Skip to main content
Book cover

Taurine 8 pp 335–345Cite as

Effect of Dietary Taurine and Arginine Supplementation on Bone Mineral Density in Growing Female Rats

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 776))

Abstract

The purpose of this study was to determine the effect of arginine or ­taurine alone and taurine plus arginine on bone mineral density (BMD) and markers of bone formation and bone resorption in growing female rats. Forty female SD rats (75 ± 5 g) were randomly divided into four groups (control, taurine, arginine, taurine + arginine group) and treatment lasted for 9 weeks. All rats were fed on a diet and deionized water. BMD and bone mineral content (BMC) were measured using PIXImus (GE Lunar Co, Wisconsin, USA) in spine and femur. The serum and urine concentrations of calcium and phosphorus were determined. Bone formation was measured by serum osteocalcin and alkaline phosphatase concentrations, and the bone resorption rate was measured by deoxypyridinoline cross-links. Femur BMD was significantly increased in the group with taurine supplementation and femur BMC/weight was significantly increased in the group with arginine + taurine supplementation. Rats fed an arginine or taurine supplemental diet increased femur BMD or femur BMC, but a taurine + arginine-supplemented diet does not have a better effect than arginine or taurine alone in the spine BMD. The femur BMC, expressed per body weight, was higher in arginine + taurine group than in the taurine or arginine group. The results of this study suggest that taurine + arginine supplementation may be beneficial on femur BMC in growing female rats. Additional work is needed to clarify the interactive effects between the taurine and arginine to determine whether dietary intakes of arginine and taurine affect bone quality in growing rats.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ALP:

Alkaline phosphatase

DPD:

Deoxypyridinoline

Arg:

Arginine

Tau:

Taurine

Arg + Tau:

Arginine + taurine

DPD/Cr:

Creatinine excretion

AI:

Adequate intake

BMD:

Bone mineral density

BMC:

Bone mineral content

FER:

Food efficiency ratio

SBMD:

Spine bone mineral density

SBMC:

Spine bone mineral content

FBMD:

Femur bone mineral density

FBMC:

Femur bone mineral content

References

  • Azuma J, Sawamura A, Awata N (1992) Usefulness of taurine in chronic congestive heart failure and its prospective application. Jpn Circ J 56:95–99

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Nishimura N, Oda H, Yohogoshi H (2003) Effect of taurine on cholesterol degradation and bile acid pool in rats fed a high-cholesterol diet. Taurine 5: beginning the 21st century. Adv Exp Med Biol 526:261–267

    Article  PubMed  CAS  Google Scholar 

  • Choi MJ (2007a) Effects of arginine supplementation on bone mineral density in growing female rats. Korean J Nutr 40:235–241

    CAS  Google Scholar 

  • Choi MJ (2007b) Effects of arginine supplementation on bone markers and hormones in growing female rats. Korean J Nutr 42:1–9

    Google Scholar 

  • Choi MJ (2009) Effects of taurine supplementation on bone mineral density in overiectomized rats fed calcium deficient diet. Nutr Res Pract 3:108–113

    Article  PubMed  CAS  Google Scholar 

  • Choi MJ, DiMarco NM (2009) The effects of dietary taurine supplementation on bone mineral density in ovariectomized rat. Adv Exp Med Biol 643:341–349

    Article  PubMed  CAS  Google Scholar 

  • Choi MJ, Jo HJ (2003) Effects of soy and isoflavones on bone metabolism in growing female rats. Korean J Nutr 36:549–558

    CAS  Google Scholar 

  • Choi MJ, Seo JN (2006) The effect of dietary taurine supplementation on plasma and liver lipid concentrations in rats. J East Asian Soc Dietary Life 16:121–127

    Google Scholar 

  • Chung YH (2001) The effect of dietary taurine on skeletal metabolism in ovariectomized rats. Korean J Hum Ecol 4:84–93

    CAS  Google Scholar 

  • Frost HM (2000) Utah paradigm of skeletal physiology: an overview of its insights for bone, cartilage and collagenous tissue organs. J Bone Miner Metab 18:305–316

    Article  PubMed  CAS  Google Scholar 

  • Fulgoni VL III, Huth PJ, DiRienzo DB, Miller GD (2004) Determination of the optimal number of dairy servings to ensure a low prevalence of inadequate calcium intakes in Americans. J Am Coll Nutr 23:651–659

    PubMed  CAS  Google Scholar 

  • Garcia RAG, Stipanuk MH (1992) The splanchnic organs, liver and kidney have unique roles in the metabolism of sulfur amino acids and their metabolites in rats. J Nutr 122:1693–1701

    PubMed  CAS  Google Scholar 

  • Heaney RP (2007) Does daily calcium supplementation reduce the risk of clinical fractures in elderly women? Nat Rev Rheumatol 3:18–19

    Google Scholar 

  • Heaney RP, Abrams S, Dawson-Hughes B, Looker A, Marcus R, Matkovic V, Weaver C (2000) Peak bone mass. Osteoporos Int 11:985–1009

    Article  PubMed  CAS  Google Scholar 

  • Heys SD, Gardner E (1999) Nutrients and the surgical patient: current and potential therapeutic applications to clinical practice. J R Coll Surg Edinb 44:283–293

    PubMed  CAS  Google Scholar 

  • Ho-Pham LT, Nguyen ND, Nguyen TV (2009) Effect of vegetarian diets on bone mineral density: a Bayesian meta-analysis. Am J Clin Nutr 90:943–950

    Google Scholar 

  • Inderjeeth CA, Chan K, Kwan K, Lie M (2012) Time to onset of efficacy in fracture reduction with current anti-osteoporosis treatments. J Bone Miner Metab 30:493–503. doi:10.1007/s00774-012-0349-1

    Article  PubMed  CAS  Google Scholar 

  • Kim KL, Kim WY (1983) The effect of soy protein and casein on serum lipid, amino acid. Korean J Nutr 17:309–310

    Google Scholar 

  • Luiking YC, Deutz NEP (2007) Biomarkers of arginine and lysine excess. J Nutr 137(6):1662S–1668S

    PubMed  CAS  Google Scholar 

  • Micha R, Wallace SK, Mozaffarian D (2010) Red and processed meat consumption and risk of incident coronary heart disease, stroke, and diabetes mellitus: a systematic review and meta-analysis. Circulation 121:2271–2283

    Article  PubMed  Google Scholar 

  • Mundy GR (2006) Nutritional modulators of bone remodeling during aging. Am J Clin Nutr 83:427S–430S

    PubMed  CAS  Google Scholar 

  • Nakaya Y, Minami A, Harada N, Sakamoto S, Niwa Y, Ohnaka M (2000) Taurine improves insulin sensitivity in the Otsuka long-evans tokushima fatty rat, a model of spontaneous type 2 diabetes. Am J Clin Nutr 71:154–158

    Google Scholar 

  • Newsholme EA, Leech AR (1983) Biochemistry for the medical sciences. Wiley, New York

    Google Scholar 

  • Nieves JW (2005) Osteoporosis: the role of micronutrients. Am J Clin Nutr 81:1232S–1239S

    PubMed  CAS  Google Scholar 

  • Park SY, Kim H, Kim SJ (2001) Stimulation of ERK2 by taurine with enhanced alkaline phosphatase activity and collagen synthesis in osteoblast-like UMR-106 cells. Biochem Pharmacol 62:1107–1111

    Article  PubMed  CAS  Google Scholar 

  • Schuller-Levis GB, Park E (2003) Taurine: new implications for an old amino acid. FEMS Microbiol Lett 226:195–202

    Article  PubMed  CAS  Google Scholar 

  • Sluijs I, Beulens JW, Vander A DL, Spijkerman AM, Van der Schouw YT (2010) Dietary intake of total, animal, and vegetable protein and risk of type 2 diabetes in the European prospective investigation into cancer and nutrition (EPIC)-NL study. Diabetes Care 33:43–48

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama K, Ohishi A, Ohnuma Y, Muramarsu K (1989) Comparison between the plasma cholesterol-lowering effects of glycine and taurine in rats fed on high cholesterol diets. Agric Biol Chem 53(6):1647–1652

    Article  CAS  Google Scholar 

  • Takahahsi K, Azuma M, Baba A, Schaffer S, Azuma J (1998) Taurine improves angiotensin II induced hypertrophy of cultured neonatal rat heart cells. Adv Exp Med Biol 442:129–135

    PubMed  CAS  Google Scholar 

  • Thacher TD, Fischer PR, Strand MA, Pettifor JM (2006) Nutritional rickets around the world: causes and future directions. Ann Trop Paediatr 26:1–16

    Article  PubMed  Google Scholar 

  • Visek WJ (1986) Arginine needs, physiological state and United diets. A reevaluation. J Nutr 116:36–46

    PubMed  CAS  Google Scholar 

  • Wells BJ, Mainous AG III, Everett CJ (2005) Association between dietary arginine and C-reactive protein. Nutrition 21:125–130

    Article  PubMed  CAS  Google Scholar 

  • Wheatley BP (2005) An evaluation of sex and body weight determination from the proximal femur using DXA technology and its potential for forensic anthropology. Forensic Sci Int 29(147):141–145

    Article  Google Scholar 

  • Windmueller HG, Spaeth AE (1981) Source and fate of circulating citrulline. Am J Physiol 241:E473–E480

    PubMed  CAS  Google Scholar 

  • Wong WW, Lewis RD, Steinberg FM, Murray MJ, Cramer MA, Amato P, Young RL, Barnes S, Ellis KJ, Shypailo RJ, Fraley JK, Konzelmann KL, Fischer JG, Smith EO (2009) Soy isoflavone supplementation and bone mineral density in menopausal women: a 2-y multicenter clinical trial. Am J Clin Nutr 90:1433–1439

    Article  PubMed  CAS  Google Scholar 

  • Yu CH, Lee YS, Lee JS (1998) Some factors effect in bone density of Korean college women. Korean J Nutr 31:36–45

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Bisa Research Grant of Keimyung University in 2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mi-Ja Choi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Choi, MJ., Chang, K.J. (2013). Effect of Dietary Taurine and Arginine Supplementation on Bone Mineral Density in Growing Female Rats. In: El Idrissi, A., L'Amoreaux, W. (eds) Taurine 8. Advances in Experimental Medicine and Biology, vol 776. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6093-0_31

Download citation

Publish with us

Policies and ethics