–9006. doi:10.1029/JA091iA08p09001

    Article  ADS  Google Scholar 

  • Greenstadt EW, Moses SL, Coroniti FV, Farris MH, Russell CT (1993) The quasiperpendicular environment of large magnetic pulses in Earth’s quasiparallel foreshock – ISEE 1 and 2 observations. Geophys Res Lett 20:1459–1462. doi:10.1029/93GL00841

    Article  ADS  Google Scholar 

  • Gurnett DA (1985) Plasma waves and instabilities. In: Tsurutani BT, Stone RG (eds) Collisionless shocks in the heliosphere: reviews of current research. AGU, Washington, pp 207–224

    Chapter  Google Scholar 

  • Gurnett DA, Frank LA (1975) Electron plasma oscillations associated with type III radio emissions and solar electrons. Sol Phys 45:477–493. doi:10.1007/BF00158464

    Article  ADS  Google Scholar 

  • Hasegawa A (1972) Excitation and propagation of an upstreaming electromagnetic wave in the solar wind. J Geophys Res 77:84–90. doi:10.1029/JA077i001p00084

    Article  ADS  Google Scholar 

  • Hietala H, Laitinen TV, Andréeová K, Vainio R, Vaivads A, Palmroth M, Pulkkinen TI, Koskinen HEJ, Lucek EA, Rème H (2009) Supermagnetosonic jets behind a collisionless quasiparallel shock. Phys Rev Lett 103:245001. doi:10.1103/PhysRevLett.103.245001

    Article  ADS  Google Scholar 

  • Hill P, Paschmann G, Treumann RA, Baumjohann W, Sckopke N, Lühr H (1995) Plasma and magnetic field behavior across the magnetosheath near local noon. J Geophys Res 100:9575–9584. doi:10.1029/94JA03194

    Article  ADS  Google Scholar 

  • Hoppe MM, Russell CT (1980) Whistler mode wave packets in the Earth’s foreshock region. Nature 287:417–420. doi:10.1038/287417a0

    Article  ADS  Google Scholar 

  • Hoppe MM, Russell CT (1981) On the nature of ULF waves upstream of planetary bow shocks. Adv Space Res 1:327–332. doi:10.1016/0273-1177(81)90129-0

    Article  ADS  Google Scholar 

  • Hoppe MM, Russell CT (1983) Plasma rest frame frequencies and polarizations of the low-frequency upstream waves – ISEE 1 and 2 observations. J Geophys Res 88:2021–2027. doi:10.1029/JA088iA03p02021

    Article  ADS  Google Scholar 

  • Hoppe MM, Russell CT, Eastman TE, Frank LA (1982) Characteristics of the ULF waves associated with upstream ion beams. J Geophys Res 87:643–650. doi:10.1029/JA087iA02p00643

    Article  ADS  Google Scholar 

  • Hoshino M, Terasawa T (1985) Numerical study of the upstream wave excitation mechanism. I – nonlinear phase bunching of beam ions. J Geophys Res 90:57–64. doi:10.1029/JA090iA01p00057

    Article  ADS  Google Scholar 

  • Jaroschek CH, Lesch H, Treumann RA (2004) Self-consistent diffusive lifetimes of Weibel magnetic fields in gamma-ray bursts. Astrophys J 616:1065–1071. doi:10.1086/424923

    Article  ADS  Google Scholar 

  • Jaroschek CH, Lesch H, Treumann RA (2005) Ultrarelativistic plasma shell collisions in γ-ray burst sources: dimensional effects on the final steady state magnetic field. Astrophys J 618:822–831. doi:10.1086/426066

    Article  ADS  Google Scholar 

  • Kajdič P, Blanco-Cano X, Omidi N, Russell CT (2011) Multi-spacecraft study of foreshock cavitons upstream of the quasi-parallel bow shock. Planet Space Sci 59:705–714. doi:10.1016/j.pss.2011.02.005

    Article  ADS  Google Scholar 

  • Kecskémety K, Erdös G, Facskó G, Tátrallyay M, Dondouras L, Daly P, Kudela K (2006) Distributions of suprathermal ions near hot flow anomalies observed by RAPID aboard Cluster. Adv Space Res 38:1587–1594. doi:10.1016/j.asr.2005.09.027

    Article  ADS  Google Scholar 

  • Kennel C, Edmiston JP, Hada T (1985) A quarter century of collisionless shock research. In: Stone RG, Tsurutani BT (eds) Collisionless shocks in the heliosphere: a tutorial review. AGU, Washington, pp 1–36

    Chapter  Google Scholar 

  • Kis A, Scholer M, Klecker B, Kucharek H, Lucek EA, Rème H (2007) Scattering of field-aligned beam ions upstream of Earth’s bow shock. Ann Geophys 25:785–799. doi:10.5194/angeo-25-785-2007

    Article  ADS  Google Scholar 

  • Kis A, Scholer M, Klecker B, Lucek EA, Reme H, Lemperger I, Wesztergom V (2010) Diffuse ion scattering in front of the Earth’s quasi-parallel bow shock: what can we learn from Cluster simultaneous multipoint observations? AGU Fall Meeting Abstracts, SM51B-1806

    Google Scholar 

  • Kis A, Scholer M, Klecker B, Möbius E, Lucek EA, Rème H, Bosqued JM, Kistler LM, Kucharek H (2004) Multi-spacecraft observations of diffuse ions upstream of Earth’s bow shock. Geophys Res Lett 31:L20801. doi:10.1029/2004GL020759

    Article  ADS  Google Scholar 

  • Kis A, Scholer M, Lucek E, Klecker B (2008) Power in the magnetic field fluctuations and diffuse energetic particle density: dependence on distance from the quasi-parallel bow shock, AGU Fall Meeting Abstracts, SM53B-01

    Google Scholar 

  • Klimas AJ (1985) The electron foreshock. In: Tsurutani BT, Stone RG (eds) Collisionless shocks in the heliosphere: reviews of current research. AGU, Washington, pp 237–252

    Chapter  Google Scholar 

  • Koval A, Šafránková J, Němeček Z (2005) A study of particle flows in hot flow anomalies. Planet Space Sci 53:41–52. doi:10.1016/j.pss.2004.09.027

    Article  ADS  Google Scholar 

  • Krasnoselskikh V, Lobzin VV, Musatenko K, Soucek J, Pickett JS, Cairns IH (2007) Beam-plasma interaction in randomly inhomogeneous plasmas and statistical properties of small-amplitude Langmuir waves in the solar wind and electron foreshock. J Geophys Res 112:A10109. doi:10.1029/2006JA012212

    Article  ADS  Google Scholar 

  • Krauss-Varban D, Omidi N (1991) Structure of medium Mach number quasi-parallel shocks – upstream and downstream waves. J Geophys Res 96:17715–17731. doi:10.1029/91JA01545

    Article  ADS  Google Scholar 

  • Krauss-Varban D, Omidi N (1993) Propagation characteristics of waves upstream and downstream of quasi-parallel shocks. Geophys Res Lett 20:1007–1010. doi:10.1029/93GL01125

    Article  ADS  Google Scholar 

  • Krauss-Varban D, Omidi N, Quest KB (1994) Mode properties of low-frequency waves: kinetic theory versus Hall-MHD. J Geophys Res 99:5987–6009. doi:10.1029/93JA03202

    Article  ADS  Google Scholar 

  • Kucharek H, Möbius E, Scholer M, Mouikis C, Kistler L, Horbury T, Balogh A, Rème H, Bosqued J (2004) On the origin of field-aligned beams at the quasi-perpendicular bow shock: multi-spacecraft observations by Cluster. Ann Geophys 22:2301–2308. doi:10.5194/angeo-22-2301-2004

    Article  ADS  Google Scholar 

  • Kuznetsov EA, Passot T, Sulem PL (2007) Dynamical model for nonlinear mirror modes near threshold. Phys Rev Lett 98:235003. doi:10.1103/PhysRevLett.98.235003

    Article  ADS  Google Scholar 

  • Lacombe C, Mangeney A, Harvey CC, Scudder JD (1985) Electron plasma waves upstream of the Earth’s bow shock. J Geophys Res 90:73–94. doi:10.1029/JA090iA01p00073

    Article  ADS  Google Scholar 

  • Lee MA (1982) Coupled hydromagnetic wave excitation and ion acceleration upstream of the Earth’s bow shock. J Geophys Res 87:5063–5080. doi:10.1029/JA087iA07p05063

    Article  ADS  Google Scholar 

  • Le G, Russell CT (1992) A study of ULF wave foreshock morphology. I – ULF foreshock boundary. II – spatial variation of ULF waves. Planet Space Sci 40:1203–1225. doi:10.1016/0032-0633(92)90077-2

    Article  ADS  Google Scholar 

  • Lembège B, Giacalone J, Scholer M, Hada T, Hoshino M, Krasnoselskikh V, Kucharek H, Savoini P, Terasawa T (2004) Selected problems in collisionless-shock physics. Space Sci Rev 110:161–226. doi:10.1023/B:SPAC.0000023372.12232.b7

    Article  ADS  Google Scholar 

  • Lin Y (2002) Global hybrid simulation of hot flow anomalies near the bow shock and in the magnetosheath. Planet Space Sci 50:577–591. doi:10.1016/S0032-0633(02)00037-5

    Article  ADS  Google Scholar 

  • Lin RP, Meng CI, Anderson KA (1974) 30- to 100-keV protons upstream from the Earth’s bow shock. J Geophys Res 79:489–498. doi:10.1029/JA079i004p00489

    Article  ADS  Google Scholar 

  • Lucek EA, Horbury T S, Balogh A, Dandouras I, Rème H (2004) Cluster observations of hot flow anomalies. J Geophys Res 109:A06207. doi:10.1029/2003JA010016

    Article  Google Scholar 

  • Lucek EA, Horbury T S, Dandouras I, Rème H (2008) Cluster observations of the Earth’s quasi-parallel bow shock. J Geophys Res 113:A07S02. doi:10.1029/2007JA012756

    Article  Google Scholar 

  • Lucek EA, Horbury TS, Dunlop MW, Cargill PJ, Schwartz SJ, Balogh A, Brown P, Carr C, Fornacon KH, Georgescu E (2002) Cluster magnetic field observations at a quasi-parallel bow shock. Ann Geophys 20:1699–1710. doi:10.5194/angeo-20-1699-2002

    Article  ADS  Google Scholar 

  • Mandt ME, Kan JR (1985) Effects of electron pressure in quasi-parallel collisionless shocks. J Geophys Res 90:115–121. doi:10.1029/JA090iA01p00115

    Article  ADS  Google Scholar 

  • Masood W, Schwartz SJ, Maksimovic M, Fazakerley AN (2006) Electron velocity distribution and lion roars in the magnetosheath. Ann Geophys 24:1725–1735. doi:10.5194/angeo-24-1725-2006

    Article  ADS  Google Scholar 

  • Matsukiyo S, Scholer M (2003) Modified two-stream instability in the foot of high Mach number quasi-perpendicular shocks. J Geophys Res 108:1459. doi:10.1029/2003JA010080

    Article  Google Scholar 

  • Matsukiyo S, Scholer M (2006) On microinstabilities in the foot of high Mach number perpendicular shocks. J Geophys Res 111:A06104. doi:10.1029/2005JA011409

    Article  Google Scholar 

  • Mazelle C, LeQuéau D, Meziane K (2000) Nonlinear wave-particle interaction upstream from the Earth’s bow shock. Nonlinear Process Geophys 7:185–190. doi:10.5194/npg-7-185-2000

    Article  ADS  Google Scholar 

  • Mazelle C, Meziane K, Le Quéau D, Wilber M, Eastwood JP, Rème H, Sauvaud JA, Bosqued JM, Dandouras I, McCarthy M, Kistler LM, Klecker B, Korth A, Bavassano-Cattaneo MB, Pallocchia G, Lundin R, Balogh A (2003) Production of gyrating ions from nonlinear wave-particle interaction upstream from the Earth’s bow shock: a case study from Cluster-CIS. Planet Space Sci 51:785–795. doi:10.1016/j.pss.2003.05.002

    Article  ADS  Google Scholar 

  • McKean ME, Omidi N, Krauss-Varban D (1996) Magnetosheath dynamics downstream of low Mach number shocks. J Geophys Res 101:20013–20022. doi:10.1029/96JA01461

    Article  ADS  Google Scholar 

  • Mellott MM (1986) Plasma wave signatures of collisionless shocks and the role of plasma wave turbulence in shock formation. Adv Space Res 6:25–32. doi:10.1016/0273-1177(86)90005-0

    Article  ADS  Google Scholar 

  • Meziane K, d’Uston C (1998) A statistical study of the upstream intermediate ion boundary in the Earth’s foreshock. Ann Geophys 16:125–133. doi:10.1007/s00585-998-0125-73

    ADS  Google Scholar 

  • Meziane K, Hull AJ, Hamza AM, Lin RP (2002) Gyrophase-restricted 100 keV-2 MeV ion beams near the foreshock boundary. Geophys Res Lett 30:2049. doi:10.1029/2001JA005012

    Article  ADS  Google Scholar 

  • Meziane K, Mazelle C, Wilber M, Le Quéau D, Eastwood J, Rème H, Dandouras I, Sauvaud J, Bosqued J, Parks G, Kistler L, McCarthy M, Klecker B, Korth A, Bavassano-Cattaneo M, Lundin R, Balogh A (2004) Bow shock specularly reflected ions in the presence of low-frequency electromagnetic waves: a case study. Ann Geophys 22:2325–2335. doi:10.5194/angeo-22-2325-2004

    Article  ADS  Google Scholar 

  • Meziane K, Wilber M, Lin RP, Parks GK (2003) On the bow shock θ Bn dependence of upstream 70 keV to 2 MeV ion fluxes. J Geophys Res 107:1243. doi:10.1029/2003GL017592

    Article  Google Scholar 

  • Muschietti L (1990) Electron beam formation and stability. Sol Phys 130:201–228. doi:10.1007/BF00156790

    Article  ADS  Google Scholar 

  • Muschietti L, Dum CT (1991) Nonlinear wave scattering and electron beam relaxation. Phys Fluids B 3:1968–1982. doi:10.1063/1.859665

    Article  ADS  Google Scholar 

  • Narita Y (2007) Low-frequency waves upstream and downstream of the terrestrial bow shock. Planet Space Sci 55:243–244. doi:10.1016/j.pss.2006.03.007

    Article  ADS  Google Scholar 

  • Narita Y, Glassmeier K-H (2005) Dispersion analysis of low-frequency waves through the terrestrial bow shock. J Geophys Res 110:A12215. doi:10.1029/2005JA011256

    Article  ADS  Google Scholar 

  • Narita Y, Glassmeier KH, Fornacon KH, Richter I, Schäfer S, Motschmann U, Dandouras I, Rème H, Georgescu E (2006) Low-frequency wave characteristics in the upstream and downstream regime of the terrestrial bow shock. J Geophys Res 111:A01203. doi:10.1029/2005JA011231

    Article  Google Scholar 

  • Narita Y, Glassmeier K-H, Gary SP, Goldstein ML, Treumann RA (2010) Wave number spectra in the solar wind, the foreshock, and the magnetosheath. In: Laakso H, Taylor M, Escoubet CP (eds) The Cluster active archive, studying the Earth’s space plasma environment. Asroph space sci proc. Springer, Berlin, pp 363–368. doi:10.1007/978-90-481-3499-1-24

    Google Scholar 

  • Narita Y, Glassmeier KKH, Schäfer S, Motschmann U, Fränz M, Dandouras I, fornacon K, Georgescu E, Korth A, Rème H, Richter I (2004) Alfvén waves in the foreshock propagating upstream in the plasma rest frame: statistics from Cluster observations. Ann Geophys 22:2315–2323. doi:10.5194/angeo-22-2315-2004

    Article  ADS  Google Scholar 

  • Narita Y, Glassmeier KH, Schäfer S, Motschmann U, Sauer K, Dandouras I, Fornacon KH, Georgescu E, Rème H (2003) Dispersion analysis of ULF waves in the foreshock using Cluster data and the wave telescope technique. Geophys Res Lett 30:1710. doi:10.1029/2003GL017432

    Article  Google Scholar 

  • Narita Y, Glassmeier K-H, Treumann RA (2006) Wave-number spectra and intermittency in the terrestrial foreshock region. Phys Rev Lett 97:191101. doi:10.1103/PhysRevLett.97.191101

    Article  ADS  Google Scholar 

  • Olson JV, Holzer RE, Smith EJ (1969) High-frequency magnetic fluctuations associated with the Earth’s bow shock. J Geophys Res 74:2255–2262. doi:10.1029/JA074i019p04601

    Google Scholar 

  • Omidi N, Quest KB, Winske D (1990) Low Mach number parallel and quasi-parallel shocks. J Geophys Res 95:20717–20730. doi:10.1029/JA095iA12p20717

    Article  ADS  Google Scholar 

  • Omidi N, Sibeck DG (2007) Formation of hot flow anomalies and solitary shocks. J Geophys Res 112:A01203. doi:10.1029/2006JA011663

    Article  Google Scholar 

  • Pantellini FGE, Heron A, Adam JC, Mangeney A (1992) The role of the whistler precursor during the cyclic reformation of a quasi-parallel shock. J Geophys Res 97:1303–1311. doi:10.1029/91JA02653

    Article  ADS  Google Scholar 

  • Parks GK, Lee E, Mozer F, Wilber M, Lucek E, Dandouras I, Rème H, Mazelle C, Cao JB, Meziane K, Goldstein ML, Escoubet P (2006) Larmor radius size density holes discovered in the solar wind upstream of Earth’s bow shock. Phys Plasmas 13:050701. doi:10.1063/1.2201056

    Article  ADS  Google Scholar 

  • Paschmann G, Haerendel G, Sckopke N, Möbius E, Luehr H (1988) Three-dimensional plasma structures with anomalous flow directions near the Earth’s bow shock. J Geophys Res 93:11279–11294. doi:10.1029/JA093iA10p11279

    Article  ADS  Google Scholar 

  • Paschmann G, Schopke N, Papamastorakis I, Asbridge JR, Bame SJ, Gosling JT (1981) Characteristics of reflected and diffuse ions upstream from the Earth’s bow shock. J Geophys Res 86:4355–4364. doi:10.1029/JA086iA06p04355

    Article  ADS  Google Scholar 

  • Peredo M, Slavin JA, Mazur E, Curtis SA (1995) Three-dimensional position and shape of the bow shock and their variation with Alfvenic, sonic and magnetosonic Mach numbers and interplanetary magnetic field orientation. J Geophys Res 100:7907–7916. doi:10.1029/94JA02545

    Article  ADS  Google Scholar 

  • Pickett JS et al (2004) Isolated electrostatic structures observed throughout the Cluster orbit: relationship to magnetic field strength. Nonlinear Process Geophys 12:2515–2523. doi:10.5194/angeo-22-2515-2004

    Google Scholar 

  • Pokhotelov OA, Balikhin MA, Alleyne HSt-CK, Onishchenko OG (2000) Mirror instability with finite electron temperature effects. J Geophys Res 105:2393–2402. doi:10.1029/1999JA900351

    Article  ADS  Google Scholar 

  • Pokhotelov OA, Sagdeev RZ, Balikhin MA, Onishchenko OG, Fedun VN (2008) Nonlinear mirror waves in non-Maxwellian space plasmas. J Geophys Res 113:A04225. doi:10.1029/2007JA012642

    Article  Google Scholar 

  • Quest KB (1985) Simulation of quasi-parallel collisionless shocks. In: Tsurutani BT, Stone RG (eds) Collisionless shocks in the heliosphere: reviews of current research. AGU, Washington, pp 185–194

    Chapter  Google Scholar 

  • Quest KB (1988) Theory and simulation of collisionless parallel shocks. J Geophys Res 93:9649–9680. doi:10.1029/JA093iA09p09649

    Article  ADS  Google Scholar 

  • Quest KB, Forslund DW, Brackbill JU, U J, Lee K (1983) Collisionless dissipation processes in quasi-parallel shocks. Geophys Res Lett 10:471–474. doi:10.1029/GL010i006p00471

    Article  ADS  Google Scholar 

  • Reiner MJ, Kaiser ML, Fainberg J, Desch MD, Stone RG (1996) 2f p radio emission from the vicinity of the Earth’s foreshock: WIND observations. Geophys Res Lett 23:1247–1250. doi:10.1029/96GL00841

    Article  ADS  Google Scholar 

  • Robinson PA (1995) Stochastic wave growth. Phys Plasmas 2:1466–1479. doi:10.1063/1.871362

    Article  ADS  Google Scholar 

  • Rodriguez P (1985) Long duration lion roars associated with quasi-perpendicular bow shocks. J Geophys Res 90:241–248. doi:10.1029/JA090iA01p00241

    Article  ADS  Google Scholar 

  • Rodriguez P, Gurnett DA (1975) Electrostatic and electromagnetic turbulence associated with the Earth’s bow shock. J Geophys Res 80:19–31. doi:10.1029/JA080i001p00019

    Article  ADS  Google Scholar 

  • Russell CT (1988) Multipoint measurements of upstream waves. Adv Space Res 8:147–156. doi:10.1016/0273-1177(88)90125-1

    Article  ADS  Google Scholar 

  • Russell CT, Childers DD, Coleman PJ Jr (1971) Ogo 5 observations of upstream waves in the interplanetary medium: discrete wave packets. J Geophys Res 76:845–861. doi:10.1029/JA076i004p00845

    Article  ADS  Google Scholar 

  • Russell CT, Hoppe MM (1981) The dependence of upstream wave periods on the interplanetary magnetic field strength. Geophys Res Lett 8:615–617. doi:10.1029/GL008i006p00615

    Article  ADS  Google Scholar 

  • Russell CT, Hoppe MM (1983) Upstream waves and particles – tutorial lecture. Space Sci Rev 34:155–172. doi:10.1007/BF00194624

    Article  ADS  Google Scholar 

  • Sahraoui F, Belmont G, Pincon J, Rezeau L, Balogh A, Robert P, Cornilleau-Wehrlin N (2004) Magnetic turbulent spectra in the magnetosheath: new insights. Ann Geophys 22:2283–2288. doi:10.5194/angeo-22-2283-2004

    Article  ADS  Google Scholar 

  • Sanderson TR, Reinhard R, Wenzel K-P (1981) The propagation of upstream protons between the Earth’s bow shock and ISEE 3. J Geophys Res 86:4425–4434. doi:10.1029/JA086iA06p04425

    Article  ADS  Google Scholar 

  • Sanderson TR, Reinhard R, Wenzel KP, Roelof EC, Smith EJ (1983) Observations of upstream ions and low-frequency waves on ISEE 3. J Geophys Res 88:85–95. doi:10.1029/JA088iA01p00085

    Article  ADS  Google Scholar 

  • Savin S, Amata E, Zelenyi L, Budaev V, Consolini G, Treumann R, Lucek E, Safrankova J, Nenecek Z, Khotyaintsev Y, Nadre M, Buechner J, Alleyne H, Song P, Blecki J, Rauch J L, Romanov S, Klimov S, Skalsky A (2008) High energy jets in the Earth’s magnetosheath: implications for plasma dynamics and anomalous transport. Sov J Exp Theor Phys Lett 87:593–599. doi:10.1134/S0021364008110015

    Article  ADS  Google Scholar 

  • Scarf FL, Fredricks RW, Frank LA, Neugebauer M (1971) Nonthermal electrons and high-frequency waves in the upstream solar wind, 1. Observations. J Geophys Res 76:5162–5171. doi:10.1029/JA076i022p05162

    Article  ADS  Google Scholar 

  • Scholer M (1985) Diffusive acceleration. In: Tsurutani BT, Stone RG (eds) Collisionless shocks in the heliosphere: reviews of current research. AGU, Washington, pp 287–301

    Chapter  Google Scholar 

  • Scholer M (1990) Diffuse ions at a quasi-parallel collisionless shock – simulations. Geophys Res Lett 17:1821–1824. doi:10.1029/GL017i011p01821

    Article  ADS  Google Scholar 

  • Scholer M (1993) Upstream waves, shocklets, short large-amplitude magnetic structures and the cyclic behavior of oblique quasi-parallel collisionless shocks. J Geophys Res 98:47–57. doi:10.1029/92JA01875

    Article  ADS  Google Scholar 

  • Scholer M, Burgess D (1992) The role of upstream waves in supercritical quasi-parallel shock re-formation. J Geophys Res 97:8319–8326. doi:10.1029/92JA00312

    Article  ADS  Google Scholar 

  • Scholer M, Fujimoto M (1993) Low-Mach number quasi-parallel shocks – upstream waves. J Geophys Res 98:15275–15283. doi:10.1029/93JA01155

    Article  ADS  Google Scholar 

  • Scholer M, Kucharek H, Jayanti V (1997) Waves and turbulence in high Mach number nearly parallel collisionless shocks. J Geophys Res 102:9821–9833. doi:10.1029/97JA00345

    Article  ADS  Google Scholar 

  • Scholer M, Kucharek H, Shinohara I (2003) Short large-amplitude magnetic structures and whistler wave precursors in a full-particle quasi-parallel shock simulation. J Geophys Res 108:1273. doi:10.1029/2002JA009820

    Article  Google Scholar 

  • Scholer M, Terasawa T (1990) Ion reflection and dissipation at quasi-parallel collisionless shocks. Geophys Res Lett 17:119–122. doi:10.1029/GL017i002p00119

    Article  ADS  Google Scholar 

  • Sckopke N (1995) Ion heating at the Earth’s quasi-perpendicular bow shock. Adv Space Res 15:261–269. doi:10.1016/S0273-1177(99)80095-7

    Article  ADS  Google Scholar 

  • Sckopke N, Paschmann G, Bame SJ, Gosling JT, Russell CT (1983) Evolution of ion distributions across the nearly perpendicular bow shock – specularly and non-specularly reflected-gyrating ions. J Geophys Res 88:6121–6136. doi:10.1029/JA088iA08p06121

    Article  ADS  Google Scholar 

  • Schwartz SJ, Burgess D (1991) Quasi-parallel shocks – a patchwork of three-dimensional structures. Geophys Res Lett 18:373–376. doi:10.1029/91GL00138

    Article  ADS  Google Scholar 

  • Schwartz SJ, Burgess D, Moses JJ (1996) Low-frequency waves in the Earth’s magnetosheath: present status. Ann Geophys 14:1134–1150. doi:10.1007/s00585-996-1134-z

    ADS  Google Scholar 

  • Schwartz SJ, Burgess D, Wilkinson WP, Kessel RL, Dunlop M, Luehr H (1992) Observations of short large-amplitude magnetic structures at a quasi-parallel shock. J Geophys Res 97:4209–4227. doi:10.1029/91JA02581

    Article  ADS  Google Scholar 

  • Schwartz SJ, Chaloner CP, Hall DS, Christiansen PJ, Johnstone AD (1985) An active current sheet in the solar wind. Nature 318:269–271. doi:10.1038/318269a0

    Article  ADS  Google Scholar 

  • Schwartz SJ, Kessel RL, Brown CS, Woolliscroft LJC, Dunlop MW (1988) Active current sheets near the Earth’s bow shock. J Geophys Res 93:11295–11310. doi:10.1029/JA093iA10p11295

    Article  ADS  Google Scholar 

  • Scudder JD, Burlaga LF, Greenstadt EW (1984) Scale lengths in quasi-parallel shocks. J Geophys Res 89:7545–7550. doi:10.1029/JA089iA09p07545

    Article  ADS  Google Scholar 

  • Sentman DD, Edmiston JP, Frank LA (1981b) Instabilities of low frequency, parallel propagating electromagnetic waves in the Earth’s foreshock region. J Geophys Res 86:7487–7497. doi:10.1029/JA086iA09p07487

    Article  ADS  Google Scholar 

  • Sentman DD, Hoppe MM, Thomsen MF, Gary SP, Feldman WC (1983) The oblique whistler instability in the Earth’s foreshock. J Geophys Res 88:2048–2056. doi:10.1029/JA088iA03p02048

    Article  ADS  Google Scholar 

  • Sentman DD, Kennel CF, Frank LA (1981a) Plasma rest frame distributions of suprathermal ions in the Earth’s foreshock region. J Geophys Res 86:4365–4373. doi:10.1029/JA086iA06p04365

    Article  ADS  Google Scholar 

  • Shevyrev NN, Zastenker GN, Eiges PE, Richardson JD (2006) Low frequency waves observed by Interball-1 in foreshock and magnetosheath. Adv Space Res 37:1516–1521. doi:10.1016/j.asr.2005.07.072

    Article  ADS  Google Scholar 

  • Shin K, Kojima H, Matsumoto H, Mukai T (2008) Characteristics of electrostatic solitary waves in the Earth’s foreshock region: geotail observations. J Geophys Res 113:A03101. doi:10.1029/2007JA012344

    Article  Google Scholar 

  • Sibeck DG, Borodkova NL, Schwartz SJ, Owen CJ, Kessel R, Kokubun S, Lepping RP, Lin R, Liou K, Lühr H, McEntire RW, Meng CI, Mukai T, Nemecek Z, Parks G, Phan TD, Romanov SA, Safrankova J, Sauvaud JA, Singer HJ, Solovyev SI, Szabo A, Takahashi K, Williams DJ, Yumoto K, Zastenker GN (1999) Comprehensive study of the magnetospheric response to a hot flow anomaly. J Geophys Res 104:4577–4593. doi:10.1029/1998JA900021

    Article  ADS  Google Scholar 

  • Skadron G, Holdaway RD, Lee MA (1988) Formation of the wave compressional boundary in the Earth’s foreshock. J Geophys Res 93:11354–11362. doi:10.1029/JA093iA10p11354

    Article  ADS  Google Scholar 

  • Sonnerup BUÖ (1969) Acceleration of particles reflected at a shock front. J Geophys Res 74:1301–1304. doi:10.1029/JA074i005p01301

    Article  ADS  Google Scholar 

  • Strangeway RJ, Crawford GK (1995) VLF waves in the foreshock. Adv Space Res 15:29–42. doi:10.1016/0273-1177(95)00219-5

    Article  ADS  Google Scholar 

  • Tanaka M, Goodrich CC, Winske D, Papadopoulos K (1983) A source of the backstreaming ion beams in the foreshock region. J Geophys Res 88:3046–3054. doi:10.1029/JA088iA04p03046

    Article  ADS  Google Scholar 

  • Terasawa T, Scholer M, Hovestadt D, Klecker B, Ipavich FM, Gloeckler G, Sanderson TR, Wenzel KP, Smith EJ (1985) Particles upstream of the pre-dawn bow shock – ISEE-3 observations. Geophys Res Lett 12:373–376. doi:10.1029/GL012i006p00373

    Article  ADS  Google Scholar 

  • Thomas VA, Winske D, Omidi N (1990) Re-forming supercritical quasi-parallel shocks. I – one- and two-dimensional simulations. J Geophys Res 95:18809–18819. doi:10.1029/JA095iA11p18809

    Article  ADS  Google Scholar 

  • Thomas VA, Winske D, Thomsen MF, Onsager TG (1991) Hybrid simulation of the formation of a hot flow anomaly. J Geophys Res 96:11625–11632. doi:10.1029/91JA01092

    Article  ADS  Google Scholar 

  • Thomsen MF (1985) Upstream suprathermal ions. In: Tsurutani BT, Stone RG (eds) Collisionless shocks in the heliosphere: reviews of current research. AGU, Washington, pp 253–270

    Chapter  Google Scholar 

  • Thomsen MF, Gosling JT, Bame SJ, Mellott MM (1985) Ion and electron heating at collisionless shocks near the critical Mach number. J Geophys Res 90:137–148. doi:10.1029/JA090iA01p00137

    Article  ADS  Google Scholar 

  • Thomsen MF, Gosling JT, Bame SJ, Quest KB, Russell CT (1988) On the origin of hot diamagnetic cavities near the Earth’s bow shock. J Geophys Res 93:11311–11325. doi:10.1029/JA093iA10p11311

    Article  ADS  Google Scholar 

  • Thomsen MF, Gosling JT, Fuselier SA, Bame SJ, Russell CT (1986) Hot, diamagnetic cavities upstream from the Earth’s bow shock. J Geophys Res 91:2961–2973. doi:10.1029/JA091iA03p02961

    Article  ADS  Google Scholar 

  • Thomsen MF, Thomas VA, Winske D, Gosling JT, Farris HM, Russell CT (1993) Observational test of hot flow anomaly formation by the interaction of a magnetic discontinuity with the bow shock. J Geophys Res 98:15319–15330. doi:10.1029/93JA00792

    Article  ADS  Google Scholar 

  • Tidman DA, Northrop TG (1968) Emission of plasma waves by the Earth’s bow shock. J Geophys Res 73:1543–1553. doi:10.1029/JA073i005p01543

    Article  ADS  Google Scholar 

  • Trattner KJ, Mobius E, Scholer M, Klecker B, Hilchenbach M, Luehr H (1994) Statistical analysis of diffuse ion events upstream of the Earth’s bow shock. J Geophys Res 99:13389–13400. doi:10.1029/94JA00576

    Article  ADS  Google Scholar 

  • Trattner KJ, Scholer M (1994) Diffuse minor ions upstream of simulated quasi-parallel shocks. J Geophys Res 99:6637–6650. doi:10.1029/93JA03165

    Article  ADS  Google Scholar 

  • Treumann RA (2006) The electron-cyclotron maser for astrophysical application. Astron Astrophys Rev 13:229–315. doi:10.1007/s00159-006-0001-y

    Article  ADS  Google Scholar 

  • Treumann RA, LaBelle J (1992) Band splitting in solar type II radio bursts. Astrophys J 399:L167–L170. doi:10.1086/186633

    Article  ADS  Google Scholar 

  • Trotignon JG, Dćréau PME, Rauch JL, Randriamboarison O, Krasnoselskikh V, Canu P, Alleyne H, Aerby K, Guirriec E, Séran HC, Sené FX, Martin Ph, Lévêque M, Fergeau P (2001) How to determine the thermal electron density and the magnetic field strength from the Cluster/Whisper observations around the Earth. Ann Geophys 19:1711–1720. doi:10.5194/angeo-19-1711-2001

    Article  ADS  Google Scholar 

  • Tsubouchi K, Lembège B (2004) Full particle simulations of short large-amplitude magnetic structures (SLAMS) in quasi-parallel shocks. J Geophys Res 109:A021114. doi:10.1029/2003JA010014

    Article  Google Scholar 

  • Tsytovich VN (1970) Nonlinear effects in plasmas. Plenum Press, New York. Original in Russian, Moscow, 1966

    Book  Google Scholar 

  • Walker S, Sahraoui F, Balikhin M, Belmont G, Pincon J, Rezeau L, Alleyne H, Cornilleau-Wherlin N, André M (2004) A comparison of wave mode identification techniques. Ann Geophys 22:3021–3032. doi:10.5194/angeo-22-3021-2004

    Article  ADS  Google Scholar 

  • Watanabe Y, Terasawa T (1984) On the excitation mechanism of the low-frequency upstream waves. J Geophys Res 89:6623–6630. doi:10.1029/JA089iA08p06623

    Article  ADS  Google Scholar 

  • Winske D, Leroy MM (1984) Diffuse ions produced by electromagnetic ion beam instabilities. J Geophys Res 89:2673–2688. doi:10.1029/JA089iA05p02673

    Article  ADS  Google Scholar 

  • Winske D, Thomas VA, Omidi N, Quest KB (1990) Re-forming supercritical quasi-parallel shocks. II – mechanism for wave generation and front re-formation. J Geophys Res 95:18821–18832. doi:10.1029/JA095iA11p18821

    Article  ADS  Google Scholar 

  • Woolliscroft LJC, Brown CC, Darbyshire AG, Walker SN, Christiansen PJ, Gough MP, Norris AJ, LaBelle JW, Treumann RA, Farrugia C (1987) Observations of small scale structures using data from the wave experiment on the AMPTE-UKS spacecraft. In: Proc 21st ESLAB Symp. ESA-SP, vol 275, pp 193–198

    Google Scholar 

  • Woolliscroft LJC, Brown CC, Schwartz SJ, Chaloner CP, Christiansen PJ (1986) AMPTE-UKS observations of current sheets in the solar wind. Adv Space Res 6:89–92. doi:10.1016/0273-1177(86)90017-7

    Article  ADS  Google Scholar 

  • Wu CS (1972) Theory of discrete wave packets in the solar wind. J Geophys Res 77:575–587. doi:10.1029/JA077i004p00575

    Article  ADS  Google Scholar 

  • Wu CS (1984) A fast Fermi process – energetic electrons accelerated by a nearly perpendicular bow shock. J Geophys Res 89:8857–8862. doi:10.1029/JA089iA10p08857

    Article  ADS  Google Scholar 

  • Yoon PH, Wu CS, Vinas AF, Reiner MJ, Fainberg J, Stone RG (1994) Theory of 2ω pe radiation induced by the bow shock. J Geophys Res 99:23481–23488. doi:10.1029/94JA02489

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Balogh, A., Treumann, R.A. (2013). Quasi-parallel Supercritical Shocks. In: Physics of Collisionless Shocks. ISSI Scientific Report Series, vol 12. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6099-2_6

Download citation

Publish with us

Policies and ethics