Skip to main content

Quasi-perpendicular Supercritical Shocks

  • Chapter

Part of the book series: ISSI Scientific Report Series ((ISSI,volume 12))

Abstract

Quasi-perpendicular shocks are the first and important family of collisionless magnetised shocks which reflect particles back upstream in order to satisfy the shock conditions. Discussion of the particle dynamics gives clear definition for distinguishing them from quasi-parallel shocks by defining a shock normal angle with respect to the upstream magnetic field. They exist for shock normal angles <45. Reflected particles at quasi-perpendicular shocks cannot escape far upstream along the magnetic field. They form a foot in front of the shock ramp. We discuss the reflecting shock potential and the explicit shock structure. Most theoretical insight is provided by numerical simulations which confirm reflection, foot formation and reformation of the shock. The latter being caused by steeping of the foot disturbance until the foot itself becomes the shock transition, reflecting particles upstream. Reformation modulates the shock temporarily but on the long terms guarantees its stationarity. Ion and electron dynamics are explicitly discussed in view of the various instabilities involved as well as particle acceleration and shock heating. Finally, a sketchy model of a typical quasi-perpendicular shock transition is provided.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Auer PL, Hurwitz H, Kilb RW (1962) Large amplitude compression of a collision-free plasma II. Development of a thermalized plasma. Phys Fluids 5:298–316. doi:10.1063/1.1706615

    Article  ADS  Google Scholar 

  • Bale SD, Hull A, Larson DE, Lin RP, Muschietti L, Kellogg PJ, Goetz K, Monson SJ (2002) Electrostatic turbulence and Debye-scale structures associated with electron thermalization at collisionless shocks. Astrophys J 575:L25–L28. doi:10.1086/342609

    Article  ADS  Google Scholar 

  • Bale SD, Mozer FS (2007) Measurement of large parallel and perpendicular electric fields on electron spatial scales in the terrestrial bow shock. Phys Rev Lett 98:205001. doi:10.1103/PhysRevLett.98.205001

    Article  ADS  Google Scholar 

  • Bale SD, Mozer FS, Horbury TS (2003) Density-transition scale at quasiperpendicular collisionless shocks. Phys Rev Lett 91:265004. doi:10.1103/PhysRevLett.91.265004

    Article  ADS  Google Scholar 

  • Bale SD, Mozer FS, Krasnoselskikh VV (2008) Direct measurement of the cross-shock electric potential at low plasma β, quasi-perpendicular bow shocks. arXiv:0809.2435

  • Balikhin MA, Krasnosel’skikh V, Gedalin MA (1995) The scales in quasiperpendicular shocks. Adv Space Res 15:247–260. doi:10.1016/0273-1177(94)00105-A

    Article  ADS  Google Scholar 

  • Balikhin MA, Walker S, Treumann R, Alleyne H, Krasnoselskikh V, Gedalin M, Andre M, Dunlop M, Fazakerley A (2005) Ion sound wave packets at the quasiperpendicular shock front. Geophys Res Lett 32:L24106. doi:10.1029/2005GL024660

    Article  ADS  Google Scholar 

  • Biskamp D (1973) Collisionless shock waves. Nucl Fusion 13:719–740

    Article  Google Scholar 

  • Biskamp D, Welter H (1972) Structure of the Earth’s bow shock. J Geophys Res 77:6052–6059. doi:10.1029/JA077i031p06052

    Article  ADS  Google Scholar 

  • Burgess D (2006a) Simulations of electron acceleration at collisionless shocks: the effects of surface fluctuations. Astrophys J 653:316–324. doi:10.1086/508805

    Article  ADS  Google Scholar 

  • Burgess D (2006b) Interpreting multipoint observations of substructure at the quasi-perpendicular bow shock: simulations. J Geophys Res 111:A10210. doi:10.1029/2006JA011691

    Article  ADS  Google Scholar 

  • Burgess D, Scholer M (2007) Shock front instability associated with reflected ions at the perpendicular shock. Phys Plasmas 14:012108. doi:10.1063/1.2435317

    Article  ADS  Google Scholar 

  • Czaykowska A, Bauer TM, Treumann RA, Baumjohann W (1998) Mirror waves downstream of the quasi-perpendicular bow shock. J Geophys Res 103:4747–4753. doi:10.1029/97JA03245

    Article  ADS  Google Scholar 

  • Edmiston JP, Kennel CF (1984) A parametric survey of the first critical Mach number for a fast MHD shock. J Plasma Phys 32:429–441. doi:10.1017/S002237780000218X

    Article  ADS  Google Scholar 

  • Eselevich VG (1982) Shock-wave structure in collisionless plasmas from results of laboratory experiments. Space Sci Rev 32:65–81. doi:10.1007/BF00225177

    Article  ADS  Google Scholar 

  • Feldman WC, Anderson RC, Bame SJ, Gary SP, Gosling JT, McComas DJ, Thomsen MF, Paschmann G, Hoppe MM (1983) Electron velocity distributions near the Earth’s bow shock. J Geophys Res 87:96–110. doi:10.1029/JA088iA01p00096

    Article  ADS  Google Scholar 

  • Formisano V, Torbert R (1982) Ion acoustic wave forms generated by ion-ion streams at the Earth’s bow shock. Geophys Res Lett 9:207–210. doi:10.1029/GL009i003p00207

    Article  ADS  Google Scholar 

  • Forslund DW, Morse RL, Nielson CW (1970) Electron cyclotron drift instability. Phys Rev Lett 25:1266–1269. doi:10.1103/PhysRevLett.25.1266

    Article  ADS  Google Scholar 

  • Forslund DW, Shonk CR (1970) Numerical simulation of electrostatic counterstreaming instabilities in ion beams. Phys Rev Lett 25:281–284. doi:10.1103/PhysRevLett.25.281

    Article  ADS  Google Scholar 

  • Galeev AA, Krasnosel’skikh VV, Lobzin VV (1988) Fine structure of the front of a quasi-perpendicular supercritical collisionless shock wave. Sov J Plasma Phys 14:697–702

    Google Scholar 

  • Goodrich CC, Scudder JD (1984) The adiabatic energy change of plasma electrons and the frame dependence of the cross-shock potential at collisionless magnetosonic shock waves. J Geophys Res 89:6654–6662. doi:10.1029/JA089iA08p06654

    Article  ADS  Google Scholar 

  • Gurnett DA (1985) Plasma waves and instabilities. In: Tsurutani BT, Stone RG (eds) Collisionless shocks in the heliosphere: reviews of current research. AGU, Washington, pp 207–224

    Chapter  Google Scholar 

  • Gurnett DA, Neubauer FM, Schwenn R (1979) Plasma wave turbulence associated with an interplanetary shock. J Geophys Res 84:541–552. doi:10.1029/JA084iA02p00541

    Article  ADS  Google Scholar 

  • Hada T, Oonishi M, Lembège B, Savoini P (2003) Shock front nonstationarity of supercritical perpendicular shocks. J Geophys Res 108:1233. doi:10.1029/2002JA009339

    Article  Google Scholar 

  • Hellinger P, Trávniček P, Lembège B, Savoini P (2007) Emission of nonlinear whistler waves at the front of perpendicular supercritical shocks: hybrid versus full particle simulations. Geophys Res Lett 34:L14109. doi:10.1029/2007GL030239

    Article  ADS  Google Scholar 

  • Hellinger P, Trávniček P, Matsumoto H (2002) Reformation of perpendicular shocks: hybrid simulations. Geophys Res Lett 29:2234. doi:10.1029/2002GL015915

    Article  ADS  Google Scholar 

  • Hobara Y, Waker SN, Balikhin M, Pokhotelov OA, Gedalin M, Kransnoselskikh V, Hayakawa M, André M, Dunlop M, Rème H, Fazakerley A (2008) Cluster observations of electrostatic solitary waves near the Earth’s bow shock. J Geophys Res 113:A05211. doi:10.1029/2007JA012789

    Article  Google Scholar 

  • Hull AJ, Larson DE, Wilber M, Scudder JD, Mozer FS, Russell CT, Bale SD (2006) Large-amplitude electrostatic waves associated with magnetic ramp substructure at Earth’s bow shock. Geophys Res Lett 33:L15104. doi:10.1029/2005GL025564

    Article  ADS  Google Scholar 

  • Kazantsev AP (1961) Flow of a conducting gas past a current-carrying plate. Sov Phys Dokl 5:771–773

    ADS  Google Scholar 

  • Kennel CF, Edmiston JP, Hada T (1985) A quarter century of collisionless shock research. In: Stone RG, Tsurutani BT (eds) Collisionless shocks in the heliosphere: a tutorial review. AGU, Washington, pp 1–36

    Chapter  Google Scholar 

  • Krasnoselskikh VV, Lembège B, Savoini P, Lobzin VV (2002) Nonstationarity of strong collisionless quasiperpendicular shocks: theory and full particle numerical simulations. Phys Plasmas 9:1192–1201. doi:10.1063/1.1457465

    Article  MathSciNet  ADS  Google Scholar 

  • Kuncic Z, Cairns IH, Knock S (2002) Analytic model for the electrostatic potential jump across collisionless shocks, with application to Earth’s bow shock. J Geophys Res 107:1218. doi:10.1029/2001JA000250

    Article  Google Scholar 

  • Lembège B, Dawson JM (1987a) Plasma heating through a supercritical oblique collisionless shock. Phys Fluids 30:1110–1114. doi:10.1063/1.866309

    Article  ADS  Google Scholar 

  • Lembège B, Dawson JM (1987b) Self-consistent study of a perpendicular collisionless and nonresistive shock. Phys Fluids 30:1767–1788. doi:10.1063/1.866191

    Article  ADS  Google Scholar 

  • Lembège B, Savoini P (1992) Nonstationarity of a two-dimensional quasiperpendicular supercritical collisionless shock by self-reformation. Phys Fluids 4:3533–3548. doi:10.1063/1.860361

    Article  Google Scholar 

  • Lembège B, Savoini P (2002) Formation of reflected electron bursts by the nonstationarity and nonuniformity of a collisionless shock front. J Geophys Res 107:1037. doi:10.1029/2001JA900128

    Article  Google Scholar 

  • Lembège B, Walker SN, Savoini P, Balikhin MA, Krasnoselskikh V (1999) The spatial sizes of electric and magnetic field gradients in a simulated shock. Adv Space Res 24:109–112. doi:10.1016/S0273-1177(99)00435-4

    Article  ADS  Google Scholar 

  • Leroy MM (1984) Computer simulations of collisionless shock waves. Adv Space Res 4:231–243. doi:10.1016/0273-1177(84)90317-X

    Article  ADS  Google Scholar 

  • Leroy MM, Goodrich CC, Winske D, Wu CS, Papadopoulos K (1981) Simulation of a perpendicular bow shock. Geophys Res Lett 8:1269–1272. doi:10.1029/GL008i012p01269

    Article  ADS  Google Scholar 

  • Leroy MM, Winske D, Goodrich CC, Wu CS, Papadopoulos K (1982) The structure of perpendicular bow shocks. J Geophys Res 87:5081–5094. doi:10.1029/JA087iA07p05081

    Article  ADS  Google Scholar 

  • Lowe RE, Burgess D (2003) The properties and causes of rippling in quasi-perpendicular collisionless shock fronts. Ann Geophys 21:671–679. doi:10.5194/angeo-21-671-2003

    Article  ADS  Google Scholar 

  • Masters A, Schwartz SJ, Henley EM, Thomsen MF, Zieger B, Coates AJ, Achilleos N, Mitchell J, Hansen KC, Dougherty MK (2011) Electron heating at Saturn’s bow shock. J Geophys Res 116:A10107 doi:10.1029/2011JA016941

    Article  ADS  Google Scholar 

  • Matsui H, Torbert RB, Baumjohann W, Kucharek H, Schwartz SJ, Mouikis CG, Vaith H, Kistler LM, Lucek EA, Fazakerley AN, Miao B, Paschmann G (2011) Oscillation of electron counts at 500 eV downstream of the quasi-perpendicular bow shock, J Geophys Res 113:A08223. doi:10.1029/2007JA012939

    Article  Google Scholar 

  • Matsukiyo S, Scholer M (2003) Modified two-stream instability in the foot of high Mach number quasi-perpendicular shocks. J Geophys Res 108: ID 1459. doi:10.1029/2003JA010080

    Article  Google Scholar 

  • Matsukiyo S, Scholer M (2006a) On microinstabilities in the foot of high Mach number perpendicular shocks. J Geophys Res 111:A06104. doi:10.1029/2005JA011409

    Article  Google Scholar 

  • Matsukiyo S, Scholer M (2006b) On reformation of quasi-perpendicular collisionless shocks. Adv Space Res 38:57–63. doi:10.1016/j.asr.2004.08.012

    Article  ADS  Google Scholar 

  • Mazelle CX, Lembege B, Morgenthaler A, Meziane K (2010) Nonstationarity of quasi-perpendicular shocks: magnetic structure, ion properties and micro-turbulence. AGU Fall Meeting Abstracts, SM51B-1792

    Google Scholar 

  • Meziane K, Hamza AM, Wilber M, Mazelle C, Lee MA (2011) Anomalous foreshock field-aligned beams observed by cluster. Ann Geophys 29:1967–1975. doi:10.5194/angeo-29-1967-2011

    Article  ADS  Google Scholar 

  • Morse DL, Destler WW, Auer PL (1972) Nonstationary behavior of collisionless shocks. Phys Rev Lett 28:13–16. doi:10.1103/PhysRevLett.28.13

    Article  ADS  Google Scholar 

  • Moullard O, Burgess D, Horbury TS, Lucek EA (2006) Ripples observed on the surface of the Earth’s quasi-perpendicular bow shock. J Geophys Res 111:A09113. doi:10.1029/2005JA011594

    Article  Google Scholar 

  • Muschietti L, Lembège B (2006) Electron cyclotron microinstability in the foot of a perpendicular shock: a self-consistent PIC simulation. Adv Space Res 37:483–493. doi:10.1016/j.asr.2005.03.077

    Article  ADS  Google Scholar 

  • Papadopoulos K (1985) Microinstabilities and anomalous transport. In: Stone RG, Tsurutani BT (eds) Collisionless shocks in the heliosphere: a tutorial review. AGU Washington, pp 59–90

    Chapter  Google Scholar 

  • Papadopoulos K (1988) Electron heating in superhigh Mach number shocks. Astrophys Space Sci 144:535–547. doi:10.1007/BF00793203

    ADS  Google Scholar 

  • Papadopoulos K, Davidson RC, Dawson JM, Haber I, Hammer D A, Krall NA, Shanny R (1971) Heating of counterstreaming ion beams in an external magnetic field. Phys Fluids 14:849–857. doi:10.1063/1.1693520

    Article  ADS  Google Scholar 

  • Papadopoulos K, Wagner CE, Haber I (1971a), High-Mach-number turbulent magnetosonic shocks. Phys Rev Lett 27:982–986. doi:10.1103/PhysRevLett.27.982

    Article  ADS  Google Scholar 

  • Paul PWM, Goldenbum GC, Iiyoshi A, Holmes LS, Hardcastle RA (1967) Measurement of electron temperatures produced by collisionless shock waves in a magnetized plasma. Nature 216:363–364. doi:10.1038/216363a0

    Article  ADS  Google Scholar 

  • Pickett JS, Kahler SW, Chen LJ, Huff RL, Santolik O, Khotyaintsev Y, Décréau PME, Winningham D, Frahm R, Goldstein ML, Lakhina GS, Tsurutani BT, Lavraud B, Gurnett DA, André M, Fazakerley A, Balogh A, Rème H (2004) Solitary waves observed in the auroral zone: the Cluster multi-spacecraft perspective. Nonlinear Process Geophys 12:183–196

    Article  ADS  Google Scholar 

  • Quests KB (1986) Simulations of high Mach number perpendicular shocks with resistive electrons. J Geophys Res 91:8805–8815. doi:10.1029/JA091iA08p08805

    Article  ADS  Google Scholar 

  • Rodriguez P, Gurnett DA (1975) Electrostatic and electromagnetic turbulence associated with the Earth’s bow shock. J Geophys Res 80:19–31. doi:10.1029/JA080i001p00019

    Article  ADS  Google Scholar 

  • Sagdeev RZ (1966) Cooperative phenomena in collisionless plasmas. In: Leontovich MA (ed) Rev plasma phys, vol 4. Consultants Bureau, New York, pp 32–91

    Google Scholar 

  • Savoini P, Lembège B (1994) Electron dynamics in two- and one-dimensional oblique supercritical collisionless magnetosonic shocks. J Geophys Res 99:6609–6635. doi:10.1029/93JA03330

    Article  ADS  Google Scholar 

  • Savoini P, Lembège B (2001) Two-dimensional simulations of a curved shock: self-consistent formation of the electron foreshock. J Geophys Res 106:12975–12992. doi:10.1029/2001JA900007

    Article  ADS  Google Scholar 

  • Savoini P, Lembège B (2010) Non-adiabatic electron behavior through a supercritical perpendicular collisionless shock: impact of the shock front turbulence. J Geophys Res 115:A11103. doi:10.1029/2010JA015381

    Article  ADS  Google Scholar 

  • Savoini P, Lembége B, Stienlet J (2010) Origin of backstreaming electrons within the quasi-perpendicular foreshock region: two-dimensional self-consistent PIC simulation. J Geophys Res 115:A09104. doi:10.1029/2010JA015263

    Article  Google Scholar 

  • Schmitz H, Chapman SC, Dendy RO (2002) Electron preacceleration mechanisms in the foot region of high Alfvénic Mach number shocks. Astrophys J 579:327–336. doi:10.1086/341733

    Article  ADS  Google Scholar 

  • Scholer M, Burgess D (2006) Transition scale at quasiperpendicular collisionless shocks: full particle electromagnetic simulations. Phys Plasmas 13:062101. doi:10.1063/1.2207126

    Article  ADS  Google Scholar 

  • Scholer M, Burgess D (2007) Whistler waves, core ion heating, and nonstationarity in oblique collisionless shocks. Phys Plasmas 14:072103. doi:10.1063/1.2748391

    Article  ADS  Google Scholar 

  • Scholer M, Matsukiyo S (2004) Nonstationarity of quasi-perpendicular shocks: a comparison of full particle simulations with different ion to electron mass ratio. Ann Geophys 22:2345–2353. doi:10.5194/angeo-22-2345-2004

    Article  ADS  Google Scholar 

  • Scholer M, Shinohara I, Matsukiyo S (2003) Quasi-perpendicular shocks: length scale of the cross-shock potential, shock reformation, and implication for shock surfing. J Geophys Res 108: ID 1014. doi:10.1029/2002JA009515

    Article  Google Scholar 

  • Schwartz SJ, Henley E, Mitchell J, Krasnoselskikh V (2011) Electron temperature gradient scale at collisionless shocks. Phys Rev Lett 107:215002. doi:10.1103/PhysRevLett.107.215002

    Article  ADS  Google Scholar 

  • Schwartz SJ, Thomsen MF, Gosling JT (1983) Ions upstream of the Earth’s bow shock – a theoretical comparison of alternative source populations. J Geophys Res 88:2039–2047. doi:10.1029/JA088iA03p02039

    Article  ADS  Google Scholar 

  • Sckopke N, Paschmann G, Bame SJ, Gosling JT, Russell CT (1983) Evolution of ion distributions across the nearly perpendicular bow shock – specularly and non-specularly reflected-gyrating ions. J Geophys Res 88:6121–6136. doi:10.1029/JA088iA08p06121

    Article  ADS  Google Scholar 

  • Scudder JD (1995) A review of the physics of electron heating at collisionless shocks. Adv Space Res 15:181–223. doi:10.1016/0273-1177(94)00101-6

    Article  ADS  Google Scholar 

  • Scudder JD, Aggson TL, Mangeney A, Lacombe C, Harvey CC (1986) The resolved layer of a collisionless, high beta, supercritical, quasi-perpendicular shock wave. I – Rankine-Hugoniot geometry, currents, and stationarity, II – Dissipative fluid electrodynamics, III – Vlasov electrodynamics. J Geophys Res 91:11019–11097. doi:10.1029/JA091iA10p11019

    Article  ADS  Google Scholar 

  • Shimada N, Hoshino M (2000) Strong electron acceleration at high Mach number shock waves: simulation study of electron dynamics. Astrophys J 543:L67–L71. doi:10.1086/318161

    Article  ADS  Google Scholar 

  • Shimada N, Hoshino M (2005) Effect of strong thermalization on shock dynamical behavior. J Geophys Res 110:A02105. doi:10.1029/2004JA010596

    Article  Google Scholar 

  • Shinohara I, Fujimoto M (2010) Results of a 3-D full particle simulation of quasi-perpendicular shock. AGU Fall Meeting Abstracts, SH51D-1724

    Google Scholar 

  • Shinohara I, Fujimoto M (2011) Electron acceleration in the foot region of a quasi-perpendicular shock. AGU Fall Meeting Abstracts, SH41D-1904

    Google Scholar 

  • Sundkvist DJ, Krasnoselskikh V, Bale S (2009) AGU Fall Meeting Abstracts, A1453

    Google Scholar 

  • Sundkvist DJ, Krasnoselskikh V, Bale SD, Schwartz SJ, Soucek J, Mozer F (2012) Dispersive nature of high Mach number collisionless plasma shocks: Poynting flux of oblique whistler waves. Phys Rev Lett 108:025002. doi:10.1103/PhysRevLett.108.025002

    Article  ADS  Google Scholar 

  • Umeda T, Yamazaki R (2006) Full particle simulation of a perpendicular collisionless shock: a shock-rest-frame model. Earth Planets Space 58:e41–e44

    ADS  Google Scholar 

  • Walker SN, Alleyne H, Balikhin M, André M, Horbury T (2004) Electric field scales at quasi-perpendicular shocks. Ann Geophys 22:2291–2300. doi:10.5194/angeo-22-2291-2004

    Article  ADS  Google Scholar 

  • Weibel ES (1959) Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution. Phys Rev Lett 2:83–84. doi:10.1103/PhysRevLett.2.83

    Article  ADS  Google Scholar 

  • Whitham GB (1974) Linear and nonlinear waves. Wiley-Interscience, New York

    MATH  Google Scholar 

  • Wilson LB III, Koval A, Szabo A, Breneman A, dattell CA, Goetz K, Kellogg PJ, Kersten K, Kasper JC, Maruca BA, Pulupa M (2012) Observations of electromagnetic whistler precursors at supercritical interplanetary shocks. Geophys Res Lett 39:L08109. doi:10.1029/2012GL051581

    Article  Google Scholar 

  • Winske D, Quest KB (1988) Magnetic field and density fluctuations at perpendicular supercritical collisionless shocks. J Geophys Res 93:9681–9693. doi:10.1029/JA093iA09p09681

    Article  ADS  Google Scholar 

  • Wu CS, Winske D, Papadopoulos K, Zhou YM, Tsai ST, Guo SC (1983) A kinetic cross-field streaming instability. Phys Fluids 26:1259–1267. doi:10.1063/1.864285

    Article  ADS  MATH  Google Scholar 

  • Wu CS, Winske D, Tanaka M, Papadopoulos K, Akimoto K, Goodrich CC, Zhou YM, Tsai ST, Rodriguez P, Lin CS (1984) Microinstabilities associated with a high Mach number, perpendicular bow shock. Space Sci Rev 36:64–109. doi:10.1007/BF00213958

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Balogh, A., Treumann, R.A. (2013). Quasi-perpendicular Supercritical Shocks. In: Physics of Collisionless Shocks. ISSI Scientific Report Series, vol 12. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6099-2_5

Download citation

Publish with us

Policies and ethics