Taurine 8 pp 129-139 | Cite as

Taurine Supplementation Restores Insulin Secretion and Reduces ER Stress Markers in Protein-Malnourished Mice

  • Thiago Martins BatistaEmail author
  • Priscilla Muniz Ribeiro da Silva
  • Andressa Godoy Amaral
  • Rosane Aparecida Ribeiro
  • Antonio Carlos Boschero
  • Everardo Magalhães Carneiro
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 776)


Endoplasmic reticulum (ER) stress is a cellular response to increased intra-reticular protein accumulation or poor ER function. Chronic activation of this pathway may lead to beta cell death and metabolic syndrome (MS). Poor nutrition during perinatal period, especially protein malnutrition, is associated with increased risk for MS in later life. Here, we analyzed the effects of taurine (TAU) supplementation upon insulin secretion and ER stress marker expression in pancreatic islets and in the liver from mice fed a low-protein diet. Malnourished mice had lower body weight and plasma insulin. Their islets secreted less insulin in response to stimulatory concentrations of glucose. TAU supplementation increased insulin secretion in both normal protein and malnourished mice. Western blot analysis revealed lower expression of the ER stress markers CHOP and ATF4 and increased phosphorylation of the survival protein Akt in pancreatic islets of TAU-supplemented mice. The phosphorylation of the mitogenic protein extracellular signal-regulated kinase (ERK1/2) was increased after acute incubation with TAU. Finally, the ER stress markers p-PERK and BIP were increased in the liver of malnourished mice and TAU supplementation normalized these parameters.

In conclusion, malnutrition leads to impaired islet function which is restored with TAU supplementation possibly by increasing survival signals and lowering ER stress proteins. Lower ER stress markers in the liver may also contribute to the improvement of insulin action on peripheral organs.


Beta Cell Endoplasmic Reticulum Stress Pancreatic Islet Endoplasmic Reticulum Stress Marker Reduce Endoplasmic Reticulum Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Activating transcription factor 4


Binding immunoglobulin protein


C/EBP homologous protein


Endoplasmic reticulum


Extracellular signal-regulated kinase


Inositol-requiring enzyme-1


PKR-like ER kinase


Sarco(endo)plasmic reticulum Ca2+-ATPase





This study was supported by grants from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Conselho Nacional para o Desenvolvimento Científico e Tecnológico (CNPq), and Instituto Nacional de Ciência e Tecnologia (INCT).


  1. Amaral AG, Rafacho A, Machado de Oliveira CA, Batista TM, Ribeiro RA, Latorraca MQ, Boschero AC, Carneiro EM (2010) Leucine supplementation augments insulin secretion in pancreatic islets of malnourished mice. Pancreas 39:847–855PubMedCrossRefGoogle Scholar
  2. Batista TM, Ribeiro RA, Amaral AG, de Oliveira CA, Boschero AC, Carneiro EM (2012) Taurine supplementation restores glucose and carbachol-induced insulin secretion in islets from low-protein diet rats: involvement of Ach-M3R, Synt 1 and SNAP-25 proteins. J Nutr Biochem 23:306–312PubMedCrossRefGoogle Scholar
  3. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  4. Carneiro EM, Latorraca MQ, Araujo E, Beltra M, Oliveras MJ, Navarro M, Berna G, Bedoya FJ, Velloso LA, Soria B, Martin F (2009) Taurine supplementation modulates glucose homeostasis and islet function. J Nutr Biochem 20:503–511PubMedCrossRefGoogle Scholar
  5. Chen JH, Martin-Gronert MS, Tarry-Adkins J, Ozanne SE (2009) Maternal protein restriction affects postnatal growth and the expression of key proteins involved in lifespan regulation in mice. PLoS One 4:e4950PubMedCrossRefGoogle Scholar
  6. Cherif H, Reusens B, Ahn MT, Hoet JJ, Remacle C (1998) Effects of taurine on the insulin secretion of rat fetal islets from dams fed a low-protein diet. J Endocrinol 159:341–348PubMedCrossRefGoogle Scholar
  7. Cnop M, Foufelle F, Velloso LA (2012) Endoplasmic reticulum stress, obesity and diabetes. Trends Mol Med 18:59–68PubMedCrossRefGoogle Scholar
  8. da Silva PM, Batista TM, Ribeiro RA, Zoppi CC, Boschero AC, Carneiro EM (2012) Decreased insulin secretion in islets from protein malnourished rats is associated with impaired glutamate dehydrogenase function: effect of leucine supplementation. Metabolism 61:721–732PubMedCrossRefGoogle Scholar
  9. Eizirik DL, Cardozo AK, Cnop M (2008) The role for endoplasmic reticulum stress in diabetes mellitus. Endocr Rev 29:42–61PubMedCrossRefGoogle Scholar
  10. Filiputti E, Ferreira F, Souza KL, Stoppiglia LF, Arantes VC, Boschero AC, Carneiro EM (2008) Impaired insulin secretion and decreased expression of the nutritionally responsive ribosomal kinase protein S6K-1 in pancreatic islets from malnourished rats. Life Sci 82:542–548PubMedCrossRefGoogle Scholar
  11. Filiputti E, Rafacho A, Araujo EP, Silveira LR, Trevisan A, Batista TM, Curi R, Velloso LA, Quesada I, Boschero AC, Carneiro EM (2010) Augmentation of insulin secretion by leucine supplementation in malnourished rats: possible involvement of the phosphatidylinositol 3-phosphate kinase/mammalian target protein of rapamycin pathway. Metabolism 59:635–644PubMedCrossRefGoogle Scholar
  12. Gentile CL, Nivala AM, Gonzales JC, Pfaffenbach KT, Wang D, Wei Y, Jiang H, Orlicky DJ, Petersen DR, Pagliassotti MJ, Maclean KN (2011) Experimental evidence for therapeutic potential of taurine in the treatment of nonalcoholic fatty liver disease. Am J Physiol Regul Integr Comp Physiol 301:R1710–R1722PubMedCrossRefGoogle Scholar
  13. Hales CN, Barker DJ (1992) Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 35:595–601PubMedCrossRefGoogle Scholar
  14. Hotamisligil GS (2010) Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140:900–917PubMedCrossRefGoogle Scholar
  15. Jaquet D, Gaboriau A, Czernichow P, Levy-Marchal C (2000) Insulin resistance early in adulthood in subjects born with intrauterine growth retardation. J Clin Endocrinol Metab 85:1401–1406PubMedCrossRefGoogle Scholar
  16. Lin JH, Walter P, Yen TS (2008) Endoplasmic reticulum stress in disease pathogenesis. Annu Rev Pathol 3:399–425PubMedCrossRefGoogle Scholar
  17. Lytton J, Westlin M, Hanley MR (1991) Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps. J Biol Chem 266:17067–17071PubMedGoogle Scholar
  18. Maturo J, Kulakowski EC (1988) Taurine binding to the purified insulin receptor. Biochem Pharmacol 37:3755–3760PubMedCrossRefGoogle Scholar
  19. Nakaya Y, Minami A, Harada N, Sakamoto S, Niwa Y, Ohnaka M (2000) Taurine improves insulin sensitivity in the Otsuka Long-Evans Tokushima Fatty rat, a model of spontaneous type 2 diabetes. Am J Clin Nutr 71:54–58PubMedGoogle Scholar
  20. Ozanne SE, Dorling MW, Wang CL, Nave BT (2001) Impaired PI 3-kinase activation in adipocytes from early growth-restricted male rats. Am J Physiol Endocrinol Metab 280:E534–E539PubMedGoogle Scholar
  21. Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Ozdelen E, Tuncman G, Gorgun C, Glimcher LH, Hotamisligil GS (2004) Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306:457–461PubMedCrossRefGoogle Scholar
  22. Pan C, Prentice H, Price AL, Wu JY (2012) Beneficial effect of taurine on hypoxia- and glutamate-induced endoplasmic reticulum stress pathways in primary neuronal culture. Amino Acids 43(2):845–855PubMedCrossRefGoogle Scholar
  23. Petry CJ, Dorling MW, Pawlak DB, Ozanne SE, Hales CN (2001) Diabetes in old male offspring of rat dams fed a reduced protein diet. Int J Exp Diabetes Res 2:139–143PubMedCrossRefGoogle Scholar
  24. Reis MA, Carneiro EM, Mello MA, Boschero AC, Saad MJ, Velloso LA (1997) Glucose-induced insulin secretion is impaired and insulin-induced phosphorylation of the insulin receptor and insulin receptor substrate-1 are increased in protein-deficient rats. J Nutr 127:403–410PubMedGoogle Scholar
  25. Remacle C, Dumortier O, Bol V, Goosse K, Romanus P, Theys N, Bouckenooghe T, Reusens B (2007) Intrauterine programming of the endocrine pancreas. Diabetes Obes Metab 9(Suppl 2):196–209PubMedCrossRefGoogle Scholar
  26. Ribeiro RA, Bonfleur ML, Amaral AG, Vanzela EC, Rocco SA, Boschero AC, Carneiro EM (2009) Taurine supplementation enhances nutrient-induced insulin secretion in pancreatic mice islets. Diabetes Metab Res Rev 25:370–379PubMedCrossRefGoogle Scholar
  27. Ribeiro RA, Santos-Silva JC, Vettorazzi JF, Cotrim BB, Mobiolli DD, Boschero AC, Carneiro EM (2012) Taurine supplementation prevents morpho-physiological alterations in high-fat diet mice pancreatic beta-cells. Amino Acids 43(4):1791–1801PubMedCrossRefGoogle Scholar
  28. Ribeiro RA, Vanzela EC, Oliveira CA, Bonfleur ML, Boschero AC, Carneiro EM (2010) Taurine supplementation: involvement of cholinergic/phospholipase C and protein kinase A pathways in potentiation of insulin secretion and Ca2+ handling in mouse pancreatic islets. Br J Nutr 104:1148–1155PubMedCrossRefGoogle Scholar
  29. Sparre T, Reusens B, Cherif H, Larsen MR, Roepstorff P, Fey SJ, Mose Larsen P, Remacle C, Nerup J (2003) Intrauterine programming of fetal islet gene expression in rats–effects of maternal protein restriction during gestation revealed by proteome analysis. Diabetologia 46:1497–1511PubMedCrossRefGoogle Scholar
  30. Theys N, Bouckenooghe T, Ahn MT, Remacle C, Reusens B (2009) Maternal low-protein diet alters pancreatic islet mitochondrial function in a sex-specific manner in the adult rat. Am J Physiol Regul Integr Comp Physiol 297:R1516–R1525PubMedCrossRefGoogle Scholar
  31. Tsuboyama-Kasaoka N, Shozawa C, Sano K, Kamei Y, Kasaoka S, Hosokawa Y, Ezaki O (2006) Taurine (2-aminoethanesulfonic acid) deficiency creates a vicious circle promoting obesity. Endocrinology 147:3276–3284PubMedCrossRefGoogle Scholar
  32. Vo T, Hardy DB (2012) Molecular mechanisms underlying the fetal programming of adult disease. J Cell Commun Signal 43(4):1791–1801Google Scholar
  33. Zhang Y, Xia Z, La Cour KH, Ren J (2011) Activation of Akt rescues endoplasmic reticulum stress-impaired murine cardiac contractile function via glycogen synthase kinase-3beta-mediated suppression of mitochondrial permeation pore opening. Antioxid Redox Signal 15:2407–2424PubMedCrossRefGoogle Scholar
  34. Zhou Y, Lee J, Reno CM, Sun C, Park SW, Chung J, Lee J, Fisher SJ, White MF, Biddinger SB, Ozcan U (2011) Regulation of glucose homeostasis through a XBP-1-FoxO1 interaction. Nat Med 17:356–365PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Thiago Martins Batista
    • 1
    Email author
  • Priscilla Muniz Ribeiro da Silva
    • 1
  • Andressa Godoy Amaral
    • 2
  • Rosane Aparecida Ribeiro
    • 3
  • Antonio Carlos Boschero
    • 1
  • Everardo Magalhães Carneiro
    • 1
  1. 1.Departamento de Biologia Funcional e Estrutural, Instituto de BiologiaUniversidade Estadual de CampinasCampinasBrazil
  2. 2.Divisão de Nefrologia e Medicina MolecularUniversidade de São PauloSão PauloBrazil
  3. 3.Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé (NUPEM)Universidade Federal do Rio de Janeiro (UFRJ)MacaéBrazil

Personalised recommendations