Cancers of the Rectum and Anal Canal

  • Jenia Jenab-WolcottEmail author
  • Bruce Giantonio
Part of the Molecular Pathology Library book series (MPLB, volume 7)


Personalized medicine utilizes the molecular basis of disease to provide tools to stratify risk and predict treatment effect; and in doing so provides the opportunity for rational design of cancer therapeutics. In particular, the genetic events associated with rectal and anal malignancies have been translated into clinical applications that now guide screening efforts, serve as targets for therapeutic agents, and can function as predictive markers for treatment outcomes. For example, evaluation for defective cellular DNA-mismatch repair and for activating somatic mutations in the K-ras proto-oncogene have moved into the clinical arena and considered standard of care for screening and treatment decision-making. In addition, the epidermal growth factor receptor and vascular endothelial growth factor are both treatment-directed targets that can alter the life expectancy in individuals with these diseases. Thus by leveraging the science of genomics, the promise of personalized cancer medicine is delivery of highly effective and minimally toxic prevention, screening, and treatment modalities that are tailored to the genetic makeup of each patient and to the unique molecular makeup of that individual’s tumor.


Epidermal Growth Factor Receptor Rectal Cancer Human Papilloma Virus Anal Canal Adenomatous Polyposis Coli 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60:277-300.PubMedCrossRefGoogle Scholar
  2. 2.
    American Cancer Society. Cancer facts & figures 2010. Atlanta: American Cancer Society; 2010.Google Scholar
  3. 3.
    Jemal A, et al. Cancer statistics, 2009. CA Cancer J Clin. 2009;59(4):225-49.PubMedCrossRefGoogle Scholar
  4. 4.
    Cucino C, Buchner AM, Sonnenberg A. Continued rightward shift of colorectal cancer. Dis Colon Rectum. 2002;45(8):1035-40.PubMedCrossRefGoogle Scholar
  5. 5.
    Meza R, et al. Colorectal cancer incidence trends in the United States and United Kingdom: evidence of right- to left-sided biological gradients with implications for screening. Cancer Res. 2010;70(13):5419-29.PubMedCrossRefGoogle Scholar
  6. 6.
    Rim SH, et al. Colorectal cancer incidence in the United States, 1999–2004: an updated analysis of data from the National Program of Cancer Registries and the Surveillance, Epidemiology, and End Results Program. Cancer. 2009;115(9):1967-76.PubMedCrossRefGoogle Scholar
  7. 7.
    Levi F, Randimbison L, La Vecchia C. Trends in subsite distribution of colorectal cancers and polyps from the Vaud Cancer Registry. Cancer. 1993;72(1):46-50.PubMedCrossRefGoogle Scholar
  8. 8.
    Cooper GS, et al. A national population-based study of incidence of colorectal cancer and age. Implications for screening in older Americans. Cancer. 1995;75(3):775-81.PubMedCrossRefGoogle Scholar
  9. 9.
    Benedix F, et al. Comparison of 17,641 patients with right- and left-sided colon cancer: differences in epidemiology, perioperative course, histology, and survival. Dis Colon Rectum. 2010;53(1): 57-64.PubMedCrossRefGoogle Scholar
  10. 10.
    Distler P, Holt PR. Are right- and left-sided colon neoplasms distinct tumors? Dig Dis. 1997;15(4–5):302-11.PubMedCrossRefGoogle Scholar
  11. 11.
    Meguid R, et al. Is there a difference in survival between right- versus left-sided colon cancers? Ann Surg Oncol. 2008;15(9):2388-94.PubMedCrossRefGoogle Scholar
  12. 12.
    Papagiorgis P, et al. The impact of tumor location on the histopathologic expression of colorectal cancer. J BUON. 2006;11(3): 317-21.PubMedGoogle Scholar
  13. 13.
    Boland CR, Goel A. Microsatellite instability in colorectal cancer. Gastroenterology. 2010;138(6):2073-2087. e3.PubMedCrossRefGoogle Scholar
  14. 14.
    Abeloff M, et al. Abeloff’s clinical oncology. 4th ed. Oxford, UK: Churchill Livingstone, An Imprint of Elsevier; 2008.Google Scholar
  15. 15.
    Agur AM, Dalley AF, Moore KL. Clinically oriented anatomy. 6th ed. Baltimore: Lippincott Williams and Wilkins; 2009.Google Scholar
  16. 16.
    DeVita VT, Hellman S, Rosenberg SA. Cancer: principles and practice of oncology. 7th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2005.Google Scholar
  17. 17.
    Cohen AM, et al. Pathological studies in rectal cancer. Cancer. 1980;45(12):2965-8.PubMedCrossRefGoogle Scholar
  18. 18.
    Sontag SJ, et al. Fecal occult blood screening for colorectal cancer in a Veterans Administration Hospital. Am J Surg. 1983;145(1):89-94.PubMedCrossRefGoogle Scholar
  19. 19.
    George SM, et al. Classification of advanced colorectal carcinomas by tumor edge morphology: evidence for different pathogenesis and significance of polypoid and nonpolypoid tumors. Cancer. 2000;89(9):1901-9.PubMedCrossRefGoogle Scholar
  20. 20.
    Steinberg SM, et al. Prognostic indicators of colon tumors. The Gastrointestinal Tumor Study Group experience. Cancer. 1986;57(9):1866-70.PubMedCrossRefGoogle Scholar
  21. 21.
    Carraro PG, et al. Obstructing colonic cancer: failure and survival patterns over a ten-year follow-up after one-stage curative surgery. Dis Colon Rectum. 2001;44(2):243-50.PubMedCrossRefGoogle Scholar
  22. 22.
    Griffin MR, et al. Predictors of survival after curative resection of carcinoma of the colon and rectum. Cancer. 1987;60(9):2318-24.PubMedCrossRefGoogle Scholar
  23. 23.
    Wolmark N, et al. The prognostic significance of tumor location and bowel obstruction in Dukes B and C colorectal cancer. Findings from the NSABP clinical trials. Ann Surg. 1983;198(6):743-52.PubMedCrossRefGoogle Scholar
  24. 24.
    Kelsen DP, et al. Principles and practice of gastrointestinal oncology. Philadelphia, PA: Lippincott Williams & Wilkins, Wolter Kluwer Health; 2008.Google Scholar
  25. 25.
    Green JB, et al. Mucinous carcinoma–just another colon cancer? Dis Colon Rectum. 1993;36(1):49-54.PubMedCrossRefGoogle Scholar
  26. 26.
    Secco GB, et al. Primary mucinous adenocarcinomas and signet-ring cell carcinomas of colon and rectum. Oncology. 1994;51(1): 30-4.PubMedCrossRefGoogle Scholar
  27. 27.
    Consorti F, et al. Prognostic significance of mucinous carcinoma of colon and rectum: a prospective case–control study. J Surg Oncol. 2000;73(2):70-4.PubMedCrossRefGoogle Scholar
  28. 28.
    Sasaki O, Atkin WS, Jass JR. Mucinous carcinoma of the rectum. Histopathology. 1987;11(3):259-72.PubMedCrossRefGoogle Scholar
  29. 29.
    Symonds DA, Vickery AL. Mucinous carcinoma of the colon and rectum. Cancer. 1976;37(4):1891-1900.PubMedCrossRefGoogle Scholar
  30. 30.
    Compton CC, et al. Prognostic factors in colorectal cancer. College of American Pathologists Consensus Statement 1999. Arch Pathol Lab Med. 2000;124(7):979-94.PubMedGoogle Scholar
  31. 31.
    Nissan A, et al. Signet-ring cell carcinoma of the colon and rectum: a matched control study. Dis Colon Rectum. 1999;42(9):1176-80.PubMedCrossRefGoogle Scholar
  32. 32.
    Ogino S, et al. Distinct molecular features of colorectal carcinoma with signet ring cell component and colorectal carcinoma with mucinous component. Mod Pathol. 2006;19(1):59-68.PubMedCrossRefGoogle Scholar
  33. 33.
    Kakar S, Smyrk TC. Signet ring cell carcinoma of the colorectum: correlations between microsatellite instability, clinicopathologic features and survival. Mod Pathol. 2005;18(2):244-9.PubMedCrossRefGoogle Scholar
  34. 34.
    Song GA, et al. Mucinous carcinomas of the colorectum have distinct molecular genetic characteristics. Int J Oncol. 2005;26(3):745-50.PubMedGoogle Scholar
  35. 35.
    Kakar S, et al. Mucinous carcinoma of the colon: correlation of loss of mismatch repair enzymes with clinicopathologic features and survival. Mod Pathol. 2004;17(6):696-700.PubMedCrossRefGoogle Scholar
  36. 36.
    Ojeda VJ, et al. Primary colo-rectal linitis plastica type of carcinoma: report of two cases and review of the literature. Pathology. 1982;14(2):181-9.PubMedCrossRefGoogle Scholar
  37. 37.
    Sasaki S, et al. Characteristics in primary signet-ring cell carcinoma of the colorectum, from clinicopathological observations. Jpn J Clin Oncol. 1998;28(3):202-6.PubMedCrossRefGoogle Scholar
  38. 38.
    Rashid A, et al. Elevated expression of fatty acid synthase and fatty acid synthetic activity in colorectal neoplasia. Am J Pathol. 1997;150(1):201-8.PubMedGoogle Scholar
  39. 39.
    Visca P, et al. Immunohistochemical expression of fatty acid synthase, apoptotic-regulating genes, proliferating factors, and ras protein product in colorectal adenomas, carcinomas, and adjacent nonneoplastic mucosa. Clin Cancer Res. 1999;5(12):4111-8.PubMedGoogle Scholar
  40. 40.
    Jessurun J, Romero-Guadarrama M, Manivel JC. Medullary adenocarcinoma of the colon: clinicopathologic study of 11 cases. Hum Pathol. 1999;30(7):843-8.PubMedCrossRefGoogle Scholar
  41. 41.
    Lanza G, et al. Medullary-type poorly differentiated adenocarcinoma of the large bowel: a distinct clinicopathologic entity characterized by microsatellite instability and improved survival. J Clin Oncol. 1999;17(8):2429-38.PubMedGoogle Scholar
  42. 42.
    Jass JR, et al. Morphology of sporadic colorectal cancer with DNA replication errors. Gut. 1998;42(5):673-9.PubMedCrossRefGoogle Scholar
  43. 43.
    Jass JR, et al. Pathology of hereditary non-polyposis colorectal cancer. Anticancer Res. 1994;14(4B):1631-4.PubMedGoogle Scholar
  44. 44.
    Hinoi T, et al. Loss of CDX2 expression and microsatellite instability are prominent features of large cell minimally differentiated carcinomas of the colon. Am J Pathol. 2001;159(6):2239-48.PubMedCrossRefGoogle Scholar
  45. 45.
    Winn B, et al. Differentiating the undifferentiated: immunohistochemical profile of medullary carcinoma of the colon with an emphasis on intestinal differentiation. Hum Pathol. 2009;40(3): 398-404.PubMedCrossRefGoogle Scholar
  46. 46.
    Wicking C, et al. CDX2, a human homologue of Drosophila caudal, is mutated in both alleles in a replication error positive colorectal cancer. Oncogene. 1998;17(5):657-9.PubMedCrossRefGoogle Scholar
  47. 47.
    Lugli A, et al. Differential diagnostic and functional role of the multi-marker phenotype CDX2/CK20/CK7 in colorectal cancer stratified by mismatch repair status. Mod Pathol. 2008;21(11): 1403-12.PubMedCrossRefGoogle Scholar
  48. 48.
    Yamaguchi T, et al. Accumulation profile of frameshift mutations during development and progression of colorectal cancer from patients with hereditary nonpolyposis colorectal cancer. Dis Colon Rectum. 2006;49(3):399-406.PubMedCrossRefGoogle Scholar
  49. 49.
    Baba Y, et al. Relationship of CDX2 loss with molecular features and prognosis in colorectal cancer. Clin Cancer Res. 2009;15(14):4665-73.PubMedCrossRefGoogle Scholar
  50. 50.
    Cabrera A, Pickren JW. Squamous metaplasia and squamous-cell carcinoma of the rectosigmoid. Dis Colon Rectum. 1967;10(4): 288-97.PubMedCrossRefGoogle Scholar
  51. 51.
    Dyson T, Draganov PV. Squamous cell cancer of the rectum. World J Gastroenterol. 2009;15(35):4380-6.PubMedCrossRefGoogle Scholar
  52. 52.
    Lafreniere R, Ketcham AS. Primary squamous carcinoma of the rectum. Report of a case and review of the literature. Dis Colon Rectum. 1985;28(12):967-72.PubMedCrossRefGoogle Scholar
  53. 53.
    Nahas CS, et al. Squamous-cell carcinoma of the rectum: a rare but curable tumor. Dis Colon Rectum. 2007;50(9):1393-400.PubMedCrossRefGoogle Scholar
  54. 54.
    Juturi JV, et al. Squamous-cell carcinoma of the colon responsive to combination chemotherapy: report of two cases and review of the literature. Dis Colon Rectum. 1999;42(1):102-9.PubMedCrossRefGoogle Scholar
  55. 55.
    Williams GT, Blackshaw AJ, Morson BC. Squamous carcinoma of the colorectum and its genesis. J Pathol. 1979;129(3):139-47.PubMedCrossRefGoogle Scholar
  56. 56.
    Rasheed S, et al. Chemo-radiotherapy: an alternative to surgery for squamous cell carcinoma of the rectum–report of six patients and literature review. Colorectal Dis. 2009;11(2):191-7.PubMedCrossRefGoogle Scholar
  57. 57.
    Comer TP, Beahrs OH, Dockerty MB. Primary squamous cell carcinoma and adenocanthoma of the colon. Cancer. 1971;28(5):1111-7.PubMedCrossRefGoogle Scholar
  58. 58.
    Wiener MF, Polayes SH, Yidi R. Squamous carcinoma with schistosomiasis of the colon. Am J Gastroenterol. 1962;37:48-54.PubMedGoogle Scholar
  59. 59.
    Kong CS, Welton ML, Longacre TA. Role of human papillomavirus in squamous cell metaplasia-dysplasia-carcinoma of the rectum. Am J Surg Pathol. 2007;31(6):919-25.PubMedCrossRefGoogle Scholar
  60. 60.
    Frizelle FA, et al. Adenosquamous and squamous carcinoma of the colon and upper rectum: a clinical and histopathologic study. Dis Colon Rectum. 2001;44(3):341-6.PubMedCrossRefGoogle Scholar
  61. 61.
    The American Joint Committee on Cancer. AJCC Cancer staging manual. 7th ed. Chicago: Springer; 2010.Google Scholar
  62. 62.
    Ogino S, Goel A. Molecular classification and correlates in colorectal cancer. J Mol Diagn. 2008;10(1):13-27.PubMedCrossRefGoogle Scholar
  63. 63.
    Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61(5):759-67.PubMedCrossRefGoogle Scholar
  64. 64.
    Pino MS, Chung DC. The chromosomal instability pathway in colon cancer. Gastroenterology. 2010;138(6):2059-72.PubMedCrossRefGoogle Scholar
  65. 65.
    Walther A, Houlston R, Tomlinson I. Association between chromosomal instability and prognosis in colorectal cancer: a meta-analysis. Gut. 2008;57(7):941-50.PubMedCrossRefGoogle Scholar
  66. 66.
    Boland CR, et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998;58(22):5248-57.PubMedGoogle Scholar
  67. 67.
    Lynch HT, et al. Genetics, natural history, tumor spectrum, and pathology of hereditary nonpolyposis colorectal cancer: an updated review. Gastroenterology. 1993;104(5):1535-49.PubMedGoogle Scholar
  68. 68.
    Ward R, et al. Microsatellite instability and the clinicopathological features of sporadic colorectal cancer. Gut. 2001;48(6):821-9.PubMedCrossRefGoogle Scholar
  69. 69.
    Veigl ML, et al. Biallelic inactivation of hMLH1 by epigenetic gene silencing, a novel mechanism causing human MSI cancers. Proc Natl Acad Sci USA. 1998;95(15):8698-702.PubMedCrossRefGoogle Scholar
  70. 70.
    Edge SB, et al. AJCC (American Joint Committee on Cancer) Cancer Staging Manual Seventh Edition. Chicago: Springer; 2010.Google Scholar
  71. 71.
    Laird PW. Cancer epigenetics. Hum Mol Genet. 2005;14(Spec No 1):R65-76.PubMedCrossRefGoogle Scholar
  72. 72.
    Kim MS, Lee J, Sidransky D. DNA methylation markers in colorectal cancer. Cancer Metastasis Rev. 2010;29(1):181-206.PubMedCrossRefGoogle Scholar
  73. 73.
    Shen L, et al. Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer. Proc Natl Acad Sci USA. 2007;104(47):18654-9.PubMedCrossRefGoogle Scholar
  74. 74.
    Leggett B, Whitehall V. Role of the serrated pathway in colorectal cancer pathogenesis. Gastroenterology. 2009;138(6):2088-100.CrossRefGoogle Scholar
  75. 75.
    Noffsinger AE. Serrated polyps and colorectal cancer: new pathway to malignancy. Annu Rev Pathol. 2009;4:343-64.PubMedCrossRefGoogle Scholar
  76. 76.
    Ogino S, et al. CpG island methylator phenotype-low (CIMP-low) in colorectal cancer: possible associations with male sex and KRAS mutations. J Mol Diagn. 2006;8(5):582-8.PubMedCrossRefGoogle Scholar
  77. 77.
    Sanchez JA, et al. Genetic and epigenetic classifications define clinical phenotypes and determine patient outcomes in colorectal cancer. Br J Surg. 2009;96(10):1196-204.PubMedCrossRefGoogle Scholar
  78. 78.
    Ogino S, et al. CpG island methylation, response to combination chemotherapy, and patient survival in advanced microsatellite stable colorectal carcinoma. Virchows Arch. 2007;450(5):529-37.PubMedCrossRefGoogle Scholar
  79. 79.
    Dahlin AM, et al. The role of the CpG island methylator phenotype in colorectal cancer prognosis depends on microsatellite instability screening status. Clin Cancer Res. 2010;16(6):1845-55.PubMedCrossRefGoogle Scholar
  80. 80.
    Ogino S, et al. CpG island methylator phenotype, microsatellite instability, BRAF mutation and clinical outcome in colon cancer. Gut. 2009;58(1):90-6.PubMedCrossRefGoogle Scholar
  81. 81.
    Barault L, et al. Hypermethylator phenotype in sporadic colon cancer: study on a population-based series of 582 cases. Cancer Res. 2008;68(20):8541-6.PubMedCrossRefGoogle Scholar
  82. 82.
    Chapuis PH, et al. A multivariate analysis of clinical and pathological variables in prognosis after resection of large bowel cancer. Br J Surg. 1985;72(9):698-702.PubMedCrossRefGoogle Scholar
  83. 83.
    Wiggers T, Arends JW, Volovics A. Regression analysis of prognostic factors in colorectal cancer after curative resections. Dis Colon Rectum. 1988;31(1):33-41.PubMedCrossRefGoogle Scholar
  84. 84.
    Chang GJ, et al. Lymph node evaluation and survival after curative resection of colon cancer: systematic review. J Natl Cancer Inst. 2007;99(6):433-41.PubMedCrossRefGoogle Scholar
  85. 85.
    Johnson PM, et al. Increasing negative lymph node count is independently associated with improved long-term survival in stage IIIB and IIIC colon cancer. J Clin Oncol. 2006;24(22):3570-5.PubMedCrossRefGoogle Scholar
  86. 86.
    Compton C, et al. American Joint Committee on Cancer Prognostic Factors Consensus Conference: Colorectal Working Group. Cancer. 2000;88(7):1739-57.PubMedCrossRefGoogle Scholar
  87. 87.
    Bozzetti F. Prognostic significance of radial margins of clearance in rectal cancer. Br J Surg. 1996;83(12):1798.PubMedCrossRefGoogle Scholar
  88. 88.
    de Haas-Kock DF, et al. Prognostic significance of radial margins of clearance in rectal cancer. Br J Surg. 1996;83(6):781-5.PubMedCrossRefGoogle Scholar
  89. 89.
    Nagtegaal ID, Quirke P. What is the role for the circumferential margin in the modern treatment of rectal cancer? J Clin Oncol. 2008;26(2):303-12.PubMedCrossRefGoogle Scholar
  90. 90.
    Quirke P, et al. Local recurrence of rectal adenocarcinoma due to inadequate surgical resection. Histopathological study of lateral tumour spread and surgical excision. Lancet. 1986;2(8514):996-9.PubMedCrossRefGoogle Scholar
  91. 91.
    Halvorsen TB, Seim E. Association between invasiveness, inflammatory reaction, desmoplasia and survival in colorectal cancer. J Clin Pathol. 1989;42(2):162-6.PubMedCrossRefGoogle Scholar
  92. 92.
    Newland RC, et al. Pathologic determinants of survival associated with colorectal cancer with lymph node metastases. A multivariate analysis of 579 patients. Cancer. 1994;73(8):2076-82.PubMedCrossRefGoogle Scholar
  93. 93.
    Roncucci L, et al. Survival for colon and rectal cancer in a population-based cancer registry. Eur J Cancer. 1996;32A(2):295-302.PubMedCrossRefGoogle Scholar
  94. 94.
    Hase K, et al. Prognostic value of tumor “budding” in patients with colorectal cancer. Dis Colon Rectum. 1993;36(7):627-35.PubMedCrossRefGoogle Scholar
  95. 95.
    Gryfe R, et al. Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer. N Engl J Med. 2000;342(2):69-77.PubMedCrossRefGoogle Scholar
  96. 96.
    Lothe RA, et al. Genomic instability in colorectal cancer: relationship to clinicopathological variables and family history. Cancer Res. 1993;53(24):5849-52.PubMedGoogle Scholar
  97. 97.
    Popat S, Hubner R, Houlston RS. Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol. 2005;23(3):609-18.PubMedCrossRefGoogle Scholar
  98. 98.
    Kim H, et al. Clinical and pathological characteristics of sporadic colorectal carcinomas with DNA replication errors in microsatellite sequences. Am J Pathol. 1994;145(1):148-56.PubMedGoogle Scholar
  99. 99.
    Smyrk TC, et al. Tumor-infiltrating lymphocytes are a marker for microsatellite instability in colorectal carcinoma. Cancer. 2001;91(12):2417-22.PubMedCrossRefGoogle Scholar
  100. 100.
    Lanza G, et al. Immunohistochemical test for MLH1 and MSH2 expression predicts clinical outcome in stage II and III colorectal cancer patients. J Clin Oncol. 2006;24(15):2359-67.PubMedCrossRefGoogle Scholar
  101. 101.
    Ribic CM, et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med. 2003;349(3):247-57.PubMedCrossRefGoogle Scholar
  102. 102.
    Sargent DJ, et al. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J Clin Oncol. 2010;28(20):3219-26.PubMedCrossRefGoogle Scholar
  103. 103.
    Andre T, et al. Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N Engl J Med. 2004;350(23):2343-51.PubMedCrossRefGoogle Scholar
  104. 104.
    Andre T, et al. Improved overall survival with oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment in stage II or III colon cancer in the MOSAIC trial. J Clin Oncol. 2009;27(19):3109-16.PubMedCrossRefGoogle Scholar
  105. 105.
    Benson AB 3rd, et al. American Society of Clinical Oncology recommendations on adjuvant chemotherapy for stage II colon cancer. J Clin Oncol. 2004;22(16):3408-19.PubMedCrossRefGoogle Scholar
  106. 106.
    Kerr DJ, Midgley R. Defective mismatch repair in colon cancer: a prognostic or predictive biomarker? J Clin Oncol. 2010;28(20):3210-2.PubMedCrossRefGoogle Scholar
  107. 107.
    Ng K, Schrag D. Microsatellite instability and adjuvant fluorouracil chemotherapy: a mismatch? J Clin Oncol. 2010;28(20):3207-10.PubMedCrossRefGoogle Scholar
  108. 108.
    Des Guetz G, et al. Does microsatellite instability predict the efficacy of adjuvant chemotherapy in colorectal cancer? A systematic review with meta-analysis. Eur J Cancer. 2009;45(10):1890-6.PubMedCrossRefGoogle Scholar
  109. 109.
    Fernebro E, et al. Predominance of CIN versus MSI in the development of rectal cancer at young age. BMC Cancer. 2002;2:25.PubMedCrossRefGoogle Scholar
  110. 110.
    Hoogerbrugge N, et al. Very low incidence of microsatellite instability in rectal cancers from families at risk for HNPCC. Clin Genet. 2003;63(1):64-70.PubMedCrossRefGoogle Scholar
  111. 111.
    Ishikubo T, et al. The clinical features of rectal cancers with high-frequency microsatellite instability (MSI-H) in Japanese males. Cancer Lett. 2004;216(1):55-62.PubMedCrossRefGoogle Scholar
  112. 112.
    Colombino M, et al. Prevalence and prognostic role of microsatellite instability in patients with rectal carcinoma. Ann Oncol. 2002;13(9):1447-53.PubMedCrossRefGoogle Scholar
  113. 113.
    Meng WJ, et al. Microsatellite instability did not predict individual survival in sporadic stage II and III rectal cancer patients. Oncology. 2007;72(1–2):82-8.PubMedCrossRefGoogle Scholar
  114. 114.
    Jen J, et al. Allelic loss of chromosome 18q and prognosis in colorectal cancer. N Engl J Med. 1994;331(4):213-21.PubMedCrossRefGoogle Scholar
  115. 115.
    Lanza G, et al. Chromosome 18q allelic loss and prognosis in stage II and III colon cancer. Int J Cancer. 1998;79(4):390-5.PubMedCrossRefGoogle Scholar
  116. 116.
    Popat S, Houlston RS. A systematic review and meta-analysis of the relationship between chromosome 18q genotype, DCC status and colorectal cancer prognosis. Eur J Cancer. 2005;41(14):2060-70.PubMedCrossRefGoogle Scholar
  117. 117.
    Kato M, et al. Detection of DCC and Ki-ras gene alterations in colorectal carcinoma tissue as prognostic markers for liver metastatic recurrence. Cancer. 1996;77(8 Suppl):1729-35.PubMedGoogle Scholar
  118. 118.
    Shibata D, et al. The DCC protein and prognosis in colorectal cancer. N Engl J Med. 1996;335(23):1727-32.PubMedCrossRefGoogle Scholar
  119. 119.
    Itoh F, et al. Decreased expression of DCC mRNA in human colorectal cancers. Int J Cancer. 1993;53(2):260-3.PubMedCrossRefGoogle Scholar
  120. 120.
    Hong S, Lee HJ, Kim SJ, Hahm KB. Connection between inflammation and carcinogenesis in gastrointestinal tract: focus on TGF-beta signaling. World J Gastroenterol. 2010;16(17):2080-93.PubMedCrossRefGoogle Scholar
  121. 121.
    Eppert K, et al. MADR2 maps to 18q21 and encodes a TGFbeta-regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell. 1996;86(4):543-52.PubMedCrossRefGoogle Scholar
  122. 122.
    Xie W, et al. Loss of Smad signaling in human colorectal cancer is associated with advanced disease and poor prognosis. Cancer J. 2003;9(4):302-12.PubMedCrossRefGoogle Scholar
  123. 123.
    Alhopuro P, et al. SMAD4 levels and response to 5-fluorouracil in colorectal cancer. Clin Cancer Res. 2005;11(17):6311-6.PubMedCrossRefGoogle Scholar
  124. 124.
    Alazzouzi H, et al. SMAD4 as a prognostic marker in colorectal cancer. Clin Cancer Res. 2005;11(7):2606-11.PubMedCrossRefGoogle Scholar
  125. 125.
    Carethers JM, et al. Prognostic significance of allelic lost at chromosome 18q21 for stage II colorectal cancer. Gastroenterology. 1998;114(6):1188-95.PubMedCrossRefGoogle Scholar
  126. 126.
    Cohn KH, et al. The significance of allelic deletions and aneuploidy in colorectal carcinoma. Results of a 5-year follow-up study. Cancer. 1997;79(2):233-44.PubMedCrossRefGoogle Scholar
  127. 127.
    Laurent-Puig P, et al. Survival and acquired genetic alterations in colorectal cancer. Gastroenterology. 1992;102(4 Pt 1):1136-41.PubMedGoogle Scholar
  128. 128.
    Zauber NP, et al. Ki-ras gene mutations, LOH of the APC and DCC genes, and microsatellite instability in primary colorectal carcinoma are not associated with micrometastases in pericolonic lymph nodes or with patients’ survival. J Clin Pathol. 2004;57(9):938-42.PubMedCrossRefGoogle Scholar
  129. 129.
    Locker GY, et al. ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J Clin Oncol. 2006;24(33):5313-27.PubMedCrossRefGoogle Scholar
  130. 130.
    Bazan V, et al. DNA ploidy and S-phase fraction, but not p53 or NM23-H1 expression, predict outcome in colorectal cancer patients. Result of a 5-year prospective study. J Cancer Res Clin Oncol. 2002;128(12):650-8.PubMedCrossRefGoogle Scholar
  131. 131.
    Bottger TC, et al. Prognostic value of DNA analysis in colorectal carcinoma. Cancer. 1993;72(12):3579-87.PubMedCrossRefGoogle Scholar
  132. 132.
    Liebig C, et al. Perineural invasion in cancer: a review of the literature. Cancer. 2009;115(15):3379-91.PubMedCrossRefGoogle Scholar
  133. 133.
    Knudsen JB, et al. Venous and nerve invasion as prognostic factors in postoperative survival of patients with resectable cancer of the rectum. Dis Colon Rectum. 1983;26(9):613-7.PubMedCrossRefGoogle Scholar
  134. 134.
    Shirouzu K, et al. Clinicopathologic study of perineural invasion in rectal cancer. Kurume Med J. 1992;39(1):41-9.PubMedCrossRefGoogle Scholar
  135. 135.
    Ueno H, Hase K, Mochizuki H. Criteria for extramural perineural invasion as a prognostic factor in rectal cancer. Br J Surg. 2001;88(7):994-1000.PubMedCrossRefGoogle Scholar
  136. 136.
    Shirouzu K, Isomoto H, Kakegawa T. Prognostic evaluation of perineural invasion in rectal cancer. Am J Surg. 1993;165(2):233-7.PubMedCrossRefGoogle Scholar
  137. 137.
    Liebig C, et al. Perineural invasion is an independent predictor of outcome in colorectal cancer. J Clin Oncol. 2009;27(31):5131-7.PubMedCrossRefGoogle Scholar
  138. 138.
    Poeschl EM, et al. Perineural invasion: correlation with aggressive phenotype and independent prognostic variable in both colon and rectum cancer. J Clin Oncol. 2010;28(21):e358-60. author reply e361-2.PubMedCrossRefGoogle Scholar
  139. 139.
    Des Guetz G, et al. Microvessel density and VEGF expression are prognostic factors in colorectal cancer. Meta-analysis of the literature. Br J Cancer. 2006;94(12):1823-32.PubMedCrossRefGoogle Scholar
  140. 140.
    Klintrup K, et al. Inflammation and prognosis in colorectal cancer. Eur J Cancer. 2005;41(17):2645-54.PubMedCrossRefGoogle Scholar
  141. 141.
    Deans GT, et al. Jass’ classification revisited. J Am Coll Surg. 1994;179(1):11-7.PubMedGoogle Scholar
  142. 142.
    de Bruine AP, et al. Endocrine cells in colorectal adenocarcinomas: incidence, hormone profile and prognostic relevance. Int J Cancer. 1993;54(5):765-71.PubMedCrossRefGoogle Scholar
  143. 143.
    Grabowski P, et al. Neuroendocrine differentiation is a relevant prognostic factor in stage III-IV colorectal cancer. Eur J Gastroenterol Hepatol. 2001;13(4):405-11.PubMedCrossRefGoogle Scholar
  144. 144.
    Ruschoff J, et al. Prognostic significance of nucleolar organizing regions (NORs) in carcinomas of the sigmoid colon and rectum. Pathol Res Pract. 1990;186(1):85-91.PubMedCrossRefGoogle Scholar
  145. 145.
    Garrity MM, et al. Prognostic value of proliferation, apoptosis, defective DNA mismatch repair, and p53 overexpression in patients with resected Dukes’ B2 or C colon cancer: a North Central Cancer Treatment Group Study. J Clin Oncol. 2004;22(9):1572-82.PubMedCrossRefGoogle Scholar
  146. 146.
    Brown DC, Gatter KC. Ki67 protein: the immaculate deception? Histopathology. 2002;40(1):2-11.PubMedCrossRefGoogle Scholar
  147. 147.
    Miyaki M, et al. Characteristics of somatic mutation of the adenomatous polyposis coli gene in colorectal tumors. Cancer Res. 1994;54(11):3011-20.PubMedGoogle Scholar
  148. 148.
    Levy DB, et al. Inactivation of both APC alleles in human and mouse tumors. Cancer Res. 1994;54(22):5953-8.PubMedGoogle Scholar
  149. 149.
    Powell SM, et al. APC mutations occur early during colorectal tumorigenesis. Nature. 1992;359(6392):235-7.PubMedCrossRefGoogle Scholar
  150. 150.
    Miyoshi Y, et al. Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Hum Mol Genet. 1992;1(4):229-33.PubMedCrossRefGoogle Scholar
  151. 151.
    Esteller M, et al. Analysis of adenomatous polyposis coli promoter hypermethylation in human cancer. Cancer Res. 2000;60(16):4366-71.PubMedGoogle Scholar
  152. 152.
    Rusan NM, Peifer M. Original CIN: reviewing roles for APC in chromosome instability. J Cell Biol. 2008;181(5):719-26.PubMedCrossRefGoogle Scholar
  153. 153.
    Lovig T, et al. APC and CTNNB1 mutations in a large series of sporadic colorectal carcinomas stratified by the microsatellite instability status. Scand J Gastroenterol. 2002;37(10):1184-93.PubMedCrossRefGoogle Scholar
  154. 154.
    Frattini M, et al. Different genetic features associated with colon and rectal carcinogenesis. Clin Cancer Res. 2004;10(12 Pt 1): 4015-21.PubMedCrossRefGoogle Scholar
  155. 155.
    Kapiteijn E, et al. Mechanisms of oncogenesis in colon versus rectal cancer. J Pathol. 2001;195(2):171-8.PubMedCrossRefGoogle Scholar
  156. 156.
    Jass JR, et al. APC mutation and tumour budding in colorectal cancer. J Clin Pathol. 2003;56(1):69-73.PubMedCrossRefGoogle Scholar
  157. 157.
    Bondi J, et al. Expression of non-membranous beta-catenin and gamma-catenin, c-Myc and cyclin D1 in relation to patient outcome in human colon adenocarcinomas. APMIS. 2004;112(1):49-56.PubMedCrossRefGoogle Scholar
  158. 158.
    Conlin A, et al. The prognostic significance of K-ras, p53, and APC mutations in colorectal carcinoma. Gut. 2005;54(9):1283-6.PubMedCrossRefGoogle Scholar
  159. 159.
    Zauber NP, et al. Molecular genetic changes associated with colorectal carcinogenesis are not prognostic for tumor regression following preoperative chemoradiation of rectal carcinoma. Int J Radiat Oncol Biol Phys. 2009;74(2):472-6.PubMedCrossRefGoogle Scholar
  160. 160.
    Iacopetta B. TP53 mutation in colorectal cancer. Hum Mutat. 2003;21(3):271-6.PubMedCrossRefGoogle Scholar
  161. 161.
    Vogelstein B, et al. Genetic alterations during colorectal-tumor development. N Engl J Med. 1988;319(9):525-32.PubMedCrossRefGoogle Scholar
  162. 162.
    Beroud C, Soussi T. The UMD-p53 database: new mutations and analysis tools. Hum Mutat. 2003;21(3):176-81.PubMedCrossRefGoogle Scholar
  163. 163.
    Carson DA, Lois A. Cancer progression and p53. Lancet. 1995;346(8981):1009-11.PubMedCrossRefGoogle Scholar
  164. 164.
    Efeyan A, Serrano M. p53: guardian of the genome and policeman of the oncogenes. Cell Cycle. 2007;6(9):1006-10.PubMedCrossRefGoogle Scholar
  165. 165.
    Gervaz P, et al. Dukes B colorectal cancer: distinct genetic categories and clinical outcome based on proximal or distal tumor location. Dis Colon Rectum. 2001;44(3):364-72. discussion 372–3.PubMedCrossRefGoogle Scholar
  166. 166.
    Russo A, et al. The TP53 colorectal cancer international collaborative study on the prognostic and predictive significance of p53 mutation: influence of tumor site, type of mutation, and adjuvant treatment. J Clin Oncol. 2005;23(30):7518-28.PubMedCrossRefGoogle Scholar
  167. 167.
    Slattery ML, et al. A comparison of colon and rectal somatic DNA alterations. Dis Colon Rectum. 2009;52(7):1304-11.PubMedCrossRefGoogle Scholar
  168. 168.
    Berardi R, et al. Locally advanced rectal cancer: from molecular profiling to clinical practice. A literature review: Part 2. Expert Opin Pharmacother. 2009;10(15):2467-78.PubMedCrossRefGoogle Scholar
  169. 169.
    Kuremsky JG, Tepper JE, McLeod HL. Biomarkers for response to neoadjuvant chemoradiation for rectal cancer. Int J Radiat Oncol Biol Phys. 2009;74(3):673-88.PubMedCrossRefGoogle Scholar
  170. 170.
    Makinen MJ. Colorectal serrated adenocarcinoma. Histopathology. 2007;50(1):131-50.PubMedCrossRefGoogle Scholar
  171. 171.
    Samowitz WS, et al. Inverse relationship between microsatellite instability and K-ras and p53 gene alterations in colon cancer. Am J Pathol. 2001;158(4):1517-24.PubMedCrossRefGoogle Scholar
  172. 172.
    Huerta S, Gao X, Saha D. Mechanisms of resistance to ionizing radiation in rectal cancer. Expert Rev Mol Diagn. 2009;9(5):469-80.PubMedCrossRefGoogle Scholar
  173. 173.
    Lievre A, Blons H, Laurent-Puig P. Oncogenic mutations as ­predictive factors in colorectal cancer. Oncogene. 2010;29(21): 3033-43.PubMedCrossRefGoogle Scholar
  174. 174.
    Paez JG, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004; 304(5676):1497-500.PubMedCrossRefGoogle Scholar
  175. 175.
    Barber TD, et al. Somatic mutations of EGFR in colorectal cancers and glioblastomas. N Engl J Med. 2004;351(27):2883.PubMedCrossRefGoogle Scholar
  176. 176.
    Sauer T, et al. Demonstration of EGFR gene copy loss in colorectal carcinomas by fluorescence in situ hybridization (FISH): a surrogate marker for sensitivity to specific anti-EGFR therapy? Histopathology. 2005;47(6):560-4.PubMedCrossRefGoogle Scholar
  177. 177.
    Shia J, et al. Epidermal growth factor receptor expression and gene amplification in colorectal carcinoma: an immunohistochemical and chromogenic in situ hybridization study. Mod Pathol. 2005;18(10):1350-6.PubMedCrossRefGoogle Scholar
  178. 178.
    Goldstein NS, Armin M. Epidermal growth factor receptor immunohistochemical reactivity in patients with American Joint Committee on Cancer Stage IV colon adenocarcinoma: implications for a standardized scoring system. Cancer. 2001;92(5):1331-46.PubMedCrossRefGoogle Scholar
  179. 179.
    Laurent-Puig P, et al. Analysis of PTEN, BRAF, and EGFR status in determining benefit from cetuximab therapy in wild-type KRAS metastatic colon cancer. J Clin Oncol. 2009;27(35):5924-30.PubMedCrossRefGoogle Scholar
  180. 180.
    Italiano A, et al. Cetuximab shows activity in colorectal cancer patients with tumors for which FISH analysis does not detect an increase in EGFR gene copy number. Ann Surg Oncol. 2008;15(2):649-54.PubMedCrossRefGoogle Scholar
  181. 181.
    Vallbohmer D, et al. Molecular determinants of cetuximab efficacy. J Clin Oncol. 2005;23(15):3536-44.PubMedCrossRefGoogle Scholar
  182. 182.
    Kim JS, et al. Epidermal growth factor receptor as a predictor of tumor downstaging in locally advanced rectal cancer patients treated with preoperative chemoradiotherapy. Int J Radiat Oncol Biol Phys. 2006;66(1):195-200.PubMedCrossRefGoogle Scholar
  183. 183.
    Li S, et al. Epidermal growth factor receptor as a prognostic factor in locally advanced rectal-cancer patients treated with preoperative chemoradiation. Int J Radiat Oncol Biol Phys. 2006;65(3):705-12.PubMedCrossRefGoogle Scholar
  184. 184.
    Giralt J, et al. The expression of epidermal growth factor receptor results in a worse prognosis for patients with rectal cancer treated with preoperative radiotherapy: a multicenter, retrospective analysis. Radiother Oncol. 2005;74(2):101-8.PubMedCrossRefGoogle Scholar
  185. 185.
    Giralt J, et al. Epidermal growth factor receptor is a predictor of tumor response in locally advanced rectal cancer patients treated with preoperative radiotherapy. Int J Radiat Oncol Biol Phys. 2002;54(5):1460-5.PubMedCrossRefGoogle Scholar
  186. 186.
    Azria D, et al. Prognostic impact of epidermal growth factor receptor (EGFR) expression on loco-regional recurrence after preoperative radiotherapy in rectal cancer. BMC Cancer. 2005;5:62.PubMedCrossRefGoogle Scholar
  187. 187.
    Cunningham MP, et al. Coexpression of the IGF-IR, EGFR and HER-2 is common in colorectal cancer patients. Int J Oncol. 2006;28(2):329-35.PubMedGoogle Scholar
  188. 188.
    Toiyama Y, et al. Gene expression profiles of epidermal growth factor receptor, vascular endothelial growth factor and hypoxia-inducible factor-1 with special reference to local responsiveness to neoadjuvant chemoradiotherapy and disease recurrence after rectal cancer surgery. Clin Oncol (R Coll Radiol). 2010;22(4):272-80.CrossRefGoogle Scholar
  189. 189.
    Yang D, et al. Gene expression levels of epidermal growth factor receptor, survivin, and vascular endothelial growth factor as molecular markers of lymph node involvement in patients with locally advanced rectal cancer. Clin Colorectal Cancer. 2006;6(4):305-11.PubMedCrossRefGoogle Scholar
  190. 190.
    Takahari D, et al. Relationships of insulin-like growth factor-1 receptor and epidermal growth factor receptor expression to clinical outcomes in patients with colorectal cancer. Oncology. 2009;76(1):42-8.PubMedCrossRefGoogle Scholar
  191. 191.
    Walther A, et al. Genetic prognostic and predictive markers in colorectal cancer. Nat Rev Cancer. 2009;9(7):489-99.PubMedCrossRefGoogle Scholar
  192. 192.
    Worthley DL, et al. Colorectal carcinogenesis: road maps to cancer. World J Gastroenterol. 2007;13(28):3784-91.PubMedGoogle Scholar
  193. 193.
    Kalady MF, et al. Divergent oncogenic changes influence survival differences between colon and rectal adenocarcinomas. Dis Colon Rectum. 2009;52(6):1039-45.PubMedCrossRefGoogle Scholar
  194. 194.
    Andreyev HJ, et al. Kirsten ras mutations in patients with colorectal cancer: the ‘RASCAL II’ study. Br J Cancer. 2001;85(5):692-6.PubMedCrossRefGoogle Scholar
  195. 195.
    Andreyev HJ, et al. Kirsten ras mutations in patients with colorectal cancer: the multicenter “RASCAL” study. J Natl Cancer Inst. 1998;90(9):675-84.PubMedCrossRefGoogle Scholar
  196. 196.
    Fuchs C, et al. KRAS mutation, cancer recurrence, and patient survival in stage III colon cancer: Findings from CALGB 89803. In: 2009 ASCO Annual Meeting 2009. Orlando.Google Scholar
  197. 197.
    Ogino S, et al. KRAS mutation in stage III colon cancer and clinical outcome following intergroup trial CALGB 89803. Clin Cancer Res. 2009;15(23):7322-9.PubMedCrossRefGoogle Scholar
  198. 198.
    Roth AD, et al. Prognostic role of KRAS and BRAF in stage II and III resected colon cancer: results of the translational study on the PETACC-3, EORTC 40993, SAKK 60–00 trial. J Clin Oncol. 2010;28(3):466-74.PubMedCrossRefGoogle Scholar
  199. 199.
    Karapetis CS, et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med. 2008;359(17):1757-65.PubMedCrossRefGoogle Scholar
  200. 200.
    Bardelli A, Siena S. Molecular mechanisms of resistance to cetuximab and panitumumab in colorectal cancer. J Clin Oncol. 2010;28(7):1254-61.PubMedCrossRefGoogle Scholar
  201. 201.
    Sartore-Bianchi A, et al. Integrated molecular dissection of the epidermal growth factor receptor (EFGR) oncogenic pathway to predict response to EGFR-targeted monoclonal antibodies in metastatic colorectal cancer. Target Oncol. 2010;5(1):19-28.PubMedCrossRefGoogle Scholar
  202. 202.
    Amado RG, et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol. 2008;26(10):1626-34.PubMedCrossRefGoogle Scholar
  203. 203.
    Lievre A, et al. KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J Clin Oncol. 2008;26(3):374-9.PubMedCrossRefGoogle Scholar
  204. 204.
    Van Cutsem E, et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med. 2009;360(14):1408-17.PubMedCrossRefGoogle Scholar
  205. 205.
    Van Cutsem E, et al. (2008) KRAS status and efficacy in the first-line treatment of patients with metastatic colorectal cancer (mCRC) treated with FOLFIRI with or without cetuximab: The CRYSTAL experience. in: ASCO 2008 Annual Meeting,2009: J Clin Oncol 26: 2008 (May 20 suppl; abstr 2).Google Scholar
  206. 206.
    Bokemeyer C, et al. Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. J Clin Oncol. 2009;27(5):663-71.PubMedCrossRefGoogle Scholar
  207. 207.
    Jonker DJ, et al. Cetuximab for the treatment of colorectal cancer. N Engl J Med. 2007;357(20):2040-8.PubMedCrossRefGoogle Scholar
  208. 208.
    Allegra CJ, et al. American Society of Clinical Oncology provisional clinical opinion: testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy. J Clin Oncol. 2009;27(12):2091-6.PubMedCrossRefGoogle Scholar
  209. 209.
    Rajagopalan H, et al. Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature. 2002;418(6901):934.PubMedCrossRefGoogle Scholar
  210. 210.
    Domingo E, et al. BRAF-V600E is not involved in the colorectal tumorigenesis of HNPCC in patients with functional MLH1 and MSH2 genes. Oncogene. 2005;24(24):3995-8.PubMedCrossRefGoogle Scholar
  211. 211.
    Di Nicolantonio F, et al. Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol. 2008;26(35):5705-12.PubMedCrossRefGoogle Scholar
  212. 212.
    French AJ, et al. Prognostic significance of defective mismatch repair and BRAF V600E in patients with colon cancer. Clin Cancer Res. 2008;14(11):3408-15.PubMedCrossRefGoogle Scholar
  213. 213.
    Zlobec I, et al. Clinicopathological and protein characterization of BRAF- and K-RAS-mutated colorectal cancer and implications for prognosis. Int J Cancer. 2010;127(2):367-80.PubMedGoogle Scholar
  214. 214.
    Tol J, et al. Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N Engl J Med. 2009;360(6):563-72.PubMedCrossRefGoogle Scholar
  215. 215.
    Tol J, Nagtegaal ID, Punt CJ. BRAF mutation in metastatic colorectal cancer. N Engl J Med. 2009;361(1):98-9.PubMedCrossRefGoogle Scholar
  216. 216.
    Benvenuti S, et al. PIK3CA cancer mutations display gender and tissue specificity patterns. Hum Mutat. 2008;29(2):284-8.PubMedCrossRefGoogle Scholar
  217. 217.
    Frattini M, et al. PTEN loss of expression predicts cetuximab efficacy in metastatic colorectal cancer patients. Br J Cancer. 2007;97(8):1139-45.PubMedCrossRefGoogle Scholar
  218. 218.
    Jhawer M, et al. PIK3CA mutation/PTEN expression status predicts response of colon cancer cells to the epidermal growth factor receptor inhibitor cetuximab. Cancer Res. 2008;68(6):1953-61.PubMedCrossRefGoogle Scholar
  219. 219.
    Prenen H, et al. PIK3CA mutations are not a major determinant of resistance to the epidermal growth factor receptor inhibitor cetuximab in metastatic colorectal cancer. Clin Cancer Res. 2009;15(9):3184-8.PubMedCrossRefGoogle Scholar
  220. 220.
    Sartore-Bianchi A, et al. PIK3CA mutations in colorectal cancer are associated with clinical resistance to EGFR-targeted monoclonal antibodies. Cancer Res. 2009;69(5):1851-7.PubMedCrossRefGoogle Scholar
  221. 221.
    Perrone F, et al. PI3KCA/PTEN deregulation contributes to impaired responses to cetuximab in metastatic colorectal cancer patients. Ann Oncol. 2009;20(1):84-90.PubMedCrossRefGoogle Scholar
  222. 222.
    He Y, et al. PIK3CA mutations predict local recurrences in rectal cancer patients. Clin Cancer Res. 2009;15(22):6956-62.PubMedCrossRefGoogle Scholar
  223. 223.
    Ogino S, et al. PIK3CA mutation is associated with poor prognosis among patients with curatively resected colon cancer. J Clin Oncol. 2009;27(9):1477-84.PubMedCrossRefGoogle Scholar
  224. 224.
    Carmeliet P, Collen D. Molecular basis of angiogenesis. Role of VEGF and VE-cadherin. Ann N Y Acad Sci. 2000;902:249-62. discussion 262–4.PubMedCrossRefGoogle Scholar
  225. 225.
    Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407(6801):249-57.PubMedCrossRefGoogle Scholar
  226. 226.
    Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285(21):1182-6.PubMedCrossRefGoogle Scholar
  227. 227.
    Folkman J. What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst. 1990;82(1):4-6.PubMedCrossRefGoogle Scholar
  228. 228.
    Li C, et al. Both high intratumoral microvessel density determined using CD105 antibody and elevated plasma levels of CD105 in colorectal cancer patients correlate with poor prognosis. Br J Cancer. 2003;88(9):1424-31.PubMedCrossRefGoogle Scholar
  229. 229.
    Winder T, Lenz HJ. Vascular endothelial growth factor and epidermal growth factor signaling pathways as therapeutic targets for colorectal cancer. Gastroenterology. 2010;138(6):2163-76.PubMedCrossRefGoogle Scholar
  230. 230.
    Giralt J, et al. Prognostic significance of vascular endothelial growth factor and cyclooxygenase-2 in patients with rectal cancer treated with preoperative radiotherapy. Oncology. 2006;71 (5–6):312-9.PubMedCrossRefGoogle Scholar
  231. 231.
    Nozue M, Isaka N, Fukao K. Over-expression of vascular endothelial growth factor after preoperative radiation therapy for rectal cancer. Oncol Rep. 2001;8(6):1247-9.PubMedGoogle Scholar
  232. 232.
    Noda E, et al. Predictive value of vascular endothelial growth factor-C expression for local recurrence of rectal carcinoma. Oncol Rep. 2007;17(6):1327-31.PubMedGoogle Scholar
  233. 233.
    Svagzdys S, et al. Microvessel density as new prognostic marker after radiotherapy in rectal cancer. BMC Cancer. 2009;9:95.PubMedCrossRefGoogle Scholar
  234. 234.
    Zlobec I, Steele R, Compton CC. VEGF as a predictive marker of rectal tumor response to preoperative radiotherapy. Cancer. 2005;104(11):2517-21.PubMedCrossRefGoogle Scholar
  235. 235.
    Zlobec I, et al. Combined analysis of VEGF and EGFR predicts complete tumour response in rectal cancer treated with preoperative radiotherapy. Br J Cancer. 2008;98(2):450-6.PubMedCrossRefGoogle Scholar
  236. 236.
    Negri FV, et al. Biological predictive factors in rectal cancer treated with preoperative radiotherapy or radiochemotherapy. Br J Cancer. 2008;98(1):143-7.PubMedCrossRefGoogle Scholar
  237. 237.
    Qiu H, et al. Molecular prognostic factors in rectal cancer treated by radiation and surgery. Dis Colon Rectum. 2000;43(4):451-9.PubMedCrossRefGoogle Scholar
  238. 238.
    Hurwitz H, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350(23):2335-42.PubMedCrossRefGoogle Scholar
  239. 239.
    Czito BG, et al. Bevacizumab, oxaliplatin, and capecitabine with radiation therapy in rectal cancer: Phase I trial results. Int J Radiat Oncol Biol Phys. 2007;68(2):472-8.PubMedCrossRefGoogle Scholar
  240. 240.
    Willett CG, et al. Efficacy, safety, and biomarkers of neoadjuvant bevacizumab, radiation therapy, and fluorouracil in rectal cancer: a multidisciplinary phase II study. J Clin Oncol. 2009;27(18):3020-6.PubMedCrossRefGoogle Scholar
  241. 241.
    Lenz HJ, et al. p53 and thymidylate synthase expression in untreated stage II colon cancer: associations with recurrence, survival, and site. Clin Cancer Res. 1998;4(5):1227-34.PubMedGoogle Scholar
  242. 242.
    Salonga D, et al. Colorectal tumors responding to 5-fluorouracil have low gene expression levels of dihydropyrimidine dehydrogenase, thymidylate synthase, and thymidine phosphorylase. Clin Cancer Res. 2000;6(4):1322-7.PubMedGoogle Scholar
  243. 243.
    Popat S, Matakidou A, Houlston RS. Thymidylate synthase expression and prognosis in colorectal cancer: a systematic review and meta-analysis. J Clin Oncol. 2004;22(3):529-36.PubMedCrossRefGoogle Scholar
  244. 244.
    Yamada H, Iinuma H, Watanabe T. Prognostic value of 5-fluorouracil metabolic enzyme genes in Dukes’ stage B and C colorectal cancer patients treated with oral 5-fluorouracil-based adjuvant chemotherapy. Oncol Rep. 2008;19(3):729-35.PubMedGoogle Scholar
  245. 245.
    Liersch T, et al. Lymph node status and TS gene expression are prognostic markers in stage II/III rectal cancer after neoadjuvant fluorouracil-based chemoradiotherapy. J Clin Oncol. 2006;24(25):4062-8.PubMedCrossRefGoogle Scholar
  246. 246.
    Jakob C, et al. Prognostic value of histologic tumor regression, thymidylate synthase, thymidine phosphorylase, and dihydropyrimidine dehydrogenase in rectal cancer UICC Stage II/III after neoadjuvant chemoradiotherapy. Am J Surg Pathol. 2006;30(9):1169-74.PubMedCrossRefGoogle Scholar
  247. 247.
    Bertolini F, et al. Prognostic and predictive value of baseline and posttreatment molecular marker expression in locally advanced rectal cancer treated with neoadjuvant chemoradiotherapy. Int J Radiat Oncol Biol Phys. 2007;68(5):1455-61.PubMedCrossRefGoogle Scholar
  248. 248.
    Wang Y, et al. Gene expression profiles and molecular markers to predict recurrence of Dukes’ B colon cancer. J Clin Oncol. 2004;22(9):1564-71.PubMedCrossRefGoogle Scholar
  249. 249.
    Mariadason JM, et al. Gene expression profiling-based prediction of response of colon carcinoma cells to 5-fluorouracil and camptothecin. Cancer Res. 2003;63(24):8791-812.PubMedGoogle Scholar
  250. 250.
    Ghadimi BM, et al. Effectiveness of gene expression profiling for response prediction of rectal adenocarcinomas to preoperative chemoradiotherapy. J Clin Oncol. 2005;23(9):1826-38.PubMedCrossRefGoogle Scholar
  251. 251.
    Kim IJ, et al. Microarray gene expression profiling for predicting complete response to preoperative chemoradiotherapy in patients with advanced rectal cancer. Dis Colon Rectum. 2007;50(9):1342-53.PubMedCrossRefGoogle Scholar
  252. 252.
    Rimkus C, et al. Microarray-based prediction of tumor response to neoadjuvant radiochemotherapy of patients with locally advanced rectal cancer. Clin Gastroenterol Hepatol. 2008;6(1):53-61.PubMedCrossRefGoogle Scholar
  253. 253.
    Johnson LG, et al. Anal cancer incidence and survival: the surveillance, epidemiology, and end results experience, 1973–2000. Cancer. 2004;101(2):281-8.PubMedCrossRefGoogle Scholar
  254. 254.
    Chiao EY, et al. A population-based analysis of temporal trends in the incidence of squamous anal canal cancer in relation to the HIV epidemic. J Acquir Immune Defic Syndr. 2005;40(4):451-5.PubMedCrossRefGoogle Scholar
  255. 255.
    Frisch M, Melbye M, Moller H. Trends in incidence of anal cancer in Denmark. BMJ. 1993;306(6875):419-22.PubMedCrossRefGoogle Scholar
  256. 256.
    Brewster DH, Bhatti LA. Increasing incidence of squamous cell carcinoma of the anus in Scotland, 1975–2002. Br J Cancer. 2006;95(1):87-90.PubMedCrossRefGoogle Scholar
  257. 257.
    Welton ML, Sharkey FE, Kahlenberg MS. The etiology and epidemiology of anal cancer. Surg Oncol Clin N Am. 2004;13(2):263-75.PubMedCrossRefGoogle Scholar
  258. 258.
    Frisch M, et al. Sexually transmitted infection as a cause of anal cancer. N Engl J Med. 1997;337(19):1350-8.PubMedCrossRefGoogle Scholar
  259. 259.
    Daling JR, et al. Sexual practices, sexually transmitted diseases, and the incidence of anal cancer. N Engl J Med. 1987;317(16):973-7.PubMedCrossRefGoogle Scholar
  260. 260.
    Palefsky JM. Anal human papillomavirus infection and anal cancer in HIV-positive individuals: an emerging problem. AIDS. 1994;8(3):283-95.PubMedCrossRefGoogle Scholar
  261. 261.
    Palefsky JM, Shiboski S, Moss A. Risk factors for anal human papillomavirus infection and anal cytologic abnormalities in HIV-positive and HIV-negative homosexual men. J Acquir Immune Defic Syndr. 1994;7(6):599-606.PubMedGoogle Scholar
  262. 262.
    Williams AB, et al. Anal and cervical human papillomavirus infection and risk of anal and cervical epithelial abnormalities in human immunodeficiency virus-infected women. Obstet Gynecol. 1994;83(2):205-11.PubMedGoogle Scholar
  263. 263.
    Melbye M, Sprogel P. Aetiological parallel between anal cancer and cervical cancer. Lancet. 1991;338(8768):657-9.PubMedCrossRefGoogle Scholar
  264. 264.
    Zbar AP, et al. The pathology and molecular biology of anal intraepithelial neoplasia: comparisons with cervical and vulvar intraepithelial carcinoma. Int J Colorectal Dis. 2002;17(4):203-15.PubMedCrossRefGoogle Scholar
  265. 265.
    Arends MJ, et al. Renal allograft recipients with high susceptibility to cutaneous malignancy have an increased prevalence of human papillomavirus DNA in skin tumours and a greater risk of anogenital malignancy. Br J Cancer. 1997;75(5):722-8.PubMedCrossRefGoogle Scholar
  266. 266.
    Holmes F, et al. Anal cancer in women. Gastroenterology. 1988;95(1):107-11.PubMedGoogle Scholar
  267. 267.
    Penn I. Cancers of the anogenital region in renal transplant recipients. Analysis of 65 cases. Cancer. 1986;58(3):611-6.PubMedCrossRefGoogle Scholar
  268. 268.
    Edge S, et al. AJCC Cancer Staging Manual, 7th Edition. 2010.Google Scholar
  269. 269.
    Martin FT, Kavanagh D, Waldron R. Squamous cell carcinoma of the anal canal. Surgeon. 2009;7(4):232-7.PubMedCrossRefGoogle Scholar
  270. 270.
    Garrett K, Kalady MF. Anal neoplasms. Surg Clin North Am. 2010;90(1):147-61. Table of Contents.PubMedCrossRefGoogle Scholar
  271. 271.
    Insinga RP, Dasbach EJ, Elbasha EH. Epidemiologic natural history and clinical management of Human Papillomavirus (HPV) Disease: a critical and systematic review of the literature in the development of an HPV dynamic transmission model. BMC Infect Dis. 2009;9:119.PubMedCrossRefGoogle Scholar
  272. 272.
    Chin-Hong PV, et al. Anal human papillomavirus infection is associated with HIV acquisition in men who have sex with men. AIDS. 2009;23(9):1135-42.PubMedCrossRefGoogle Scholar
  273. 273.
    Palefsky J. Human papillomavirus-related disease in people with HIV. Curr Opin HIV AIDS. 2009;4(1):52-6.PubMedCrossRefGoogle Scholar
  274. 274.
    Grinsztejn B, et al. Factors associated with increased prevalence of human papillomavirus infection in a cohort of HIV-infected Brazilian women. Int J Infect Dis. 2009;13(1):72-80.PubMedCrossRefGoogle Scholar
  275. 275.
    Palefsky J. Human papillomavirus and anal neoplasia. Curr HIV/AIDS Rep. 2008;5(2):78-85.PubMedCrossRefGoogle Scholar
  276. 276.
    Daling JR, et al. Human papillomavirus, smoking, and sexual practices in the etiology of anal cancer. Cancer. 2004;101(2):270-80.PubMedCrossRefGoogle Scholar
  277. 277.
    Da Costa MM, et al. Increased risk of high-grade anal neoplasia associated with a human papillomavirus type 16 E6 sequence variant. J Infect Dis. 2002;185(9):1229-37.PubMedCrossRefGoogle Scholar
  278. 278.
    Scheffner M, et al. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell. 1990;63(6):1129-36.PubMedCrossRefGoogle Scholar
  279. 279.
    Werness BA, Levine AJ, Howley PM. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science. 1990;248(4951):76-9.PubMedCrossRefGoogle Scholar
  280. 280.
    Lee JH, et al. p53 gene mutation is rare in human cervical carcinomas with positive HPV sequences. Int J Gynecol Cancer. 1994;4(6):371-378.PubMedCrossRefGoogle Scholar
  281. 281.
    Gervaz P, Hirschel B, Morel P. Molecular biology of squamous cell carcinoma of the anus. Br J Surg. 2006;93(5):531-8.PubMedCrossRefGoogle Scholar
  282. 282.
    Munger K, et al. Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. EMBO J. 1989;8(13):4099-105.PubMedGoogle Scholar
  283. 283.
    Dyson N, et al. The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science. 1989;243(4893):934-7.PubMedCrossRefGoogle Scholar
  284. 284.
    Heck DV, et al. Efficiency of binding the retinoblastoma protein correlates with the transforming capacity of the E7 oncoproteins of the human papillomaviruses. Proc Natl Acad Sci USA. 1992;89(10):4442-6.PubMedCrossRefGoogle Scholar
  285. 285.
    Moody CA, Laimins LA. Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer. 2010;10(8):550-60.PubMedCrossRefGoogle Scholar
  286. 286.
    Durst M, et al. The physical state of human papillomavirus type 16 DNA in benign and malignant genital tumours. J Gen Virol. 1985;66(Pt 7):1515-22.PubMedCrossRefGoogle Scholar
  287. 287.
    Peter M, et al. Frequent genomic structural alterations at HPV insertion sites in cervical carcinoma. J Pathol. 2010;221(3):320-30.PubMedCrossRefGoogle Scholar
  288. 288.
    Wentzensen N, Vinokurova S, von Knebel Doeberitz M. Systematic review of genomic integration sites of human papillomavirus genomes in epithelial dysplasia and invasive cancer of the female lower genital tract. Cancer Res. 2004;64(11):3878-84.PubMedCrossRefGoogle Scholar
  289. 289.
    Wilke CM, et al. FRA3B extends over a broad region and contains a spontaneous HPV16 integration site: direct evidence for the coincidence of viral integration sites and fragile sites. Hum Mol Genet. 1996;5(2):187-95.PubMedCrossRefGoogle Scholar
  290. 290.
    Muller CY, et al. Abnormalities of fragile histidine triad genomic and complementary DNAs in cervical cancer: association with human papillomavirus type. J Natl Cancer Inst. 1998;90(6):433-9.PubMedCrossRefGoogle Scholar
  291. 291.
    Peter M, et al. MYC activation associated with the integration of HPV DNA at the MYC locus in genital tumors. Oncogene. 2006;25(44):5985-93.PubMedCrossRefGoogle Scholar
  292. 292.
    Duensing S, et al. Human papillomavirus type 16 E7 oncoprotein-induced abnormal centrosome synthesis is an early event in the evolving malignant phenotype. Cancer Res. 2001;61(6):2356-60.PubMedGoogle Scholar
  293. 293.
    Muleris M, et al. Recurrent deletions of chromosomes 11q and 3p in anal canal carcinoma. Int J Cancer. 1987;39(5):595-8.PubMedCrossRefGoogle Scholar
  294. 294.
    Heselmeyer K, et al. A recurrent pattern of chromosomal aberrations and immunophenotypic appearance defines anal squamous cell carcinomas. Br J Cancer. 1997;76(10):1271-8.PubMedCrossRefGoogle Scholar
  295. 295.
    Gervaz P, et al. Molecular biology of squamous cell carcinoma of the anus: a comparison of HIV-positive and HIV-negative patients. J Gastrointest Surg. 2004;8(8):1024-30. discussion 1031.PubMedCrossRefGoogle Scholar
  296. 296.
    Bethwaite PB, et al. Loss of heterozygosity occurs at the D11S29 locus on chromosome 11q23 in invasive cervical carcinoma. Br J Cancer. 1995;71(4):814-8.PubMedCrossRefGoogle Scholar
  297. 297.
    Hampton GM, et al. Loss of heterozygosity in cervical carcinoma: subchromosomal localization of a putative tumor-suppressor gene to chromosome 11q22-q24. Proc Natl Acad Sci USA. 1994;91(15):6953-7.PubMedCrossRefGoogle Scholar
  298. 298.
    Thompson DA, et al. The human papillomavirus-16 E6 oncoprotein decreases the vigilance of mitotic checkpoints. Oncogene. 1997;15(25):3025-35.PubMedCrossRefGoogle Scholar
  299. 299.
    Thomas JT, Laimins LA. Human papillomavirus oncoproteins E6 and E7 independently abrogate the mitotic spindle checkpoint. J Virol. 1998;72(2):1131-7.PubMedGoogle Scholar
  300. 300.
    Duensing A, et al. Analysis of centrosome overduplication in correlation to cell division errors in high-risk human papillomavirus (HPV)-associated anal neoplasms. Virology. 2008;372(1):157-64.PubMedCrossRefGoogle Scholar
  301. 301.
    Patel D, et al. Human papillomavirus type 16 E6 and E7 cause polyploidy in human keratinocytes and up-regulation of G2-M-phase proteins. Cancer Res. 2004;64(4):1299-306.PubMedCrossRefGoogle Scholar
  302. 302.
    Finzer P, Aguilar-Lemarroy A, Rosl F. The role of human papillomavirus oncoproteins E6 and E7 in apoptosis. Cancer Lett. 2002;188(1–2):15-24.PubMedCrossRefGoogle Scholar
  303. 303.
    Melbye M, et al. High incidence of anal cancer among AIDS patients. The AIDS/Cancer Working Group. Lancet. 1994;343(8898):636-9.PubMedCrossRefGoogle Scholar
  304. 304.
    Diamond C, et al. Increased incidence of squamous cell anal ­cancer among men with AIDS in the era of highly active antiretroviral therapy. Sex Transm Dis. 2005;32(5):314-20.PubMedCrossRefGoogle Scholar
  305. 305.
    Piketty C, et al. Marked increase in the incidence of invasive anal cancer among HIV-infected patients despite treatment with combination antiretroviral therapy. AIDS. 2008;22(10):1203-11.PubMedCrossRefGoogle Scholar
  306. 306.
    Palefsky JM, et al. High incidence of anal high-grade squamous intra-epithelial lesions among HIV-positive and HIV-negative homosexual and bisexual men. AIDS. 1998;12(5):495-503.PubMedCrossRefGoogle Scholar
  307. 307.
    Critchlow CW, et al. Effect of HIV infection on the natural history of anal human papillomavirus infection. AIDS. 1998;12(10): 1177-84.PubMedCrossRefGoogle Scholar
  308. 308.
    Nagle D. Anal squamous cell carcinoma in the HIV-positive patient. Clin Colon Rectal Surg. 2009;22(2):102-6.PubMedCrossRefGoogle Scholar
  309. 309.
    Palefsky JM. Anal cancer prevention in HIV-positive men and women. Curr Opin Oncol. 2009;21(5):433-8.PubMedCrossRefGoogle Scholar
  310. 310.
    Palefsky JM, et al. Anal squamous intraepithelial lesions in HIV-positive and HIV-negative homosexual and bisexual men: prevalence and risk factors. J Acquir Immune Defic Syndr Hum Retrovirol. 1998;17(4):320-6.PubMedCrossRefGoogle Scholar
  311. 311.
    Palefsky JM, et al. Anal intraepithelial neoplasia and anal papillomavirus infection among homosexual males with group IV HIV disease. JAMA. 1990;263(21):2911-6.PubMedCrossRefGoogle Scholar
  312. 312.
    Goedert JJ, et al. Spectrum of AIDS-associated malignant disorders. Lancet. 1998;351(9119):1833-9.PubMedCrossRefGoogle Scholar
  313. 313.
    Maggard MA, Beanes SR, Ko CY. Anal canal cancer: a population-based reappraisal. Dis Colon Rectum. 2003;46(11):1517-23. discussion 1523–4; author reply 1524.PubMedCrossRefGoogle Scholar
  314. 314.
    Jong E, et al. Effect of HIV viral load, CD4 cell count and antiretroviral therapy on human papillomavirus prevalence in urine samples of HIV-infected men. Int J STD AIDS. 2009;20(4):262-4.PubMedCrossRefGoogle Scholar
  315. 315.
    Palefsky JM, et al. Virologic, immunologic, and clinical parameters in the incidence and progression of anal squamous intraepithelial lesions in HIV-positive and HIV-negative homosexual men. J Acquir Immune Defic Syndr Hum Retrovirol. 1998;17(4):314-9.PubMedCrossRefGoogle Scholar
  316. 316.
    Wistuba II, et al. Comparison of molecular changes in lung cancers in HIV-positive and HIV-indeterminate subjects. JAMA. 1998;279(19):1554-9.PubMedCrossRefGoogle Scholar
  317. 317.
    Wistuba II, et al. Comparison of molecular changes in cervical intraepithelial neoplasia in HIV-positive and HIV-indeterminate subjects. Gynecol Oncol. 1999;74(3):519-26.PubMedCrossRefGoogle Scholar
  318. 318.
    Bedi GC, et al. Microsatellite instability in primary neoplasms from HIV + patients. Nat Med. 1995;1(1):65-8.PubMedCrossRefGoogle Scholar
  319. 319.
    Duval A, et al. The mutator pathway is a feature of immunodeficiency-related lymphomas. Proc Natl Acad Sci USA. 2004;101(14):5002-7.PubMedCrossRefGoogle Scholar
  320. 320.
    Le LH, Chetty R, Moore MJ. Epidermal growth factor receptor expression in anal canal carcinoma. Am J Clin Pathol. 2005;124(1):20-3.PubMedCrossRefGoogle Scholar
  321. 321.
    Van Damme N, et al. EGFR and K-RAS gene status evaluation in anal canal squamous cell carcinoma, in 2008 ASCO Annual Meeting. 2008, J Clin Oncol 26: 2008 (May 20 suppl; abstr 15569).Google Scholar
  322. 322.
    Lukan N, et al. Cetuximab-based treatment of metastatic anal cancer: correlation of response with KRAS mutational status. Oncology. 2009;77(5):293-9.PubMedCrossRefGoogle Scholar
  323. 323.
    Ajani JA, et al. Molecular biomarkers correlate with disease-free survival in patients with anal canal carcinoma treated with chemoradiation. Dig Dis Sci. 2010;55(4):1098-105.PubMedCrossRefGoogle Scholar
  324. 324.
    Klas JV, et al. Malignant tumors of the anal canal: the spectrum of disease, treatment, and outcomes. Cancer. 1999;85(8):1686-93.PubMedCrossRefGoogle Scholar
  325. 325.
    Wanebo HJ, et al. Anorectal melanoma. Cancer. 1981;47(7): 1891-900.PubMedCrossRefGoogle Scholar
  326. 326.
    Iversen K, Robins RE. Mucosal malignant melanomas. Am J Surg. 1980;139(5):660-4.PubMedCrossRefGoogle Scholar
  327. 327.
    Row D, Weiser MR. Anorectal melanoma. Clin Colon Rectal Surg. 2009;22(2):120-6.PubMedCrossRefGoogle Scholar
  328. 328.
    McLaughlin CC, et al. Incidence of noncutaneous melanomas in the U.S. Cancer. 2005;103(5):1000-7.PubMedCrossRefGoogle Scholar
  329. 329.
    Cagir B, et al. Changing epidemiology of anorectal melanoma. Dis Colon Rectum. 1999;42(9):1203-8.PubMedCrossRefGoogle Scholar
  330. 330.
    Smalley KS, Sondak VK, Weber JS. c-KIT signaling as the driving oncogenic event in sub-groups of melanomas. Histol Histopathol. 2009;24(5):643-50.PubMedGoogle Scholar
  331. 331.
    Curtin JA, et al. Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol. 2006;24(26):4340-6.PubMedCrossRefGoogle Scholar
  332. 332.
    Satzger I, et al. Analysis of c-KIT expression and KIT gene mutation in human mucosal melanomas. Br J Cancer. 2008;99(12):2065-9.PubMedCrossRefGoogle Scholar
  333. 333.
    Went PT, et al. Prevalence of KIT expression in human tumors. J Clin Oncol. 2004;22(22):4514-22.PubMedCrossRefGoogle Scholar
  334. 334.
    Willmore-Payne C, et al. Human malignant melanoma: detection of BRAF- and c-kit-activating mutations by high-resolution amplicon melting analysis. Hum Pathol. 2005;36(5):486-93.PubMedCrossRefGoogle Scholar
  335. 335.
    Omholt K, et al. NRAS and BRAF mutations arise early during melanoma pathogenesis and are preserved throughout tumor progression. Clin Cancer Res. 2003;9(17):6483-8.PubMedGoogle Scholar
  336. 336.
    Antonescu CR, et al. L576P KIT mutation in anal melanomas correlates with KIT protein expression and is sensitive to specific kinase inhibition. Int J Cancer. 2007;121(2):257-64.PubMedCrossRefGoogle Scholar
  337. 337.
    Kim KB, et al. Phase II trial of imatinib mesylate in patients with metastatic melanoma. Br J Cancer. 2008;99(5):734-40.PubMedCrossRefGoogle Scholar
  338. 338.
    Ugurel S, et al. Lack of clinical efficacy of imatinib in metastatic melanoma. Br J Cancer. 2005;92(8):1398-405.PubMedCrossRefGoogle Scholar
  339. 339.
    Satzger I, et al. Anal mucosal melanoma with KIT-activating mutation and response to imatinib therapy–case report and review of the literature. Dermatology. 2010;220(1):77-81.PubMedCrossRefGoogle Scholar
  340. 340.
    Alexis JB, Martinez AE, Lutzky J. An immunohistochemical evaluation of c-kit (CD-117) expression in malignant melanoma, and results of imatinib mesylate (Gleevec) therapy in three patients. Melanoma Res. 2005;15(4):283-5.PubMedCrossRefGoogle Scholar
  341. 341.
    Carvajal RD, et al. A phase II study of flavopiridol (Alvocidib) in combination with docetaxel in refractory, metastatic pancreatic cancer. Pancreatology. 2009;9(4):404-9.PubMedCrossRefGoogle Scholar
  342. 342.
    Su DM, et al. Two types of human malignant melanoma cell lines revealed by expression patterns of mitochondrial and survival-apoptosis genes: implications for malignant melanoma therapy. Mol Cancer Ther. 2009;8:1292-304.PubMedCrossRefGoogle Scholar
  343. 343.
    Woodman SE, et al. Activity of dasatinib against L576P KIT mutant melanoma: molecular, cellular, and clinical correlates. Mol Cancer Ther. 2009;8(8):2079-85.PubMedCrossRefGoogle Scholar
  344. 344.
    Quintas-Cardama A, et al. Complete response of stage IV anal mucosal melanoma expressing KIT Val560Asp to the multikinase inhibitor sorafenib. Nat Clin Pract Oncol. 2008;5(12):737-40.PubMedCrossRefGoogle Scholar
  345. 345.
    Madeleine M, Newcomer LM. Cancers of the anus. In: Madeleine M, Newcomer LM, eds. National Cancer Institute’s Surveillance, Epidemiology, and End Results Program (SEER). Bethesda, MD: National Cancer Institute; 2007.Google Scholar
  346. 346.
    DeMatteo RP, et al. Two hundred gastrointestinal stromal tumors: recurrence patterns and prognostic factors for survival. Ann Surg. 2000;231(1):51-8.PubMedCrossRefGoogle Scholar
  347. 347.
    Miettinen M, et al. Gastrointestinal stromal tumors, intramural leiomyomas, and leiomyosarcomas in the rectum and anus: a clinicopathologic, immunohistochemical, and molecular genetic study of 144 cases. Am J Surg Pathol. 2001;25(9):1121-33.PubMedCrossRefGoogle Scholar
  348. 348.
    Miettinen M, Lasota J. Gastrointestinal stromal tumors: pathology and prognosis at different sites. Semin Diagn Pathol. 2006;23(2):70-83.PubMedCrossRefGoogle Scholar
  349. 349.
    Peralta EA. Rare anorectal neoplasms: gastrointestinal stromal tumor, carcinoid, and lymphoma. Clin Colon Rectal Surg. 2009;22(2):107-14.PubMedCrossRefGoogle Scholar
  350. 350.
    Heinrich MC, et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol. 2003;21(23):4342-9.PubMedCrossRefGoogle Scholar
  351. 351.
    Joensuu H, et al. Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med. 2001;344(14):1052-6.PubMedCrossRefGoogle Scholar
  352. 352.
    Demetri GD, et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med. 2002;347(7):472-80.PubMedCrossRefGoogle Scholar
  353. 353.
    Blanke CD, et al. Phase III randomized, intergroup trial assessing imatinib mesylate at two dose levels in patients with unresectable or metastatic gastrointestinal stromal tumors expressing the kit receptor tyrosine kinase: S0033. J Clin Oncol. 2008;26(4):626-32.PubMedCrossRefGoogle Scholar
  354. 354.
    Blanke CD, et al. Long-term results from a randomized phase II trial of standard- versus higher-dose imatinib mesylate for patients with unresectable or metastatic gastrointestinal stromal tumors expressing KIT. J Clin Oncol. 2008;26(4):620-5.PubMedCrossRefGoogle Scholar
  355. 355.
    Heinrich MC, et al. Correlation of kinase genotype and clinical outcome in the North American Intergroup Phase III Trial of imatinib mesylate for treatment of advanced gastrointestinal stromal tumor: CALGB 150105 Study by Cancer and Leukemia Group B and Southwest Oncology Group. J Clin Oncol. 2008;26(33):5360-7.PubMedCrossRefGoogle Scholar
  356. 356.
    Van Glabbeke MM, et al. Comparison of two doses of imatinib for the treatment of unresectable or metastatic gastrointestinal stromal tumors (GIST): A meta-analyis based on 1,640 patients (pts), in 2007 ASCO Annual Meeting. 2007.Google Scholar
  357. 357.
    Debiec-Rychter M, et al. KIT mutations and dose selection for imatinib in patients with advanced gastrointestinal stromal tumours. Eur J Cancer. 2006;42(8):1093-103.PubMedCrossRefGoogle Scholar
  358. 358.
    Corless CL, et al. PDGFRA mutations in gastrointestinal stromal tumors: frequency, spectrum and in vitro sensitivity to imatinib. J Clin Oncol. 2005;23(23):5357-64.PubMedCrossRefGoogle Scholar
  359. 359.
    Medeiros F, et al. KIT-negative gastrointestinal stromal tumors: proof of concept and therapeutic implications. Am J Surg Pathol. 2004;28(7):889-94.PubMedCrossRefGoogle Scholar
  360. 360.
    Dematteo RP, et al. Adjuvant imatinib mesylate after resection of localised, primary gastrointestinal stromal tumour: a randomised, double-blind, placebo-controlled trial. Lancet. 2009;373(9669): 1097-104.PubMedCrossRefGoogle Scholar
  361. 361.
    Lang I, et al. Case 3. Resection of originally inoperable liver metastases of gastrointestinal stromal tumor after imatinib mesylate therapy. J Clin Oncol. 2003;21(18):3538-40.PubMedCrossRefGoogle Scholar
  362. 362.
    Andtbacka RH, et al. Surgical resection of gastrointestinal stromal tumors after treatment with imatinib. Ann Surg Oncol. 2007;14(1):14-24.PubMedCrossRefGoogle Scholar
  363. 363.
    Eisenberg BL, et al. Phase II trial of neoadjuvant/adjuvant imatinib mesylate (IM) for advanced primary and metastatic/recurrent operable gastrointestinal stromal tumor (GIST): early results of RTOG 0132/ACRIN 6665. J Surg Oncol. 2009;99(1):42-7.PubMedCrossRefGoogle Scholar
  364. 364.
    Hou YY, et al. Imatinib mesylate neoadjuvant treatment for rectal malignant gastrointestinal stromal tumor. World J Gastroenterol. 2009;15(15):1910-3.PubMedCrossRefGoogle Scholar
  365. 365.
    Lo SS, et al. Neoadjuvant imatinib in gastrointestinal stromal tumor of the rectum: report of a case. Dis Colon Rectum. 2005;48(6):1316-9.PubMedCrossRefGoogle Scholar
  366. 366.
    Caldarola VT, et al. Carcinoid Tumors of the Rectum. Am J Surg. 1964;107:844-9.PubMedCrossRefGoogle Scholar
  367. 367.
    Soga J. Early-stage carcinoids of the gastrointestinal tract: an analysis of 1914 reported cases. Cancer. 2005;103(8):1587-95.PubMedCrossRefGoogle Scholar
  368. 368.
    Orloff MJ. Carcinoid tumors of the rectum. Cancer. 1971;28(1):175-80.PubMedCrossRefGoogle Scholar
  369. 369.
    Koura AN, et al. Carcinoid tumors of the rectum: effect of size, histopathology, and surgical treatment on metastasis free survival. Cancer. 1997;79(7):1294-8.PubMedCrossRefGoogle Scholar
  370. 370.
    Pinchot SN, et al. Carcinoid tumors. Oncologist. 2008;13(12): 1255-69.PubMedCrossRefGoogle Scholar
  371. 371.
    Jetmore AB, et al. Rectal carcinoids: the most frequent carcinoid tumor. Dis Colon Rectum. 1992;35(8):717-25.PubMedCrossRefGoogle Scholar
  372. 372.
    Mani S, et al. Carcinoids of the rectum. J Am Coll Surg. 1994;179(2):231-48.PubMedGoogle Scholar
  373. 373.
    Modlin IM, Lye KD, Kidd M. A 5-decade analysis of 13,715 carcinoid tumors. Cancer. 2003;97(4):934-59.PubMedCrossRefGoogle Scholar
  374. 374.
    Sauven P, et al. Anorectal carcinoid tumors. Is aggressive surgery warranted? Ann Surg. 1990;211(1):67-71.PubMedCrossRefGoogle Scholar
  375. 375.
    Naunheim KS, et al. Rectal carcinoid tumors–treatment and prognosis. Surgery. 1983;94(4):670-6.PubMedGoogle Scholar
  376. 376.
    Landry CS, et al. A proposed staging system for rectal carcinoid tumors based on an analysis of 4701 patients. Surgery. 2008; 144(3):460-6.PubMedCrossRefGoogle Scholar
  377. 377.
    Shepherd NA, et al. Primary malignant lymphoma of the colon and rectum. A histopathological and immunohistochemical analysis of 45 cases with clinicopathological correlations. Histopathology. 1988;12(3):235-52.PubMedCrossRefGoogle Scholar
  378. 378.
    Hatch KF, et al. Tumors of the rectum and anal canal. World J Surg. 2000;24(4):437-43.PubMedCrossRefGoogle Scholar
  379. 379.
    Bartolo D, Goepel JR, Parsons MA. Rectal malignant lymphoma in chronic ulcerative colitis. Gut. 1982;23(2):164-8.PubMedCrossRefGoogle Scholar
  380. 380.
    Fan CW, et al. Perforated rectal lymphoma in a renal transplant recipient: report of a case. Dis Colon Rectum. 1997;40(10):1258-60.PubMedCrossRefGoogle Scholar
  381. 381.
    Bilsel Y, et al. Clinical and therapeutic considerations of rectal lymphoma: a case report and literature review. World J Gastroenterol. 2005;11(3):460-1.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Delaware County Memorial HospitalDrexel HillUSA
  2. 2.Department of Hematology/OncologyUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations