Advertisement

Measuring the Instantaneous Velocity of a Brownian Particle in Air

  • Tongcang Li
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Chapter 4 covers the theory of Brownian motion in air at short time scales, a home-built detection system with ultrahigh resolution, and the results of our measurement of the instantaneous velocity of a Brownian particle in air.

Keywords

Brownian Motion Power Spectral Density Instantaneous Velocity Brownian Particle Superfluid Helium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R. Brown, A brief account of microscopical observations made in the months of June, July and August, 1827, on the particles containded in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. Phil. Mag. 4, 161 (1828)Google Scholar
  2. 2.
    A. Einstein, Ann. D. Phys. 17, 549 (1905)ADSMATHCrossRefGoogle Scholar
  3. 3.
    A. Einstein, Theoretische bemerkungen über die Brownsche bewegung. Zeit. f. Elektrochemie. 13, 41 (1907)CrossRefGoogle Scholar
  4. 4.
    A. Einstein, in Investigations on the Theory of the Brownian Movement, ed. by R. Fürth, (Trans: A.D. Cowper) (Methuen, London, 1926), pp. 63–67Google Scholar
  5. 5.
    P. Langevin, C.R. Acad. Sci. (Paris). 146, 530 (1908)MATHGoogle Scholar
  6. 6.
    D.S. Lemons, A. Gythiel, Paul Langevin’s 1908 paper “on the theory of Brownian motion". Am. J. Phys. 65, 1079 (1997)ADSCrossRefGoogle Scholar
  7. 7.
    G.E. Uhlenbeck, L.S. Ornstein, On the theory of the Brownian motion. Phys. Rev. 36, 823 (1930)ADSMATHCrossRefGoogle Scholar
  8. 8.
    M.C. Wang, G.E. Uhlenbeck, On the theory of the Brownian motion II. Rev. Mod. Phys. 17, 323 (1945)MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    S.F. Nørrelykke, H. Flyvbjerg, Harmonic oscillator in heat bath: Exact simulation of time-lapse-recorded data, exact analytical benchmark, statistics. arXiv:1102.0524 (2011)Google Scholar
  10. 10.
    K. Berg-Sørensen, H. Flyvbjerg, Power spectrum analysis for optical tweezers. Rev. Sci. Instrum. 75, 594 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    P. Kwee, B. Willke, Automatic laser beam characterization of monolithic Nd:YAG nonplanar ring lasers. Appl. Opt. 47, 6022 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    I. Chavez, R. Huang, K. Henderson, E.-L. Florin, M.G. Raizen, Development of a fast position-sensitive laser beam detector. Rev. Sci. Instrum. 79, 105104 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    K.G. Libbrecht, E.D. Black, Toward quantum-limited position measurements using optically levitated microspheres. Phys. Lett. A. 321, 99 (2004)ADSMATHCrossRefGoogle Scholar
  14. 14.
    E.R.I. Abraham, E.A. Cornell, Teflon feedthrough for coupling optical fibers into ultrahigh vacuum systems. Appl. Opt. 37, 1762 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    R. Zwanzig, M. Bixon, Compressibility effects in the hydrodynamic theory of Brownian motion. J. Fluid Mech. 69, 21 (1975)ADSMATHCrossRefGoogle Scholar
  16. 16.
    A. Moshfegh, M. Shams, G. Ahmadi, R. Ebrahimi, A novel surface-slip correction for microparticles motion. Colloids Surf. A: Physicochem. and Eng. Aspects 345, 112 (2009)CrossRefGoogle Scholar
  17. 17.
    R. Kubo, Brownian motion and nonequilibrium statistical mechanics. Science 233, 330 (1986)ADSCrossRefGoogle Scholar
  18. 18.
    G.M. Wang, E.M. Sevick, E. Mittag, D.J. Searles, D.J. Evans, Experimental demonstration of violations of the second law of thermodynamics for small systems and short time scales. Phys. Rev. Lett. 89, 050601 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    A. Hopkins, K. Jacobs, S. Habib, K. Schwab, Feedback cooling of a nanomechanical resonator. Phys. Rev. B. 68, 235328 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    D. Kleckner, D. Bouwmeester, Sub-kelvin optical cooling of a micromechanical resonator. Nature 444, 75 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    A. Ashkin, J.M. Dziedzic, Optical levitation in high vacuum. Appl. Phys. Lett. 28, 333 (1976)ADSCrossRefGoogle Scholar
  22. 22.
    D.E. Chang et al., Cavity opto-mechanics using an optically levitated nanosphere. Proc. Natl. Acad. Sci. USA 07, 1005 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    O. Romero-Isart, M.L. Juan, R. Quidant, J. Ignacio Cirac, Toward quantum superposition of living organisms. New J. Phys. 12, 033015 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    N.L. Balazs, Brownian motion of a mirror in superfluid helium. Phys. Rev. 109, 232 (1958)MathSciNetADSMATHCrossRefGoogle Scholar
  25. 25.
    D.G. Henshaw, A.D.B. Woods, Modes of atomic motions in liquid helium by inelastic scattering of neutrons. Phys. Rev. 121, 266 (1961)ADSCrossRefGoogle Scholar
  26. 26.
    I.N. Adamenko, K.E. Nemchenko, I.V. Tanatarov, Transmission and reflection of phonons and rotons at the superfluid helium-solid interface. Phys. Rev. B 77, 174510 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.NSF Nanoscale Science and Engineering CenterUniversity of California, BerkeleyBerkeleyUSA

Personalised recommendations