Skip to main content

Ice Cream Structure

  • Chapter
  • First Online:
Ice Cream

Abstract

Ice cream has a very complex structure, with multiple phases that can influence product textural quality and physical attributes including shape retention and structural collapse during melting. The mix ingredients supply water, fat, milk solids-not-fat (casein micelles, whey proteins, lactose, and milk salts), sugars (sucrose and partially hydrolyzed starch, including glucose, maltose, and higher saccharides), stabilizers, and emulsifiers. Air is subsequently added prior to dynamic freezing. All of these contribute to the structural elements in ice cream. Fat either remains as globular, emulsified droplets, or is converted to a partially crystalline fat structure, a process that is enhanced by the action of the emulsifiers at the fat globule interface. Water is converted to ice crystals. Air is whipped into small bubbles. The sugars and stabilizers become freeze-concentrated in the unfrozen serum phase. The functionality of proteins contributes to the fat and air structures by adsorbing to interfaces and to the unfrozen phase by providing bulk and water-holding properties, both of which add viscosity. This chapter reviews the formation and significance of these structural elements. It also discusses the effect of these structures on physical properties of ice cream, including thermal diffusivity, meltdown properties, and rheological/mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The oft-used term “supercooled” to represent a temperature below the freezing point is often argued. Many prefer the terms “undercooled” or “subcooled” to signify that temperature is below freezing point. However, in the context that supercooled means “beyond” cooled, the term “supercooled” can be justified.

References

  • Adleman R, Hartel RW (2001) Lipid crystallization and its effect on the physical structure of ice cream. In: Garti N, Sato K (eds) Crystallization processes in fats and lipid systems. Marcel Dekker, New York, pp 381–427

    Google Scholar 

  • Aleong J, Frochot S, Goff HD (2008) Ice recrystallization inhibition in ice cream by propylene glycol monostearate. J Food Sci 73(9):E463–E468

    Article  CAS  Google Scholar 

  • Barfod NM, Krog N, Larsen G, Buchheim W (1991) Effects of emulsifiers on protein-fat interaction in ice cream mix during aging. Fett Wiss Tecknol 93:24–35

    Article  CAS  Google Scholar 

  • Bazmi A, Duquenoy A, Relkin P (2007) Aeration of low fat dairy emulsions: effects of saturated–unsaturated triglycerides. Int Dairy J 17:1021–1027

    Article  CAS  Google Scholar 

  • Ben-Yoseph E and Hartel RW. 1998. Computer simulation of ice recrystallization in ice cream during storage. J Food Engineering 38:309–331

    Google Scholar 

  • Berger KG (1997) Ice cream. In: Friberg SE, Larsson K (eds) Food emulsions, 3rd edn. Marcel Dekker, New York, pp 413–490

    Google Scholar 

  • Berger KG, White GW (1979) Ice cream. In: Vaughan G (ed) Food microscopy. Academic, London, pp 499–529

    Google Scholar 

  • Bolliger S, Goff HD, Tharp BW (2000a) Correlation between colloidal properties of ice cream mix and ice cream. Int Dairy J 10:303–309

    Article  CAS  Google Scholar 

  • Bolliger S, Kornbrust B, Goff HD, Tharp BW, Windhab EJ (2000b) Influence of emulsifiers on ice cream produced by conventional freezing and low temperature extrusion processing. Int Dairy J 10:497–504

    Article  Google Scholar 

  • Bourriot S, Garnier C, Doublier J-L (1999a) Phase separation, rheology and structure of micellar casein-galactomannan mixtures. Int Dairy J 9:353–357

    Article  CAS  Google Scholar 

  • Bourriot S, Garnier C, Doublier J-L (1999b) Micellar-casein-κ-carrageenan mixtures. I. Phase separation and ultrastructure. Carbohydr Polym 40:145–157

    Article  CAS  Google Scholar 

  • Caillet A, Cogne C, Andrieu J, Laurent P, Rivoire A (2003) Characterization of ice cream structure by direct optical microscopy. Influence of freezing parameters. Lebensm Wiss U Technol 36:743–749

    CAS  Google Scholar 

  • Caldwell KB, Goff HD, Stanley DW (1992) A low temperature scanning electron microscopy study of ice cream. I. Techniques and general microstructure. Food Struct 11:1–9

    Google Scholar 

  • Chang Y-H, Hartel RW (2002a) Measurement of air cell distributions in dairy foams. Int Dairy J 12:463–472

    Article  Google Scholar 

  • Chang Y-H, Hartel RW (2002b) Development of air cells in a batch ice cream freezer. J Food Eng 55(1):71–78

    Article  Google Scholar 

  • Chang Y-H, Hartel RW (2002c) Stability of air cells in ice cream during hardening and storage. J Food Eng 55(1):59–70

    Article  Google Scholar 

  • Chen J, Dickinson E (1993) Time-dependent competitive adsorption of milk proteins and surfactants in oil in water emulsions. J Sci Food Agric 62:283–289

    Article  CAS  Google Scholar 

  • Cook KLK, Hartel RW (2010) Mechanisms of ice formation in ice cream production. Compr Rev Food Sci 9(2):213–222

    Article  Google Scholar 

  • Cook KLK, Hartel RW (2011) Effect of freezing temperature and warming rate on dendrite break-up when freezing ice cream mix. Int Dairy J 21:447–453

    Article  Google Scholar 

  • Courthaudon J-L, Dickinson E, Dalgleish DG (1991) Competitive adsorption of β-casein and nonionic surfactants in oil in water emulsions. J Colloid Interface Sci 145:390–395

    Article  CAS  Google Scholar 

  • Crilly JF, Russell AB, Cox AR, Cebula DJ (2008) Designing multiscale structures of desired properties of ice cream. Ind Eng Chem Res 47:6362–6367

    Article  CAS  Google Scholar 

  • Da Silva E Jr, da Silva ERT, Murumatsu M, da Silva Lannes SC, da Silva Lannes SC (2010) Transient process in ice creams evaluated by laser speckles. Food Res Int 43:1470–1475

    Article  Google Scholar 

  • Dalgleish DG, Morris ER (1988) Interactions between carrageenans and casein micelles: electrophoretic and hydrodynamic properties of the particles. Food Hydrocoll 2:311–320

    Article  CAS  Google Scholar 

  • Dalgleish DG, Srinivasan M, Singh H (1995) Surface properties of oil-in-water emulsion droplets containing casein and Tween 60. J Agric Food Chem 43:2351–2355

    Article  CAS  Google Scholar 

  • Drewett EM, Hartel RW (2007) Ice crystallization in a scraped surface freezer. J Food Eng 78:1060–1066

    Article  Google Scholar 

  • Dubey UK, White CH (1997) Ice cream shrinkage. J Dairy Sci 80:3439–3444

    Article  CAS  Google Scholar 

  • Eisner MD, Wildmoser H, Windhab EJ (2005) Air cell microstructuring in a high viscous ice cream matrix. Colloid Surf A 263:390–399

    Article  CAS  Google Scholar 

  • El-Nagar G, Clowes G, Tudorica CM, Kuri V, Brennan CS (2002) Rheological quality and stability of yog-ice cream with added inulin. Int J Dairy Technol 55(2):89–93

    Article  CAS  Google Scholar 

  • Euston SE, Singh H, Munro PA, Dalgleish DG (1995) Competitive adsorption between sodium caseinate and oil-soluble and water-soluble surfactants in oil-in-water emulsions. J Food Sci 60:1151–1156

    Article  Google Scholar 

  • Euston SE, Singh H, Munro PA, Dalgleish DG (1996) Oil-in-water emulsions stabilized by sodium caseinate or whey protein isolate as influenced by glycerol monostearate. J Food Sci 61:916–920

    Article  CAS  Google Scholar 

  • Flores AA, Goff HD (1999) Ice crystal size distributions in dynamically frozen model solutions and ice cream as affected by stabilizers. J Dairy Sci 82:1399–1407

    Article  CAS  Google Scholar 

  • Gelin J-L, Poyen L, Courthadon J-L, Le Meste M, Lorient D (1994) Structural changes in oil-in-water emulsions during the manufacture of ice cream. Food Hydrocoll 8:299–308

    Article  CAS  Google Scholar 

  • Gelin J-L, Poyen L, Rizzotti R, Dacremont C, Le Meste M, Lorient D (1996a) Interactions between food components in ice cream. Part 2. Structure-texture relationships. J Texture Stud 27:199–215

    Article  Google Scholar 

  • Gelin J-L, Poyen L, Rizzotti R, Le Meste M, Courthadon J-L, Lorient D (1996b) Interactions between food components in ice cream. Part 1. Unfrozen emulsions. Food Hydrocoll 10:385–393

    Article  CAS  Google Scholar 

  • Goff HD (1997) Colloidal aspects of ice cream—a review. Int Dairy J 7:363–373

    Article  CAS  Google Scholar 

  • Goff HD (2002) Formation and stabilisation of structure in ice cream and related products. Curr Opin Colloid Interface Sci 7:432–437

    Article  CAS  Google Scholar 

  • Goff HD, Jordan WK (1989) Action of emulsifiers in promoting fat destabilization during the manufacture of ice cream. J Dairy Sci 72:18–29

    Article  CAS  Google Scholar 

  • Goff HD, Sahagian ME (1996) Glass transitions in aqueous carbohydrate solutions and their relevance to frozen food stability. Thermochim Acta 280:449–464

    Article  Google Scholar 

  • Goff HD, Liboff M, Jordan WK, Kinsella JE (1987) The effects of Polysorbate 80 on the fat emulsion in ice cream mix: evidence from transmission electron microscopy studies. Food Microstruct 6:193–198

    CAS  Google Scholar 

  • Goff HD, Freslon B, Sahagian ME, Hauber TD, Stone AP, Stanley DW (1995) Structural development in ice cream-dynamic rheological measurements. J Texture Stud 26:517–536

    Article  Google Scholar 

  • Goff HD, Verespej E, Smith AK (1999a) A study of fat and air structures in ice cream. Int Dairy J 9:817–829

    Article  CAS  Google Scholar 

  • Goff HD, Ferdinando D, Schorsch C (1999b) Fluorescence microscopy to study galactomannan structure in frozen sucrose and milk protein solutions. Food Hydrocoll 13:353–364

    Article  CAS  Google Scholar 

  • Goff HD, Verespej E, Jermann D (2003) Glass transitions in frozen sucrose solutions are influenced by solute inclusions within ice crystals. Thermochim Acta 399:43–55

    Article  CAS  Google Scholar 

  • Goh KKT, Ye A, Dale N (2006) Characterisation of ice cream containing flaxseed oil. Int J Food Sci Technol 41:946–953

    Article  CAS  Google Scholar 

  • Granger C, Leger A, Barey P, Langendorff V, Cansell M (2005) Influence of formulation on the structural networks in ice cream. Int Dairy J 15:255–262

    Article  CAS  Google Scholar 

  • Hartel RW (1996) Ice crystallization during manufacture of ice cream. Trends Food Sci Technol 7(10):315–320

    Article  CAS  Google Scholar 

  • Hartel RW. 2001. Crystallization in Foods. Aspen Publ., NY

    Article  CAS  Google Scholar 

  • Hartel RW, Muse M, Sofjan R (2003) Effects of structural attributes on hardness and melting rate of ice cream. In Goff HD, Tharp BW (eds) Ice cream II. Special issue 401, International Dairy Federation, Brussels, p 124–139

    Google Scholar 

  • Hayes MG, Lefrancois AC, Waldron DS, Goff HD, Kelly AL (2003) Influence of high pressure homogenisation on some characteristics of ice cream. Milchwissenschaft 58(9/10):519–523

    Google Scholar 

  • Hindmarsh JP, Russell AB, Chen XD (2007) Fundamentals of spray freezing of foods—microstructure of frozen droplets. J Food Eng 78:136–150

    Article  Google Scholar 

  • Huppertz T, Smiddy MA, Goff HD, Kelly AL (2011) Effects of high pressure treatment of mix on ice cream manufacture. Int Dairy J 21:718–726

    Article  Google Scholar 

  • Jonkman MJ, Walstra P, van Boekel MAJS, Cebula DJ (1999) Behavior of casein micelles under conditions comparable to those in ice cream. Int Dairy J 9:201–205

    Article  CAS  Google Scholar 

  • Koxholt MMR, Eisenmann B, Hinrichs J (2000) Effect of process parameters on the structure of ice cream. Eur Dairy Mag 12(1):27–30

    Google Scholar 

  • Koxholt MMR, Eisenmann B, Hinrichs J (2001) Effect of the fat globule sizes on the meltdown of ice cream. J Dairy Sci 84:31–37

    Article  CAS  Google Scholar 

  • Le Reverend BJD, Norton IT, Cox PW, Spyropoulis F (2010) Colloidal aspects of eating. Curr Opin Colloid Interface Sci 15:84–89

    Article  Google Scholar 

  • Lim S-Y, Swanson BG, Ross CF, Clark S (2008) High hydrostatic pressure modification of whey protein concentrate for improved body and texture of lowfat ice cream. J Dairy Sci 91:1308–1316

    Article  CAS  Google Scholar 

  • Linder MB (2009) Hydrophobins: proteins that self-assemble at interfaces. Curr Opin Colloid Interface Sci 14:356–363

    Article  CAS  Google Scholar 

  • Mendez-Velasco C, Goff HD (2011) Enhancement of fat colloidal interactions for the preparation of ice cream high in unsaturated fat. Int Dairy J 21:540–547

    Article  CAS  Google Scholar 

  • Mendez-Velasco C, Goff HD (2012a) Fat structures as affected by unsaturated or saturated monoglyceride and their effect on ice cream structure, texture and stability. Int Dairy J 24:33–39

    Article  CAS  Google Scholar 

  • Mendez-Velasco C, Goff HD (2012b) Fat aggregation in ice cream: a study on the types of fat interactions. Food Hydrocoll 29:152–159

    Article  CAS  Google Scholar 

  • Muse MR, Hartel RW (2004) Ice cream structural elements that affect melting rate and hardness. J Dairy Sci 87:1–10

    Article  CAS  Google Scholar 

  • Patmore JV, Goff HD, Fernandes S (2003) Cryo-gelation of galactomannans in ice cream model systems. Food Hydrocoll 17:161–169

    Article  CAS  Google Scholar 

  • Pawar AB, Caggioni M, Ergun R, Hartel RW, Spicer PT (2012) Arrested coalescence of viscoelastic droplets with internal microstructure. Faraday Discuss 158:341–350. doi:10.1039/C2FD20029E

    Article  CAS  Google Scholar 

  • Pelan BMC, Watts KM, Campbell IJ, Lips A (1997) The stability of aerated milk protein emulsions in the presence of small molecule surfactants. J Dairy Sci 80:2631–2638

    Article  CAS  Google Scholar 

  • Persson M (2009) Nutritionally optimized ice cream fats. Lipid Technol 21(30):62–64

    Article  CAS  Google Scholar 

  • Regand A, Goff HD (2002) Effect of biopolymers on structure and ice recrystallization in dynamically-frozen ice cream model systems. J Dairy Sci 85:2722–2732

    Article  CAS  Google Scholar 

  • Regand A, Goff HD (2003) Structure and ice recrystallization in frozen stabilized ice cream model systems. Food Hydrocoll 17:95–102

    Article  CAS  Google Scholar 

  • Regand A, Goff HD (2006) Ice recrystallization inhibition of ice structuring proteins from winter wheat grass in model solutions and ice cream. J Dairy Sci 89:49–57

    Article  CAS  Google Scholar 

  • Relkin P, Sourdet S, Smith AK, Goff HD, Cuvelier G (2006) Effects of whey protein aggregation on fat globule microstructure in whipped frozen emulsions. Food Hydrocoll 20:1050–1056

    Article  CAS  Google Scholar 

  • Roos YR (2010) Glass transition temperature its relevance in food processing. Annu Rev Food Sci Technol 1:469–496

    Article  CAS  Google Scholar 

  • Russell AB, Cheney PE, Wantling SD (1999) Influence of freezing conditions on ice crystallization in ice cream. J Food Eng 39:179–191

    Article  Google Scholar 

  • Sahagian ME, Goff HD (1995) Thermal, mechanical and molecular relaxation properties of ­stabilized sucrose solutions at sub-zero temperatures. Food Res Int 28:1–8

    Article  CAS  Google Scholar 

  • Sakurai K, Kokubo S, Hakamata K, Tomita M, Yoshida S (1996) Effect of production conditions on ice cream melting resistance and hardness. Milchwissenschaft 51(8):451–454

    CAS  Google Scholar 

  • Schawe JEK. A quantitative DSC analysis of the metastable phase behavior of the sucrose-water system. Thermochim. Acta 451:115–125

    CAS  Google Scholar 

  • Schorsch C, Jones MG, Norton IT (1999) Thermodynamic incompatibility and microstructure of milk protein/locust bean gum/sucrose systems. Food Hydrocoll 13:89–99

    Article  CAS  Google Scholar 

  • Schorsch C, Jones MG, Norton IT (2000) Phase behaviour of pure micellar casein/κ-carrageenan systems in milk salt ultrafiltrate. Food Hydrocoll 14:347–358

    Article  CAS  Google Scholar 

  • Segall KI, Goff HD (1999) Influence of adsorbed milk protein type and surface concentration on the quiescent and shear stability of butteroil emulsions. Int Dairy J 9:683–691

    Article  CAS  Google Scholar 

  • Snoeren THM, Payens TAJ, Jeunink J, Both P (1975) Electrostatic interaction between κ-­carrageenan and κ-casein. Milchwissenschaft 30:393–396

    CAS  Google Scholar 

  • Snoeren THM, Both P, Schmidt DG (1976) An electron-microscopic study of carrageenan and its interaction with κ-casein. Neth Milk Dairy J 30:132–141

    CAS  Google Scholar 

  • Sofjan RP, Hartel RW (2004) Effects of overrun on structural and physical properties of ice cream. Int Dairy J 14:255–262

    Article  Google Scholar 

  • Spagnuolo P, Dalgleish DG, Goff HD, Morris ER (2005) Kappa-carrageenan interactions in systems containing casein micelles and polysaccharide stabilizers. Food Hydrocoll 19:371–377

    Article  CAS  Google Scholar 

  • Sung KK, Goff HD (2010) Effect of solid fat content on structure in ice creams containing palm kernel oil and high-oleic sunflower oil. J Food Sci 75(3):C274–C279

    Article  CAS  Google Scholar 

  • Syrbe A, Bauer WJ, Klostermeyer H (1998) Polymer science concepts in dairy systems. An overview of milk protein and food hydrocolloid interaction. Int Dairy J 3:179–193

    Article  Google Scholar 

  • Thaiudom S, Goff HD (2003) Effect of k-carrageenan on milk protein polysaccharide mixtures. Int Dairy J 13:763–771

    Article  CAS  Google Scholar 

  • Tharp BW, Forrest B, Swan C, Dunning L, Hilmoe M (1998) Basic factors affecting ice cream meltdown. In: Buchheim W (ed) Ice cream: proceedings of the international symposium held in Athens, Greece, 18–19 Sept 1997. International Dairy Federation, Brussels, Belgium, p 54–64

    Google Scholar 

  • Tosaki M, Kitamura Y, Satake T, Tsurutani T (2009) Effects of homogenization conditions on the physical properties of high fat ice cream. Int J Dairy Technol 62(4):577–583

    Article  CAS  Google Scholar 

  • Turan S, Kirkland M, Trusty PA, Campbell I (1999) Interaction of fat and air in ice cream. Dairy Ind Int 64:27–31

    Google Scholar 

  • Vega C, Goff HD (2005) Phase separation in soft-serve ice cream mixes: rheology and microstructure. Int Dairy J 15:249–254

    Article  Google Scholar 

  • Vega C, Andrew RA, Goff HD (2004) Serum separation in soft serve ice cream mixes. Milchwissenschaft 59:284–287

    CAS  Google Scholar 

  • Vega C, Dalgleish DG, Goff HD (2005) Effect of κ-carrageenan addition to dairy emulsions ­containing sodium caseinate and locust bean gum. Food Hydrocoll 19:187–195

    Article  CAS  Google Scholar 

  • Volkert M, Puaud M, Wille H-J, Knorr D (2011) Effects of high pressure-low temperature ­treatment on freezing behavior, sensorial properties and air cell distributions in sugar rich dairy based frozen food foam and emulsions. Innov Food Sci Emerg Technol 13:75–85

    Article  Google Scholar 

  • Wilbey RA, Cooke T, Dimos G (1998) Effects of solute concentration, overrun and storage on the hardness of ice cream. In: Buchheim W (ed) Ice cream: proceedings of the international symposium held in Athens, Greece, 18–19 Sept 1997. International Dairy Federation, Brussels, Belgium, p 186–187

    Google Scholar 

  • Wildmoser H, Windhab EJ (2001) Impact of flow geometry and processing parameters in ultra low temperature ice-cream extrusion (ULTICE) on ice-cream microstructure. Eur Dairy Mag 13(10):26–32

    Google Scholar 

  • Wildmoser H, Scheiwiller J, Windhab EJ (2004) Impact of disperse microstructure on rheology and quality aspects of ice cream. Lebensm Wiss Technol 37:881–891

    Article  CAS  Google Scholar 

  • Xinyi E, Pei ZJ, Schmidt KA (2010) Ice cream: foam formation and stabilization—a review. Food Rev Int 26:122–137

    Article  Google Scholar 

  • Zhang Z, Goff HD (2004) Protein distribution at air interfaces in dairy foams and ice cream as affected by casein dissociation and emulsifiers. Int Dairy J 14:647–657

    Article  CAS  Google Scholar 

  • Zhang Z, Goff HD (2005) On fat destabilization and composition of the air interface in ice cream containing saturated and unsaturated monoglyceride. Int Dairy J 15:495–500

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goff, H.D., Hartel, R.W. (2013). Ice Cream Structure. In: Ice Cream. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-6096-1_11

Download citation

Publish with us

Policies and ethics