Taurine 8 pp 39-50 | Cite as

The Effect of Long-Term Taurine Supplementation and Fructose Feeding on Glucose and Lipid Homeostasis in Wistar Rats

  • Lea Hüche Larsen
  • Laura Kofoed Hvidsten Ørstrup
  • Svend Høime Hansen
  • Niels Grunnet
  • Bjørn Quistorff
  • Ole Hartvig MortensenEmail author
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 776)


The nonprotein amino acid taurine has been shown to counteract the negative effects of a high-fructose diet in rats with regard to insulin resistance and dyslipidemia. Here we examined the long-term (26 weeks) effects of oral taurine supplementation (2% in the drinking water) in fructose-fed Wistar rats.

The combination of fructose and taurine caused a significant increase in fasting glucose compared to the control diet without changing hepatic phosphoenol pyruvate carboxykinase mRNA levels. The combination of fructose and taurine also improved glucose tolerance compared to control. Neither a high-fructose diet nor taurine supplementation induced significant changes in body weight, body fat or total calorie intake, fasting insulin levels, HOMA-IR, or insulin-induced Akt phosphorylation in skeletal muscle.

Fructose alone caused a decrease in liver triglyceride content, with taurine supplementation preventing this. There was no effect of long-term fructose diet and/or taurine supplementation on plasma triglycerides, plasma nonesterified fatty acids, as well as plasma HDL, LDL, and total cholesterol.

In conclusion, the study suggests that long-term taurine supplementation improves glucose tolerance and normalize hepatic triglyceride content following long-term fructose feeding. However, as the combination of taurine and fructose also increased fasting glucose levels, the beneficial effect of taurine supplementation towards amelioration of glucose intolerance and insulin resistance may be questionable.


Fasting Glucose Improve Glucose Tolerance Phosphoenol Pyruvate Carboxykinase Taurine Supplementation Taurine Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





High-density lipoprotein cholesterol


Homeostasis model assessment of insulin resistance


Low-density lipoprotein cholesterol


Oral glucose tolerance test





This research was supported by The Danish Strategic Research Council grant #09-067124 and #09-059921, Danish Medical Research Council grant #271-07-0732, by Købmand i Odense Johann og Hanne Weimann f. Seedorffs Legat, Gangstedfonden, Ernst Fischers mindelegat, Eva og Hans Carl Adolfs Mindelegat, and Direktør Emil Hertz og Hustru Inger Hertz Fond.


  1. Abdullah MM, Riediger NN, Chen Q et al (2009) Effects of long-term consumption of a high-fructose diet on conventional cardiovascular risk factors in Sprague–Dawley rats. Mol Cell Biochem 327:247–256. doi:10.1007/s11010-009-0063-zPubMedCrossRefGoogle Scholar
  2. Abramoff M, Magalhaes P, Ram S (2004) Image Processing with ImageJ. J Biophotonics Int 11:36–42Google Scholar
  3. Ackermann D, Heinsen H (1935) Über die physiologische Wirkung des Asterubins und anderer, zum Teil neu dargestellter schwelfelhaltiger Guanidinderivate. Hoppe Seyles Z Physiol Chemie 235:115–121CrossRefGoogle Scholar
  4. Basciano H, Federico L, Adeli K (2005) Fructose, insulin resistance, and metabolic dyslipidemia. Nutr Metab (Lond) 2:5. doi:doi: 10.1186/1743-7075-2-5CrossRefGoogle Scholar
  5. Bonora E, Targher G, Alberiche M et al (2000) Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity: studies in subjects with various degrees of glucose tolerance and insulin sensitivity. Diabetes Care 23:57–63PubMedCrossRefGoogle Scholar
  6. Carneiro EM, Latorraca MQ, Araujo E et al (2009) Taurine supplementation modulates glucose homeostasis and islet function. J Nutr Biochem 20:503–511. doi:10.1016/j.jnutbio.2008.05.008PubMedCrossRefGoogle Scholar
  7. Dokshina GA, Silaeva TI, Lartsev EI (1976) Insulin-like effects of taurine. Vopr Med Khim 22:503–507PubMedGoogle Scholar
  8. El Mesallamy HO, El-Demerdash E, Hammad LN, El Magdoub HM (2010) Effect of taurine supplementation on hyperhomocysteinemia and markers of oxidative stress in high fructose diet induced insulin resistance. Diabetol Metab Syndr 2:46. doi:10.1186/1758-5996-2-46PubMedCrossRefGoogle Scholar
  9. Elizarova EP, Nedosugova LV (1996) First experiments in taurine administration for diabetes mellitus. The effect on erythrocyte membranes Adv Exp Med Biol 403:583–588Google Scholar
  10. Franconi F, Bennardini F, Mattana A et al (1995) Plasma and platelet taurine are reduced in subjects with insulin-dependent diabetes mellitus: effects of taurine supplementation. Am J Clin Nutr 61:1115–1119PubMedGoogle Scholar
  11. Franconi F, Loizzo A, Ghirlanda G, Seghieri G (2006) Taurine supplementation and diabetes mellitus. Curr Opin Clin Nutr Metab Care 9:32–36PubMedCrossRefGoogle Scholar
  12. Franconi F, Miceli M, Fazzini A et al (1996) Taurine and diabetes. Humans and experimental models Adv Exp Med Biol 403:579–582Google Scholar
  13. Hansen SH (2001) The role of taurine in diabetes and the development of diabetic complications. Diabetes Metab Res Rev 17:330–346PubMedCrossRefGoogle Scholar
  14. Harada N, Ninomiya C, Osako Y et al (2004) Taurine alters respiratory gas exchange and nutrient metabolism in type 2 diabetic rats. Obes Res 12:1077–1084. doi:10.1038/oby.2004.135PubMedCrossRefGoogle Scholar
  15. Kates M (1986) Techniques in Lipidology. Elsevier, New York, p 142Google Scholar
  16. Kawano K, Hirashima T, Mori S et al (1992) Spontaneous long-term hyperglycemic rat with diabetic complications. Otsuka Long-Evans Tokushima Fatty (OLETF) strain. Diabetes 41:1422–1428PubMedCrossRefGoogle Scholar
  17. Kim JY, Nolte LA, Hansen PA et al (1999) Insulin resistance of muscle glucose transport in male and female rats fed a high-sucrose diet. Am J Physiol 276:R665–R672PubMedGoogle Scholar
  18. Kim S-J, Gupta RC, Lee HW (2007) Taurine-diabetes interaction: from involvement to protection. Curr Diabetes Rev 3:165–175PubMedCrossRefGoogle Scholar
  19. Kulakowski EC, Maturo J (1984) Hypoglycemic properties of taurine: not mediated by enhanced insulin release. Biochem Pharmacol 33:2835–2838PubMedCrossRefGoogle Scholar
  20. Lau-Cam CA, Patel JP (2006) Comparison of the effects of taurine with those of related sulfur-containing compounds on pyridoxal-induced adrenomedullary catecholamine release and glycogenolysis in the rat. Adv Exp Med Biol 583:203–212PubMedCrossRefGoogle Scholar
  21. De Luca G, Calpona PR, Caponetti A et al (2001) Preliminary report: amino acid profile in platelets of diabetic patients. Metab Clin Exp 50:739–741. doi:10.1053/meta.2001.24193PubMedCrossRefGoogle Scholar
  22. Lustig RH, Schmidt LA, Brindis CD (2012) Public health: the toxic truth about sugar. Nature 482:27–29. doi:10.1038/482027aPubMedCrossRefGoogle Scholar
  23. Matthews DR, Hosker JP, Rudenski AS et al (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419PubMedCrossRefGoogle Scholar
  24. Nakaya Y, Minami A, Harada N et al (2000) Taurine improves insulin sensitivity in the Otsuka Long-Evans Tokushima Fatty rat, a model of spontaneous type 2 diabetes. Am J Clin Nutr 71:54–58PubMedGoogle Scholar
  25. Nandhini ATA, Anuradha CV (2002) Taurine modulates kallikrein activity and glucose metabolism in insulin resistant rats. Amino Acids 22:27–38PubMedCrossRefGoogle Scholar
  26. Nandhini ATA, Thirunavukkarasu V, Anuradha CV (2004) Stimulation of glucose utilization and inhibition of protein glycation and AGE products by taurine. Acta Physiol Scand 181:297–303. doi:10.1111/j.1365-201X.2004.01287.xPubMedCrossRefGoogle Scholar
  27. Nandhini ATA, Thirunavukkarasu V, Anuradha CV (2005) Taurine modifies insulin signaling enzymes in the fructose-fed insulin resistant rats. Diabetes Metab 31:337–344PubMedCrossRefGoogle Scholar
  28. Nardelli TR, Ribeiro RA, Balbo SL et al (2011) Taurine prevents fat deposition and ameliorates plasma lipid profile in monosodium glutamate-obese rats. Amino Acids 41:901–908. doi:10.1007/s00726-010-0789-7PubMedCrossRefGoogle Scholar
  29. Nishimura N, Umeda C, Ona H, Yokogoshi H (2002) The effect of taurine on plasma cholesterol concentration in genetic type 2 diabetic GK rats. J Nutr Sci Vitaminol 48:483–490PubMedCrossRefGoogle Scholar
  30. Patel JP, Lau-Cam CA (2006) Taurine attenuates pyridoxal-induced adrenomedullary catecholamine release and glycogenolysis in the rat. Adv Exp Med Biol 583:147–156PubMedCrossRefGoogle Scholar
  31. Perret P, Slimani L, Briat A et al (2007) Assessment of insulin resistance in fructose-fed rats with 125I-6-deoxy-6-iodo-D-glucose, a new tracer of glucose transport. Eur J Nucl Med Mol Imaging 34:734–744. doi:10.1007/s00259-006-0267-3PubMedCrossRefGoogle Scholar
  32. Pilkis SJ, Granner DK (1992) Molecular physiology of the regulation of hepatic gluconeogenesis and glycolysis. Annu Rev Physiol 54:885–909. doi:10.1146/ Scholar
  33. Samuel VT (2011) Fructose induced lipogenesis: from sugar to fat to insulin resistance. Trends Endocrinol Metab 22:60–65. doi:10.1016/j.tem.2010.10.003PubMedCrossRefGoogle Scholar
  34. Seshasai SRK, Kaptoge S, Thompson A et al (2011) Diabetes mellitus, fasting glucose, and risk of cause-specific death. N Engl J Med 364:829–841. doi:10.1056/NEJMoa1008862PubMedCrossRefGoogle Scholar
  35. Singh S, Dhingra S, Ramdath DD et al (2010) Risk factors preceding type 2 diabetes and cardiomyopathy. J Cardiovasc Transl Res 3:580–596. doi:10.1007/s12265-010-9197-3PubMedCrossRefGoogle Scholar
  36. Stanhope KL (2012) Role of fructose-containing sugars in the epidemics of obesity and metabolic syndrome. Annu Rev Med 63:329–343. doi:10.1146/annurev-med-042010-113026PubMedCrossRefGoogle Scholar
  37. Stark AH, Timar B, Madar Z (2000) Adaptation of Sprague Dawley rats to long-term feeding of high fat or high fructose diets. Eur J Nutr 39:229–234PubMedCrossRefGoogle Scholar
  38. Tappy L, Lê K-A (2010) Metabolic effects of fructose and the worldwide increase in obesity. Physiol Rev 90:23–46. doi:10.1152/physrev.00019.2009PubMedCrossRefGoogle Scholar
  39. Tappy L, Lê KA, Tran C, Paquot N (2010) Fructose and metabolic diseases: new findings, new questions. Nutrition 26:1044–1049. doi:10.1016/j.nut.2010.02.014PubMedCrossRefGoogle Scholar
  40. Wieland O (1984) Methods of enzymatic analysis vol. VI. Verlag Chemie, Weinheim, pp 504–510Google Scholar
  41. Yan CC, Bravo E, Cantàfora A (1993) Effect of taurine levels on liver lipid metabolism: an in vivo study in the rat. Proc Soc Exp Biol Med 202:88–96PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Lea Hüche Larsen
    • 1
  • Laura Kofoed Hvidsten Ørstrup
    • 1
  • Svend Høime Hansen
    • 2
  • Niels Grunnet
    • 1
  • Bjørn Quistorff
    • 1
  • Ole Hartvig Mortensen
    • 1
    Email author
  1. 1.Department of Biomedical Sciences, Cellular and Metabolic Research SectionUniversity of CopenhagenCopenhagenDenmark
  2. 2.Department of Clinical Biochemistry, Rigshospitalet and Faculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations