Advertisement

Molecular Pathology of Squamous Carcinomas of the Esophagus

  • Rohinton S. Tarapore
  • Jonathan P. KatzEmail author
Chapter
Part of the Molecular Pathology Library book series (MPLB, volume 7)

Abstract

Esophageal squamous cell carcinoma (ESCC) is a form of cancer that has varying incidence rates among different countries, distinct geographic areas, and different ethnic groups. This malignancy has a multifactorial etiology involving environmental, dietary, and genetic factors. Tobacco smoking, excessive alcohol consumption, low intake of fruits and vegetables, and low socioeconomic status are some of the factors that contribute to increased risk of ESCC. Several studies have been undertaken regarding the molecular alterations associated with esophageal carcinogenesis. Despite a better understanding of the risk factors and the molecular and cellular derangements associated with ESCC, the clinical treatment has not changed significantly in recent years, and long-term survival from esophageal cancer remains poor. This chapter provides a conceptual basis for evaluating studies on the risks and the molecular mechanisms underlying esophageal squamous cell carcinogenesis and for devising therapeutic and preventive strategies to reduce the mortality of ESCC.

Keywords

Esophageal Cancer Esophageal Squamous Cell Carcinoma Human Papilloma Virus Adenomatous Polyposis Coli Cigarette Smoke Extract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.PubMedCrossRefGoogle Scholar
  2. 2.
    Jemal A, Center MM, DeSantis C, Ward EM. Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Biomarkers Prev. 2010;19(8):1893–1907.PubMedCrossRefGoogle Scholar
  3. 3.
    Engel LS, Chow WH, Vaughan TL, et al. Population attributable risks of esophageal and gastric cancers. J Natl Cancer Inst. 2003;95(18):1404–1413.PubMedCrossRefGoogle Scholar
  4. 4.
    Kamangar F, Chow WH, Abnet CC, Dawsey SM. Environmental causes of esophageal cancer. Gastroenterol Clin North Am. 2009;38(1):27–57.PubMedCrossRefGoogle Scholar
  5. 5.
    Stoner GD, Gupta A. Etiology and chemoprevention of esophageal squamous cell carcinoma. Carcinogenesis. 2001;22(11): 1737–1746.PubMedCrossRefGoogle Scholar
  6. 6.
    Anani PA, Gardiol D, Savary M, Monnier P. An extensive morphological and comparative study of clinically early and obvious squamous cell carcinoma of the esophagus. Pathol Res Pract. 1991;187(2–3):214–219.PubMedCrossRefGoogle Scholar
  7. 7.
    Kuwano H, Watanabe M, Sadanaga N, Ikebe M, Mori M, Sugimachi K. Squamous epithelial dysplasia associated with squamous cell carcinoma of the esophagus. Cancer Lett. 1993;72(3):141–147.PubMedCrossRefGoogle Scholar
  8. 8.
    Polednak AP. Trends in survival for both histologic types of esophageal cancer in US surveillance, epidemiology and end results areas. Int J Cancer. 2003;105(1):98–100.PubMedCrossRefGoogle Scholar
  9. 9.
    Younes M, Henson DE, Ertan A, Miller CC. Incidence and survival trends of esophageal carcinoma in the United States: racial and gender differences by histological type. Scand J Gastroenterol. 2002;37(12):1359–1365.PubMedCrossRefGoogle Scholar
  10. 10.
    Rose EF. Esophageal cancer in the Transkei: 1955–69. J Natl Cancer Inst. 1973;51(1):7–16.PubMedGoogle Scholar
  11. 11.
    Schottenfeld D. Epidemiology of cancer of the esophagus. Semin Oncol. 1984;11(2):92–100.PubMedGoogle Scholar
  12. 12.
    Sons HU. Etiologic and epidemiologic factors of carcinoma of the esophagus. Surg Gynecol Obstet. 1987;165(2):183–190.PubMedGoogle Scholar
  13. 13.
    Yang CS. Research on esophageal cancer in China: a review. Cancer Res. 1980;40(8 Pt 1):2633–2644.PubMedGoogle Scholar
  14. 14.
    Gholipour C, Shalchi RA, Abbasi M. A histopathological study of esophageal cancer on the western side of the Caspian littoral from 1994 to 2003. Dis Esophagus. 2008;21(4):322–327.PubMedCrossRefGoogle Scholar
  15. 15.
    Tran GD, Sun XD, Abnet CC, et al. Prospective study of risk factors for esophageal and gastric cancers in the Linxian general population trial cohort in China. Int J Cancer. 2005;113(3):456–463.PubMedCrossRefGoogle Scholar
  16. 16.
    Stoner GD, Wang LS, Chen T. Chemoprevention of esophageal squamous cell carcinoma. Toxicol Appl Pharmacol. 2007;224(3):337–349.PubMedCrossRefGoogle Scholar
  17. 17.
    Islami F, Boffetta P, Ren JS, Pedoeim L, Khatib D, Kamangar F. High-temperature beverages and foods and esophageal cancer risk–a systematic review. Int J Cancer. 2009;125(3):491–524.PubMedCrossRefGoogle Scholar
  18. 18.
    Islami F, Pourshams A, Nasrollahzadeh D, et al. Tea drinking habits and oesophageal cancer in a high risk area in northern Iran: population based case-control study. BMJ. 2009;338:b929.PubMedCrossRefGoogle Scholar
  19. 19.
    Wu M, Liu AM, Kampman E, et al. Green tea drinking, high tea temperature and esophageal cancer in high- and low-risk areas of Jiangsu Province, China: a population-based case-control study. Int J Cancer. 2009;124(8):1907–1913.PubMedCrossRefGoogle Scholar
  20. 20.
    Hecht SS. Cigarette smoking: cancer risks, carcinogens, and mechanisms. Langenbecks Arch Surg. 2006;391(6):603–613.PubMedCrossRefGoogle Scholar
  21. 21.
    Gammon MD, Schoenberg JB, Ahsan H, et al. Tobacco, alcohol, and socioeconomic status and adenocarcinomas of the esophagus and gastric cardia. J Natl Cancer Inst. 1997;89(17):1277–1284.PubMedCrossRefGoogle Scholar
  22. 22.
    Xu XC. Risk factors and gene expression in esophageal cancer. Methods Mol Biol. 2009;471:335–360.PubMedCrossRefGoogle Scholar
  23. 23.
    Zhang ZF, Kurtz RC, Sun M, et al. Adenocarcinomas of the esophagus and gastric cardia: medical conditions, tobacco, alcohol, and socioeconomic factors. Cancer Epidemiol Biomarkers Prev. 1996;5(10):761–768.PubMedGoogle Scholar
  24. 24.
    Zhang ZF, Kurtz RC, Yu GP, et al. Adenocarcinomas of the esophagus and gastric cardia: the role of diet. Nutr Cancer. 1997;27(3):298–309.PubMedCrossRefGoogle Scholar
  25. 25.
    Carstensen JM, Pershagen G, Eklund G. Mortality in relation to cigarette and pipe smoking: 16 years’ observation of 25,000 Swedish men. J Epidemiol Community Health. 1987;41(2):166–172.PubMedCrossRefGoogle Scholar
  26. 26.
    Doll R, Peto R, Wheatley K, Gray R, Sutherland I. Mortality in relation to smoking: 40 years’ observations on male British doctors. BMJ. 1994;309(6959):901–911.PubMedCrossRefGoogle Scholar
  27. 27.
    Freedman ND, Abnet CC, Leitzmann MF, et al. A prospective study of tobacco, alcohol, and the risk of esophageal and gastric cancer subtypes. Am J Epidemiol. 2007;165(12):1424–1433.PubMedCrossRefGoogle Scholar
  28. 28.
    Ishikawa A, Kuriyama S, Tsubono Y, et al. Smoking, alcohol drinking, green tea consumption and the risk of esophageal cancer in Japanese men. J Epidemiol. 2006;16(5):185–192.PubMedCrossRefGoogle Scholar
  29. 29.
    McLaughlin JK, Hrubec Z, Blot WJ, Fraumeni JF Jr. Smoking and cancer mortality among U.S. veterans: a 26-year follow-up. Int J Cancer. 1995;60(2):190–193.PubMedCrossRefGoogle Scholar
  30. 30.
    Betel-quid and areca-nut chewing and some areca-nut derived nitrosamines. IARC Monogr Eval Carcinog Risks Hum. 2004;85:1–334.Google Scholar
  31. 31.
    Toh Y, Oki E, Ohgaki K, et al. Alcohol drinking, cigarette smoking, and the development of squamous cell carcinoma of the esophagus: molecular mechanisms of carcinogenesis. Int J Clin Oncol. 2010;15(2):135–144.PubMedCrossRefGoogle Scholar
  32. 32.
    Hecht SS, Hoffmann D. N-nitroso compounds and tobacco-induced cancers in man. IARC Sci Publ. 1991;105:54–61.PubMedGoogle Scholar
  33. 33.
    Khalili H, Zhang FJ, Harvey RG, Dipple A. Mutagenicity of benzo[a]pyrene-deoxyadenosine adducts in a sequence context derived from the p53 gene. Mutat Res. 2000;465(1–2):39–44.PubMedGoogle Scholar
  34. 34.
    MacLeod MC, Evans FE, Lay J, et al. Identification of a novel, N7-deoxyguanosine adduct as the major DNA adduct formed by a non-bay-region diol epoxide of benzo[a]pyrene with low mutagenic potential. Biochemistry. 1994;33(10):2977–2987.PubMedCrossRefGoogle Scholar
  35. 35.
    Pfeifer GP, Denissenko MF, Olivier M, Tretyakova N, Hecht SS, Hainaut P. Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene. 2002;21(48):7435–7451.PubMedCrossRefGoogle Scholar
  36. 36.
    Mandard AM, Hainaut P, Hollstein M. Genetic steps in the development of squamous cell carcinoma of the esophagus. Mutat Res. 2000;462(2–3):335–342.PubMedGoogle Scholar
  37. 37.
    Osborne MR. Sequence specificity in the reaction of benzopyrene diol epoxide with DNA. Chem Biol Interact. 1990;75(2):131–140.PubMedCrossRefGoogle Scholar
  38. 38.
    Zhang FJ, Cortez C, Harvey RG. New synthetic approaches to polycyclic aromatic hydrocarbons and their carcinogenic oxidized metabolites: derivatives of benzo[s]picene, benzo[rst]pentaphene, and dibenzo[b, def]chrysene. J Org Chem. 2000;65(13):3952–3960.PubMedCrossRefGoogle Scholar
  39. 39.
    Bartsch H. DNA adducts in human carcinogenesis: etiological relevance and structure-activity relationship. Mutat Res. 1996;340 (2–3):67–79.PubMedGoogle Scholar
  40. 40.
    Venkatachalam S, Denissenko MF, Alvi N, Wani AA. Rapid activation of apoptosis in human promyelocytic leukemic cells by (+/-)-anti-benzo[a]pyrene diol epoxide induced DNA damage. Biochem Biophys Res Commun. 1993;197(2):722–729.PubMedCrossRefGoogle Scholar
  41. 41.
    Denissenko MF, Pao A, Tang M, Pfeifer GP. Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science. 1996;274(5286):430–432.PubMedCrossRefGoogle Scholar
  42. 42.
    Mass MJ, Jeffers AJ, Ross JA, et al. Ki-ras oncogene mutations in tumors and DNA adducts formed by benz[j]aceanthrylene and benzo[a]pyrene in the lungs of strain A/J mice. Mol Carcinog. 1993;8(3):186–192.PubMedCrossRefGoogle Scholar
  43. 43.
    Kozack R, Seo KY, Jelinsky SA, Loechler EL. Toward an understanding of the role of DNA adduct conformation in defining mutagenic mechanism based on studies of the major adduct (formed at N(2)-dG) of the potent environmental carcinogen, benzo[a]pyrene. Mutat Res. 2000;450(1–2):41–59.PubMedGoogle Scholar
  44. 44.
    Pfeifer GP, Besaratinia A. Mutational spectra of human cancer. Hum Genet. 2009;125(5–6):493–506.PubMedCrossRefGoogle Scholar
  45. 45.
    Wang XD. Alcohol, vitamin A, and cancer. Alcohol. 2005;35(3):251–258.PubMedCrossRefGoogle Scholar
  46. 46.
    Boffetta P, Garfinkel L. Alcohol drinking and mortality among men enrolled in an American Cancer Society prospective study. Epidemiology. 1990;1(5):342–348.PubMedCrossRefGoogle Scholar
  47. 47.
    Brown LM, Hoover R, Silverman D, et al. Excess incidence of squamous cell esophageal cancer among US Black men: role of social class and other risk factors. Am J Epidemiol. 2001;153(2):114–122.PubMedCrossRefGoogle Scholar
  48. 48.
    Brown LM, Hoover RN, Greenberg RS, et al. Are racial differences in squamous cell esophageal cancer explained by alcohol and tobacco use? J Natl Cancer Inst. 1994;86(17):1340–1345.PubMedCrossRefGoogle Scholar
  49. 49.
    Pandeya N, Williams G, Green AC, Webb PM, Whiteman DC. Alcohol consumption and the risks of adenocarcinoma and squamous cell carcinoma of the esophagus. Gastroenterology. 2009;136(4):1215–1224. e1211–1212.PubMedCrossRefGoogle Scholar
  50. 50.
    Shiraishi-Yokoyama H, Yokoyama H, Matsumoto M, Imaeda H, Hibi T. Acetaldehyde inhibits the formation of retinoic acid from retinal in the rat esophagus. Scand J Gastroenterol. 2006;41(1):80–86.PubMedCrossRefGoogle Scholar
  51. 51.
    Wang XD, Liu C, Chung J, Stickel F, Seitz HK, Russell RM. Chronic alcohol intake reduces retinoic acid concentration and enhances AP-1 (c-Jun and c-Fos) expression in rat liver. Hepatology. 1998;28(3):744–750.PubMedCrossRefGoogle Scholar
  52. 52.
    Li M, Song S, Lippman SM, et al. Induction of retinoic acid receptor-beta suppresses cyclooxygenase-2 expression in esophageal cancer cells. Oncogene. 2002;21(3):411–418.PubMedCrossRefGoogle Scholar
  53. 53.
    Xu XC. Tumor-suppressive activity of retinoic acid receptor-beta in cancer. Cancer Lett. 2007;253(1):14–24.PubMedCrossRefGoogle Scholar
  54. 54.
    Castellsague X, Munoz N, De Stefani E, et al. Independent and joint effects of tobacco smoking and alcohol drinking on the risk of esophageal cancer in men and women. Int J Cancer. 1999;82(5):657–664.PubMedCrossRefGoogle Scholar
  55. 55.
    Kinjo Y, Cui Y, Akiba S, et al. Mortality risks of oesophageal ­cancer associated with hot tea, alcohol, tobacco and diet in Japan. J Epidemiol. 1998;8(4):235–243.PubMedCrossRefGoogle Scholar
  56. 56.
    Lee CH, Wu DC, Lee JM, et al. Carcinogenetic impact of alcohol intake on squamous cell carcinoma risk of the oesophagus in relation to tobacco smoking. Eur J Cancer. 2007;43(7):1188–1199.PubMedCrossRefGoogle Scholar
  57. 57.
    Morita M, Kumashiro R, Kubo N, et al. Alcohol drinking, cigarette smoking, and the development of squamous cell carcinoma of the esophagus: epidemiology, clinical findings, and prevention. Int J Clin Oncol. 2010;15(2):126–134.PubMedCrossRefGoogle Scholar
  58. 58.
    Salaspuro V, Salaspuro M. Synergistic effect of alcohol drinking and smoking on in vivo acetaldehyde concentration in saliva. Int J Cancer. 2004;111(4):480–483.PubMedCrossRefGoogle Scholar
  59. 59.
    Kuratsune M, Kohchi S, Horie A. Carcinogenesis in the Esophagus. I. Penetration of Benzo(a) Pyrene and other hydrocarbons into the esophageal mucosa. Gann. 1965;56:177–187.PubMedGoogle Scholar
  60. 60.
    Leeuwenburgh I, Haringsma J, Van Dekken H, Scholten P, Siersema PD, Kuipers EJ. Long-term risk of oesophagitis, Barrett’s oesophagus and oesophageal cancer in achalasia patients. Scand J Gastroenterol. 2006;243(Suppl):7–10.CrossRefGoogle Scholar
  61. 61.
    Carter R, Brewer LA III. Achalasia and esophageal carcinoma. Studies in early diagnosis for improved surgical management. Am J Surg. 1975;130(2):114–120.PubMedCrossRefGoogle Scholar
  62. 62.
    Meijssen MA, Tilanus HW, van Blankenstein M, Hop WC, Ong GL. Achalasia complicated by oesophageal squamous cell ­carcinoma: a prospective study in 195 patients. Gut. 1992;33(2): 155–158.PubMedCrossRefGoogle Scholar
  63. 63.
    Streitz JM Jr, Ellis FH Jr, Gibb SP, Heatley GM. Achalasia and squamous cell carcinoma of the esophagus: analysis of 241 patients. Ann Thorac Surg. 1995;59(6):1604–1609.PubMedCrossRefGoogle Scholar
  64. 64.
    Wychulis AR, Woolam GL, Andersen HA, Ellis FH Jr. Achalasia and carcinoma of the esophagus. JAMA. 1971;215(10):1638–1641.PubMedCrossRefGoogle Scholar
  65. 65.
    Zendehdel K, Nyren O, Edberg A, Ye W. Risk of esophageal adenocarcinoma in achalasia patients, a retrospective cohort study in Sweden. Am J Gastroenterol. 2011;106:57–61.PubMedCrossRefGoogle Scholar
  66. 66.
    Robertson EV, Jankowski JA. Genetics of gastroesophageal cancer: paradigms, paradoxes, and prognostic utility. Am J Gastroenterol. 2008;103(2):443–449.PubMedCrossRefGoogle Scholar
  67. 67.
    Marger RS, Marger D. Carcinoma of the esophagus and tylosis. A lethal genetic combination. Cancer. 1993;72(1):17–19.PubMedCrossRefGoogle Scholar
  68. 68.
    Messmann H. Squamous cell cancer of the oesophagus. Best Pract Res Clin Gastroenterol. 2001;15(2):249–265.PubMedCrossRefGoogle Scholar
  69. 69.
    Maillefer RH, Greydanus MP. To B or not to B: is tylosis B truly benign? Two North American genealogies. Am J Gastroenterol. 1999;94(3):829–834.PubMedGoogle Scholar
  70. 70.
    Risk JM, Field EA, Field JK, et al. Tylosis oesophageal cancer mapped. Nat Genet. 1994;8(4):319–321.PubMedCrossRefGoogle Scholar
  71. 71.
    El-Omar EM, Rabkin CS, Gammon MD, et al. Increased risk of noncardia gastric cancer associated with proinflammatory cytokine gene polymorphisms. Gastroenterology. 2003;124(5):1193–1201.PubMedCrossRefGoogle Scholar
  72. 72.
    Wang Z, Tang L, Sun G, et al. Etiological study of esophageal squamous cell carcinoma in an endemic region: a population-based case control study in Huaian, China. BMC Cancer. 2006;6:287.PubMedCrossRefGoogle Scholar
  73. 73.
    IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Human papillomaviruses. IARC Monogr Eval Carcinog Risks Hum. 2007;90:1–636.Google Scholar
  74. 74.
    Gillison ML, Shah KV. Chapter 9: Role of mucosal human papillomavirus in nongenital cancers. J Natl Cancer Inst Monogr. 2003;31:57–65.PubMedCrossRefGoogle Scholar
  75. 75.
    Benamouzig R, Jullian E, Chang F, et al. Absence of human papillomavirus DNA detected by polymerase chain reaction in French patients with esophageal carcinoma. Gastroenterology. 1995;109(6):1876–1881.PubMedCrossRefGoogle Scholar
  76. 76.
    Koh JS, Lee SS, Baek HJ, Kim YI. No association of high-risk human papillomavirus with esophageal squamous cell carcinomas among Koreans, as determined by polymerase chain reaction. Dis Esophagus. 2008;21(2):114–117.PubMedCrossRefGoogle Scholar
  77. 77.
    Kok TC, Nooter K, Tjong AHSP, Smits HL, Ter Schegget JT. No evidence of known types of human papillomavirus in squamous cell cancer of the oesophagus in a low-risk area. Rotterdam Oesophageal Tumour Study Group. Eur J Cancer. 1997;33(11):1865–1868.PubMedCrossRefGoogle Scholar
  78. 78.
    Poljak M, Cerar A, Seme K. Human papillomavirus infection in esophageal carcinomas: a study of 121 lesions using multiple broad-spectrum polymerase chain reactions and literature review. Hum Pathol. 1998;29(3):266–271.PubMedCrossRefGoogle Scholar
  79. 79.
    Saegusa M, Hashimura M, Takano Y, Ohbu M, Okayasu I. Absence of human papillomavirus genomic sequences detected by the polymerase chain reaction in oesophageal and gastric carcinomas in Japan. Mol Pathol. 1997;50(2):101–104.PubMedCrossRefGoogle Scholar
  80. 80.
    Talamini G, Capelli P, Zamboni G, et al. Alcohol, smoking and papillomavirus infection as risk factors for esophageal squamous-cell papilloma and esophageal squamous-cell carcinoma in Italy. Int J Cancer. 2000;86(6):874–878.PubMedCrossRefGoogle Scholar
  81. 81.
    White RE, Mungatana C, Mutuma G, et al. Absence of human papillomavirus in esophageal carcinomas from southwestern Kenya. Dis Esophagus. 2005;18(1):28–30.PubMedCrossRefGoogle Scholar
  82. 82.
    Yao PF, Li GC, Li J, et al. Evidence of human papilloma virus infection and its epidemiology in esophageal squamous cell carcinoma. World J Gastroenterol. 2006;12(9):1352–1355.PubMedGoogle Scholar
  83. 83.
    Freedman ND, Park Y, Subar AF, et al. Fruit and vegetable intake and esophageal cancer in a large prospective cohort study. Int J Cancer. 2007;121(12):2753–2760.PubMedCrossRefGoogle Scholar
  84. 84.
    Gonzalez CA, Pera G, Agudo A, et al. Fruit and vegetable intake and the risk of stomach and oesophagus adenocarcinoma in the European Prospective Investigation into Cancer and Nutrition (EPIC-EURGAST). Int J Cancer. 2006;118(10):2559–2566.PubMedCrossRefGoogle Scholar
  85. 85.
    Yamaji T, Inoue M, Sasazuki S, et al. Fruit and vegetable consumption and squamous cell carcinoma of the esophagus in Japan: the JPHC study. Int J Cancer. 2008;123(8):1935–1940.PubMedCrossRefGoogle Scholar
  86. 86.
    Glade MJ. Food, nutrition, and the prevention of cancer: a global perspective. American Institute for Cancer Research/World Cancer Research Fund, American Institute for Cancer Research, 1997. Nutrition. 1999;15(6):523–526.PubMedCrossRefGoogle Scholar
  87. 87.
    Wiseman M. The second World Cancer Research Fund/American Institute for Cancer Research expert report. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. Proc Nutr Soc. 2008;67(3):253–256.PubMedCrossRefGoogle Scholar
  88. 88.
    Lonnerdal B. Dietary factors influencing zinc absorption. J Nutr. 2000;130(5S Suppl):1378S–1383S.PubMedGoogle Scholar
  89. 89.
    Ke L. Mortality and incidence trends from esophagus cancer in selected geographic areas of China circa 1970–90. Int J Cancer. 2002;102(3):271–274.PubMedCrossRefGoogle Scholar
  90. 90.
    Abnet CC, Lai B, Qiao YL, et al. Zinc concentration in esophageal biopsy specimens measured by X-ray fluorescence and esophageal cancer risk. J Natl Cancer Inst. 2005;97(4):301–306.PubMedCrossRefGoogle Scholar
  91. 91.
    Chen X, Yang CS. Esophageal adenocarcinoma: a review and perspectives on the mechanism of carcinogenesis and chemoprevention. Carcinogenesis. 2001;22(8):1119–1129.PubMedCrossRefGoogle Scholar
  92. 92.
    Koppert LB, Wijnhoven BP, van Dekken H, Tilanus HW, Dinjens WN. The molecular biology of esophageal adenocarcinoma. J Surg Oncol. 2005;92(3):169–190.PubMedCrossRefGoogle Scholar
  93. 93.
    Lagarde SM, ten Kate FJ, Richel DJ, Offerhaus GJ, van Lanschot JJ. Molecular prognostic factors in adenocarcinoma of the esophagus and gastroesophageal junction. Ann Surg Oncol. 2007;14(2): 977–991.PubMedCrossRefGoogle Scholar
  94. 94.
    Reid BJ, Blount PL, Rabinovitch PS. Biomarkers in Barrett’s esophagus. Gastrointest Endosc Clin N Am. 2003;13(2):369–397.PubMedCrossRefGoogle Scholar
  95. 95.
    Spechler SJ. Barrett’s esophagus: a molecular perspective. Curr Gastroenterol Rep. 2005;7(3):177–181.PubMedCrossRefGoogle Scholar
  96. 96.
    Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science. 1991;253(5015):49–53.PubMedCrossRefGoogle Scholar
  97. 97.
    Olivier M, Eeles R, Hollstein M, Khan MA, Harris CC, Hainaut P. The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat. 2002;19(6):607–614.PubMedCrossRefGoogle Scholar
  98. 98.
    el-Deiry WS, Tokino T, Velculescu VE, et al. WAF1, a potential mediator of p53 tumor suppression. Cell. 1993;75(4):817–825.PubMedCrossRefGoogle Scholar
  99. 99.
    Miyashita T, Krajewski S, Krajewska M, et al. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene. 1994;9(6):1799–1805.PubMedGoogle Scholar
  100. 100.
    Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell. 1993;74(4):609–619.PubMedCrossRefGoogle Scholar
  101. 101.
    Egashira A, Morita M, Kakeji Y, et al. p53 gene mutations in esophageal squamous cell carcinoma and their relevance to etiology and pathogenesis: results in Japan and comparisons with other countries. Cancer Sci. 2007;98(8):1152–1156.PubMedCrossRefGoogle Scholar
  102. 102.
    Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature. 1997;387(6630):296–299.PubMedCrossRefGoogle Scholar
  103. 103.
    Parenti AR, Rugge M, Frizzera E, et al. p53 overexpression in the multistep process of esophageal carcinogenesis. Am J Surg Pathol. 1995;19(12):1418–1422.PubMedCrossRefGoogle Scholar
  104. 104.
    Hollstein M, Hergenhahn M, Yang Q, Bartsch H, Wang ZQ, Hainaut P. New approaches to understanding p53 gene tumor mutation spectra. Mutat Res. 1999;431(2):199–209.PubMedCrossRefGoogle Scholar
  105. 105.
    Gamieldien W, Victor TC, Mugwanya D, et al. p53 and p16/CDKN2 gene mutations in esophageal tumors from a high-incidence area in South Africa. Int J Cancer. 1998;78(5):544–549.PubMedCrossRefGoogle Scholar
  106. 106.
    Goan YG, Chang HC, Hsu HK, Chou YP, Cheng JT. Risk of p53 gene mutation in esophageal squamous cell carcinoma and habit of betel quid chewing in Taiwanese. Cancer Sci. 2005;96(11): 758–765.PubMedCrossRefGoogle Scholar
  107. 107.
    Hattori K, Kajiyama Y, Tsurumaru M. Mutation of the p53 gene predicts lymph node metastases in Japanese patients with esophageal carcinoma: DNA and immunohistochemical analyses. Dis Esophagus. 2003;16(4):301–306.PubMedCrossRefGoogle Scholar
  108. 108.
    Hu N, Huang J, Emmert-Buck MR, et al. Frequent inactivation of the TP53 gene in esophageal squamous cell carcinoma from a high-risk population in China. Clin Cancer Res. 2001;7(4):883–891.PubMedGoogle Scholar
  109. 109.
    Ribeiro U Jr, Finkelstein SD, Safatle-Ribeiro AV, et al. p53 sequence analysis predicts treatment response and outcome of patients with esophageal carcinoma. Cancer. 1998;83(1):7–18.PubMedCrossRefGoogle Scholar
  110. 110.
    Robert V, Michel P, Flaman JM, et al. High frequency in esophageal cancers of p53 alterations inactivating the regulation of genes involved in cell cycle and apoptosis. Carcinogenesis. 2000;21(4): 563–565.PubMedCrossRefGoogle Scholar
  111. 111.
    Sepehr A, Taniere P, Martel-Planche G, et al. Distinct pattern of TP53 mutations in squamous cell carcinoma of the esophagus in Iran. Oncogene. 2001;20(50):7368–7374.PubMedCrossRefGoogle Scholar
  112. 112.
    Shi ST, Yang GY, Wang LD, et al. Role of p53 gene mutations in human esophageal carcinogenesis: results from immunohistochemical and mutation analyses of carcinomas and nearby non-cancerous lesions. Carcinogenesis. 1999;20(4):591–597.PubMedCrossRefGoogle Scholar
  113. 113.
    Wang LD, Zhou FY, Li XM, et al. Genome-wide association study of esophageal squamous cell carcinoma in Chinese subjects identifies susceptibility loci at PLCE1 and C20orf54. Nat Genet. 2010;42(9):759–763.PubMedCrossRefGoogle Scholar
  114. 114.
    Greenblatt MS, Bennett WP, Hollstein M, Harris CC. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 1994;54(18):4855–4878.PubMedGoogle Scholar
  115. 115.
    Putz A, Hartmann AA, Fontes PR, et al. TP53 mutation pattern of esophageal squamous cell carcinomas in a high risk area (Southern Brazil): role of life style factors. Int J Cancer. 2002;98(1):99–105.PubMedCrossRefGoogle Scholar
  116. 116.
    Liu Z, Muehlbauer KR, Schmeiser HH, Hergenhahn M, Belharazem D, Hollstein MC. p53 mutations in benzo(a)pyrene-exposed human p53 knock-in murine fibroblasts correlate with p53 mutations in human lung tumors. Cancer Res. 2005;65(7): 2583–2587.PubMedCrossRefGoogle Scholar
  117. 117.
    Oki E, Zhao Y, Yoshida R, et al. The difference in p53 mutations between cancers of the upper and lower gastrointestinal tract. Digestion. 2009;79(Suppl 1):33–39.PubMedCrossRefGoogle Scholar
  118. 118.
    Belinsky SA. Silencing of genes by promoter hypermethylation: key event in rodent and human lung cancer. Carcinogenesis. 2005;26(9):1481–1487.PubMedCrossRefGoogle Scholar
  119. 119.
    Nobori T, Miura K, Wu DJ, Lois A, Takabayashi K, Carson DA. Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature. 1994;368(6473):753–756.PubMedCrossRefGoogle Scholar
  120. 120.
    Okamoto A, Demetrick DJ, Spillare EA, et al. Mutations and altered expression of p16INK4 in human cancer. Proc Natl Acad Sci USA. 1994;91(23):11045–11049.PubMedCrossRefGoogle Scholar
  121. 121.
    Herman JG, Merlo A, Mao L, et al. Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res. 1995;55(20):4525–4530.PubMedGoogle Scholar
  122. 122.
    Tokugawa T, Sugihara H, Tani T, Hattori T. Modes of silencing of p16 in development of esophageal squamous cell carcinoma. Cancer Res. 2002;62(17):4938–4944.PubMedGoogle Scholar
  123. 123.
    Ito S, Ohga T, Saeki H, et al. Promoter hypermethylation and quantitative expression analysis of CDKN2A (p14ARF and p16INK4a) gene in esophageal squamous cell carcinoma. Anticancer Res. 2007;27(5A):3345–3353.PubMedGoogle Scholar
  124. 124.
    Takeuchi H, Ozawa S, Ando N, et al. Altered p16/MTS1/CDKN2 and cyclin D1/PRAD-1 gene expression is associated with the prognosis of squamous cell carcinoma of the esophagus. Clin Cancer Res. 1997;3(12 Pt 1):2229–2236.PubMedGoogle Scholar
  125. 125.
    Motokura T, Bloom T, Kim HG, et al. A novel cyclin encoded by a bcl1-linked candidate oncogene. Nature. 1991;350(6318):512–515.PubMedCrossRefGoogle Scholar
  126. 126.
    Watanabe M, Kuwano H, Tanaka S, Toh Y, Masuda H, Sugimachi K. A significant morphological transformation is recognized in human esophageal cancer cells with an amplification/overexpression of the cyclin D1 gene. Int J Oncol. 1999;15(6):1103–1108.PubMedGoogle Scholar
  127. 127.
    Adelaide J, Monges G, Derderian C, Seitz JF, Birnbaum D. Oesophageal cancer and amplification of the human cyclin D gene CCND1/PRAD1. Br J Cancer. 1995;71(1):64–68.PubMedCrossRefGoogle Scholar
  128. 128.
    Nakagawa H, Zukerberg L, Togawa K, Meltzer SJ, Nishihara T, Rustgi AK. Human cyclin D1 oncogene and esophageal squamous cell carcinoma. Cancer. 1995;76(4):541–549.PubMedCrossRefGoogle Scholar
  129. 129.
    Shamma A, Doki Y, Shiozaki H, et al. Cyclin D1 overexpression in esophageal dysplasia: a possible biomarker for carcinogenesis of esophageal squamous cell carcinoma. Int J Oncol. 2000;16(2): 261–266.PubMedGoogle Scholar
  130. 130.
    Shamma A, Doki Y, Shiozaki H, et al. Effect of cyclin D1 and associated proteins on proliferation of esophageal squamous cell carcinoma. Int J Oncol. 1998;13(3):455–460.PubMedGoogle Scholar
  131. 131.
    Shinozaki H, Ozawa S, Ando N, et al. Cyclin D1 amplification as a new predictive classification for squamous cell carcinoma of the esophagus, adding gene information. Clin Cancer Res. 1996;2(7):1155–1161.PubMedGoogle Scholar
  132. 132.
    Kuwano H, Kato H, Miyazaki T, et al. Genetic alterations in esophageal cancer. Surg Today. 2005;35(1):7–18.PubMedCrossRefGoogle Scholar
  133. 133.
    Gaudray P, Szepetowski P, Escot C, Birnbaum D, Theillet C. DNA amplification at 11q13 in human cancer: from complexity to perplexity. Mutat Res. 1992;276(3):317–328.PubMedCrossRefGoogle Scholar
  134. 134.
    Tsuruta H, Sakamoto H, Onda M, Terada M. Amplification and overexpression of EXP1 and EXP2/Cyclin D1 genes in human esophageal carcinomas. Biochem Biophys Res Commun. 1993;196(3):1529–1536.PubMedCrossRefGoogle Scholar
  135. 135.
    Naitoh H, Shibata J, Kawaguchi A, Kodama M, Hattori T. Overexpression and localization of cyclin D1 mRNA and antigen in esophageal cancer. Am J Pathol. 1995;146(5):1161–1169.PubMedGoogle Scholar
  136. 136.
    Takeuchi H, Ozawa S, Ando N, Kitagawa Y, Ueda M, Kitajima M. Cell-cycle regulators and the Ki-67 labeling index can predict the response to chemoradiotherapy and the survival of patients with locally advanced squamous cell carcinoma of the esophagus. Ann Surg Oncol. 2003;10(7):792–800.PubMedCrossRefGoogle Scholar
  137. 137.
    Sarbia M, Stahl M, Fink U, et al. Prognostic significance of cyclin D1 in esophageal squamous cell carcinoma patients treated with surgery alone or combined therapy modalities. Int J Cancer. 1999;84(1):86–91.PubMedCrossRefGoogle Scholar
  138. 138.
    Hu H, Zhang S, Zhu S. Influence of aspirin and cigarette smoke extract on the expression of cyclin D1 and effects of cell cycle in esophageal squamous cell carcinoma cell line. Dis Esophagus. 2009;22(4):310–316.PubMedCrossRefGoogle Scholar
  139. 139.
    Song S, Lippman SM, Zou Y, Ye X, Ajani JA, Xu XC. Induction of cyclooxygenase-2 by benzo[a]pyrene diol epoxide through inhibition of retinoic acid receptor-beta 2 expression. Oncogene. 2005;24(56):8268–8276.PubMedCrossRefGoogle Scholar
  140. 140.
    Hanawa M, Suzuki S, Dobashi Y, et al. EGFR protein overexpression and gene amplification in squamous cell carcinomas of the esophagus. Int J Cancer. 2006;118(5):1173–1180.PubMedCrossRefGoogle Scholar
  141. 141.
    Kitagawa Y, Ueda M, Ando N, Ozawa S, Shimizu N, Kitajima M. Further evidence for prognostic significance of epidermal growth factor receptor gene amplification in patients with esophageal squamous cell carcinoma. Clin Cancer Res. 1996;2(5):909–914.PubMedGoogle Scholar
  142. 142.
    Sudo T, Mimori K, Nagahara H, et al. Identification of EGFR mutations in esophageal cancer. Eur J Surg Oncol. 2007;33(1): 44–48.PubMedCrossRefGoogle Scholar
  143. 143.
    Wang X, Tournier C. Regulation of cellular functions by the ERK5 signalling pathway. Cell Signal. 2006;18(6):753–760.PubMedCrossRefGoogle Scholar
  144. 144.
    Dong C, Davis RJ, Flavell RA. MAP kinases in the immune response. Annu Rev Immunol. 2002;20:55–72.PubMedCrossRefGoogle Scholar
  145. 145.
    Fang JY, Richardson BC. The MAPK signalling pathways and colorectal cancer. Lancet Oncol. 2005;6(5):322–327.PubMedCrossRefGoogle Scholar
  146. 146.
    Troppmair J, Bruder JT, Munoz H, et al. Mitogen-activated protein kinase/extracellular signal-regulated protein kinase activation by oncogenes, serum, and 12-O-tetradecanoylphorbol-13-acetate requires Raf and is necessary for transformation. J Biol Chem. 1994;269(9):7030–7035.PubMedGoogle Scholar
  147. 147.
    Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007;26(22):3279–3290.PubMedCrossRefGoogle Scholar
  148. 148.
    Boutros T, Chevet E, Metrakos P. Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: roles in cell growth, death, and cancer. Pharmacol Rev. 2008;60(3):261–310.PubMedCrossRefGoogle Scholar
  149. 149.
    Wang X, Wang Q, Hu W, Evers BM. Regulation of phorbol ester-mediated TRAF1 induction in human colon cancer cells through a PKC/RAF/ERK/NF-kappaB-dependent pathway. Oncogene. 2004;23(10):1885–1895.PubMedCrossRefGoogle Scholar
  150. 150.
    Schubbert S, Shannon K, Bollag G. Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer. 2007;7(4):295–308.PubMedCrossRefGoogle Scholar
  151. 151.
    Malumbres M, Barbacid M. RAS oncogenes: the first 30 years. Nat Rev Cancer. 2003;3(6):459–465.PubMedCrossRefGoogle Scholar
  152. 152.
    Bos JL, Fearon ER, Hamilton SR, et al. Prevalence of ras gene mutations in human colorectal cancers. Nature. 1987;327(6120): 293–297.PubMedCrossRefGoogle Scholar
  153. 153.
    Wan PT, Garnett MJ, Roe SM, et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell. 2004;116(6):855–867.PubMedCrossRefGoogle Scholar
  154. 154.
    Morgan S, Grandis JR. ErbB receptors in the biology and pathology of the aerodigestive tract. Exp Cell Res. 2009;315(4): 572–582.PubMedCrossRefGoogle Scholar
  155. 155.
    Ako E, Yamashita Y, Ohira M, et al. The pan-erbB tyrosine kinase inhibitor CI-1033 inhibits human esophageal cancer cells in vitro and in vivo. Oncol Rep. 2007;17(4):887–893.PubMedGoogle Scholar
  156. 156.
    Hong S, Lee HJ, Kim SJ, Hahm KB. Connection between inflammation and carcinogenesis in gastrointestinal tract: focus on TGF-beta signaling. World J Gastroenterol. 2010;16(17): 2080–2093.PubMedCrossRefGoogle Scholar
  157. 157.
    Miyazono K, Suzuki H, Imamura T. Regulation of TGF-beta signaling and its roles in progression of tumors. Cancer Sci. 2003;94(3):230–234.PubMedCrossRefGoogle Scholar
  158. 158.
    Markowitz SD, Roberts AB. Tumor suppressor activity of the TGF-beta pathway in human cancers. Cytokine Growth Factor Rev. 1996;7(1):93–102.PubMedCrossRefGoogle Scholar
  159. 159.
    Fukuchi M, Masuda N, Miyazaki T, et al. Decreased Smad4 expression in the transforming growth factor-beta signaling pathway during progression of esophageal squamous cell carcinoma. Cancer. 2002;95(4):737–743.PubMedCrossRefGoogle Scholar
  160. 160.
    Natsugoe S, Xiangming C, Matsumoto M, et al. Smad4 and ­transforming growth factor beta1 expression in patients with squamous cell carcinoma of the esophagus. Clin Cancer Res. 2002;8(6):1838–1842.PubMedGoogle Scholar
  161. 161.
    Fukuchi M, Fukai Y, Masuda N, et al. High-level expression of the Smad ubiquitin ligase Smurf2 correlates with poor prognosis in patients with esophageal squamous cell carcinoma. Cancer Res. 2002;62(24):7162–7165.PubMedGoogle Scholar
  162. 162.
    Fukai Y, Fukuchi M, Masuda N, et al. Reduced expression of transforming growth factor-beta receptors is an unfavorable prognostic factor in human esophageal squamous cell carcinoma. Int J Cancer. 2003;104(2):161–166.PubMedCrossRefGoogle Scholar
  163. 163.
    Kavsak P, Rasmussen RK, Causing CG, et al. Smad7 Binds to Smurf2 to Form an E3 Ubiquitin Ligase that Targets the TGF[beta] Receptor for Degradation. Mol Cell. 2000;6(6):1365–1375.PubMedCrossRefGoogle Scholar
  164. 164.
    Lotan R. Effects of vitamin A and its analogs (retinoids) on normal and neoplastic cells. Biochim Biophys Acta. 1980;605(1): 33–91.PubMedGoogle Scholar
  165. 165.
    Chambon P. A decade of molecular biology of retinoic acid receptors. FASEB J. 1996;10(9):940–954.PubMedGoogle Scholar
  166. 166.
    Qiu H, Zhang W, El-Naggar AK, et al. Loss of retinoic acid receptor-beta expression is an early event during esophageal carcinogenesis. Am J Pathol. 1999;155(5):1519–1523.PubMedCrossRefGoogle Scholar
  167. 167.
    Kuroki T, Trapasso F, Yendamuri S, et al. Allele loss and promoter hypermethylation of VHL, RAR-beta, RASSF1A, and FHIT tumor suppressor genes on chromosome 3p in esophageal squamous cell carcinoma. Cancer Res. 2003;63(13):3724–3728.PubMedGoogle Scholar
  168. 168.
    Su H, Hu N, Shih J, et al. Gene expression analysis of esophageal squamous cell carcinoma reveals consistent molecular profiles related to a family history of upper gastrointestinal cancer. Cancer Res. 2003;63(14):3872–3876.PubMedGoogle Scholar
  169. 169.
    Liu ZM, Ding F, Guo MZ, Zhang LY, Wu M, Liu ZH. Downregulation of retinoic acid receptor-beta(2) expression is linked to aberrant methylation in esophageal squamous cell carcinoma cell lines. World J Gastroenterol. 2004;10(6):771–775.PubMedGoogle Scholar
  170. 170.
    Wang Y, Fang MZ, Liao J, et al. Hypermethylation-associated inactivation of retinoic acid receptor beta in human esophageal squamous cell carcinoma. Clin Cancer Res. 2003;9(14):5257–5263.PubMedGoogle Scholar
  171. 171.
    Mariette C, Finzi L, Piessen G, Van Seuningen I, Triboulet JP. Esophageal carcinoma: prognostic differences between squamous cell carcinoma and adenocarcinoma. World J Surg. 2005;29(1): 39–45.PubMedCrossRefGoogle Scholar
  172. 172.
    Xu XC, Lee JJ, Wu TT, Hoque A, Ajani JA, Lippman SM. Increased retinoic acid receptor-beta4 correlates in vivo with reduced retinoic acid receptor-beta2 in esophageal squamous cell carcinoma. Cancer Epidemiol Biomarkers Prev. 2005;14(4):826–829.PubMedCrossRefGoogle Scholar
  173. 173.
    Song S, Guan B, Men T, Hoque A, Lotan R, Xu XC. Antitumor effect of retinoic acid receptor-beta2 associated with suppression of cyclooxygenase-2. Cancer Prev Res (Phila). 2009;2(3):274–280.CrossRefGoogle Scholar
  174. 174.
    Clevers H. Wnt/[beta]-Catenin signaling in development and disease. Cell. 2006;127(3):469–480.PubMedCrossRefGoogle Scholar
  175. 175.
    Moon RT, Kohn AD, De Ferrari GV, Kaykas A. WNT and beta-catenin signalling: diseases and therapies. Nat Rev Genet. 2004;5(9):691–701.PubMedCrossRefGoogle Scholar
  176. 176.
    Elcheva I, Tarapore RS, Bhatia N, Spiegelman VS. Overexpression of mRNA-binding protein CRD-BP in malignant melanomas. Oncogene. 2008;27(37):5069–5074.PubMedCrossRefGoogle Scholar
  177. 177.
    Tarapore RS, Siddiqui IA, Saleem M, Adhami VM, Spiegelman VS, Mukhtar H. Specific targeting of Wnt/beta-catenin signaling in human melanoma cells by a dietary triterpene lupeol. Carcinogenesis. 2010;31(10):1844–1853.PubMedCrossRefGoogle Scholar
  178. 178.
    Lustig B, Behrens J. The Wnt signaling pathway and its role in tumor development. J Cancer Res Clin Oncol. 2003;129(4):199–221.PubMedGoogle Scholar
  179. 179.
    Li AF, Hsu PK, Tzao C, et al. Reduced axin protein expression is associated with a poor prognosis in patients with squamous cell carcinoma of esophagus. Ann Surg Oncol. 2009;16(9):2486–2493.PubMedCrossRefGoogle Scholar
  180. 180.
    Wang W, Xue L, Liu H, Wang P, Xu P, Cai Y. Aberrant changes of Wnt2/Beta-catenin signaling pathway induced by sodium nitroprusside in human esophageal squamous cell carcinoma cell lines. Cancer Investig. 2010;28(3):230–241.CrossRefGoogle Scholar
  181. 181.
    Situ DR, Hu Y, Zhu ZH, Wang J, Long H, Rong TH. Prognostic relevance of beta-catenin expression in T2-3N0M0 esophageal squamous cell carcinoma. World J Gastroenterol. 2010;16(41): 5195–5202.PubMedCrossRefGoogle Scholar
  182. 182.
    Zhao XJ, Li H, Chen H, et al. Expression of e-cadherin and beta-catenin in human esophageal squamous cell carcinoma: relationships with prognosis. World J Gastroenterol. 2003;9(2):225–232.PubMedGoogle Scholar
  183. 183.
    Lin YC, Wu MY, Li DR, Wu XY, Zheng RM. Prognostic and clinicopathological features of E-cadherin, alpha-catenin, beta-catenin, gamma-catenin and cyclin D1 expression in human esophageal squamous cell carcinoma. World J Gastroenterol. 2004;10(22):3235–3239.PubMedGoogle Scholar
  184. 184.
    Shapiro L, Weis WI. Structure and biochemistry of cadherins and catenins. Cold Spring Harb Perspect Biol. 2009;1(3):a003053.PubMedCrossRefGoogle Scholar
  185. 185.
    van Roy F, Berx G. The cell-cell adhesion molecule E-cadherin. Cell Mol Life Sci. 2008;65(23):3756–3788.PubMedCrossRefGoogle Scholar
  186. 186.
    Chung Y, Lam AK, Luk JM, et al. Altered E-cadherin expression and p120 catenin localization in esophageal squamous cell carcinoma. Ann Surg Oncol. 2007;14(11):3260–3267.PubMedCrossRefGoogle Scholar
  187. 187.
    Berx G, Becker KF, Hofler H, van Roy F. Mutations of the human E-cadherin (CDH1) gene. Hum Mutat. 1998;12(4):226–237.PubMedCrossRefGoogle Scholar
  188. 188.
    Si HX, Tsao SW, Lam KY, et al. E-cadherin expression is commonly downregulated by CpG island hypermethylation in esophageal carcinoma cells. Cancer Lett. 2001;173(1):71–78.PubMedCrossRefGoogle Scholar
  189. 189.
    Stairs DB, Bayne LJ, Rhoades B, et al. Deletion of p120-catenin results in a tumor microenvironment with inflammation and cancer that establishes it as a tumor suppressor gene. Cancer Cell. 2011;19(4):470–483.PubMedCrossRefGoogle Scholar
  190. 190.
    McConnell BB, Ghaleb AM, Nandan MO, Yang VW. The diverse functions of Krüppel-like factors 4 and 5 in epithelial biology and pathobiology. Bioessays. 2007;29(6):549–557.PubMedCrossRefGoogle Scholar
  191. 191.
    Tetreault M, Katz JP. Krüppel-like factors in gastrointestinal tract development and differentiation. In: Nagai R, Friedman SL, Kasuga M, eds. The biology of Krüppel-like factors. Tokyo: Springer; 2009:107–120.CrossRefGoogle Scholar
  192. 192.
    Okano J, Opitz OG, Nakagawa H, Jenkins TD, Friedman SL, Rustgi AK. The Kruppel-like transcriptional factors Zf9 and GKLF coactivate the human keratin 4 promoter and physically interact. FEBS Lett. 2000;473(1):95–100.PubMedCrossRefGoogle Scholar
  193. 193.
    Goldstein BG, Chao HH, Yang Y, Yermolina YA, Tobias JW, Katz JP. Overexpression of Kruppel-like factor 5 in esophageal epithelia in vivo leads to increased proliferation in basal but not suprabasal cells. Am J Physiol Gastrointest Liver Physiol. 2007;292(6):G1784–1792.PubMedCrossRefGoogle Scholar
  194. 194.
    Yang Y, Goldstein BG, Chao HH, Katz JP. KLF4 and KLF5 regulate proliferation, apoptosis and invasion in esophageal cancer cells. Cancer Biol Ther. 2005;4(11):1216–1221.PubMedCrossRefGoogle Scholar
  195. 195.
    Yang Y, Goldstein BG, Nakagawa H, Katz JP. Kruppel-like factor 5 activates MEK/ERK signaling via EGFR in primary squamous epithelial cells. FASEB J. 2007;21(2):543–550.PubMedCrossRefGoogle Scholar
  196. 196.
    Yang Y, Tetreault MP, Yermolina YA, Goldstein BG, Katz JP. Kruppel-like factor 5 controls keratinocyte migration via the integrin-linked kinase. J Biol Chem. 2008;283(27):18812–18820.PubMedCrossRefGoogle Scholar
  197. 197.
    Tetreault MP, Wang ML, Yang Y, et al. Klf4 overexpression ­activates epithelial cytokines and inflammation-mediated esophageal squamous cell cancer in mice. Gastroenterology. 2010;139(6): 2124–2134.PubMedCrossRefGoogle Scholar
  198. 198.
    Tetreault MP, Yang Y, Travis J, et al. Esophageal squamous cell dysplasia and delayed differentiation with deletion of Krüppel-like factor 4 in murine esophagus. Gastroenterology. 2010; 139(1):171–181.PubMedCrossRefGoogle Scholar
  199. 199.
    Garrett-Sinha LA, Eberspaecher H, Seldin MF, de Crombrugghe B. A gene for a novel zinc-finger protein expressed in differentiated epithelial cells and transiently in certain mesenchymal cells. J Biol Chem. 1996;271(49):31384–31390.PubMedCrossRefGoogle Scholar
  200. 200.
    Shields JM, Christy RJ, Yang VW. Identification and characterization of a gene encoding a gut-enriched Kruppel-like factor expressed during growth arrest. J Biol Chem. 1996;271(33):20009–20017.PubMedCrossRefGoogle Scholar
  201. 201.
    Wang N, Liu ZH, Ding F, Wang XQ, Zhou CN, Wu M. Down-regulation of gut-enriched Krüppel-like factor expression in esophageal cancer. World J Gastroenterol. 2002;8(6):966–970.PubMedGoogle Scholar
  202. 202.
    Zhao W, Hisamuddin IM, Nandan MO, Babbin BA, Lamb NE, Yang VW. Identification of Kruppel-like factor 4 as a potential tumor suppressor gene in colorectal cancer. Oncogene. 2004;23(2): 395–402.PubMedCrossRefGoogle Scholar
  203. 203.
    Wei D, Gong W, Kanai M, et al. Drastic down-regulation of Kruppel-like factor 4 expression is critical in human gastric cancer development and progression. Cancer Res. 2005;65(7):2746–2754.PubMedCrossRefGoogle Scholar
  204. 204.
    Ohnishi S, Laub F, Matsumoto N, et al. Developmental expression of the mouse gene coding for the Kruppel-like transcription factor KLF5. Dev Dyn. 2000;217(4):421–429.PubMedCrossRefGoogle Scholar
  205. 205.
    Conkright MD, Wani MA, Anderson KP, Lingrel JB. A gene encoding an intestinal-enriched member of the Kruppel-like factor family expressed in intestinal epithelial cells. Nucl Acids Res. 1999;27(5):1263–1270.PubMedCrossRefGoogle Scholar
  206. 206.
    Siomi H, Siomi MC. On the road to reading the RNA-interference code. Nature. 2009;457(7228):396–404.PubMedCrossRefGoogle Scholar
  207. 207.
    Rana TM. Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol. 2007;8(1):23–36.PubMedCrossRefGoogle Scholar
  208. 208.
    Zhang B, Pan X, Cobb GP, Anderson TA. microRNAs as oncogenes and tumor suppressors. Dev Biol. 2007;302(1):1–12.PubMedCrossRefGoogle Scholar
  209. 209.
    Matsushima K, Isomoto H, Kohno S, Nakao K. MicroRNAs and esophageal squamous cell carcinoma. Digestion. 2010;82(3):138–144.PubMedCrossRefGoogle Scholar
  210. 210.
    Ogawa R, Ishiguro H, Kuwabara Y, et al. Expression profiling of micro-RNAs in human esophageal squamous cell carcinoma using RT-PCR. Med Mol Morphol. 2009;42(2):102–109.PubMedCrossRefGoogle Scholar
  211. 211.
    Lee KH, Goan YG, Hsiao M, et al. MicroRNA-373 (miR-373) post-transcriptionally regulates large tumor suppressor, homolog 2 (LATS2) and stimulates proliferation in human esophageal cancer. Exp Cell Res. 2009;315(15):2529–2538.PubMedCrossRefGoogle Scholar
  212. 212.
    Guo Y, Chen Z, Zhang L, et al. Distinctive microRNA profiles relating to patient survival in esophageal squamous cell carcinoma. Cancer Res. 2008;68(1):26–33.PubMedCrossRefGoogle Scholar
  213. 213.
    Mathe EA, Nguyen GH, Bowman ED, et al. MicroRNA expression in squamous cell carcinoma and adenocarcinoma of the esophagus: associations with survival. Clin Cancer Res. 2009;15(19):6192–6200.PubMedCrossRefGoogle Scholar
  214. 214.
    Sugito N, Ishiguro H, Kuwabara Y, et al. RNASEN regulates cell proliferation and affects survival in esophageal cancer patients. Clin Cancer Res. 2006;12(24):7322–7328.PubMedCrossRefGoogle Scholar
  215. 215.
    Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA. 2008;105(30):10513–10518.PubMedCrossRefGoogle Scholar
  216. 216.
    Zhou SL, Wang LD. Circulating microRNAs: novel biomarkers for esophageal cancer. World J Gastroenterol. 2010;16(19):2348–2354.PubMedCrossRefGoogle Scholar
  217. 217.
    Fong LYY, Li J-X, Farber JL, Magee PN. Cell proliferation and esophageal carcinogenesis in the zinc-deficient rat. Carcinogenesis. 1996;17(9):1841–1848.PubMedCrossRefGoogle Scholar
  218. 218.
    Fong LY, Ishii H, Nguyen VT, et al. p53 deficiency accelerates induction and progression of esophageal and forestomach tumors in zinc-deficient mice. Cancer Res. 2003;63(1):186–195.PubMedGoogle Scholar
  219. 219.
    Fong LY, Magee PN. Dietary zinc deficiency enhances esophageal cell proliferation and N-nitrosomethylbenzylamine (NMBA)-induced esophageal tumor incidence in C57BL/6 mouse. Cancer Lett. 1999;143(1):63–69.PubMedCrossRefGoogle Scholar
  220. 220.
    Gurski RR, Schirmer CC, Kruel CR, Komlos F, Kruel CD, Edelweiss MI. Induction of esophageal carcinogenesis by diethylnitrosamine and assessment of the promoting effect of ethanol and N-nitrosonornicotine: experimental model in mice. Dis Esophagus. 1999;12(2):99–105.PubMedCrossRefGoogle Scholar
  221. 221.
    Jenkins TD, Mueller A, Odze R, et al. Cyclin D1 overexpression combined with N-nitrosomethylbenzylamine increases dysplasia and cellular proliferation in murine esophageal squamous epithelium. Oncogene. 1999;18(1):59–66.PubMedCrossRefGoogle Scholar
  222. 222.
    Fong LYY, Jiang Y, Farber JL. Zinc deficiency potentiates induction and progression of lingual and esophageal tumors in p53-deficient mice. Carcinogenesis. 2006;27(7):1489–1496.PubMedCrossRefGoogle Scholar
  223. 223.
    Tang XH, Knudsen B, Bemis D, Tickoo S, Gudas LJ. Oral cavity and esophageal carcinogenesis modeled in carcinogen-treated mice. Clin Cancer Res. 2004;10(1 Pt 1):301–313.PubMedCrossRefGoogle Scholar
  224. 224.
    Wilkey JF, Buchberger G, Saucier K, et al. Cyclin D1 overexpression increases susceptibility to 4-nitroquinoline-1-oxide-induced dysplasia and neoplasia in murine squamous oral epithelium. Mol Carcinog. 2009;48(9):853–861.PubMedCrossRefGoogle Scholar
  225. 225.
    Opitz OG, Harada H, Suliman Y, et al. A mouse model of human oral-esophageal cancer. J Clin Invest. 2002;110(6):761–769.PubMedGoogle Scholar
  226. 226.
    Nakagawa H, Wang TC, Zukerberg L, et al. The targeting of the cyclin D1 oncogene by an Epstein-Barr virus promoter in transgenic mice causes dysplasia in the tongue, esophagus and forestomach. Oncogene. 1997;14(10):1185–1190.PubMedCrossRefGoogle Scholar
  227. 227.
    Enzinger PC, Mayer RJ. Esophageal cancer. N Engl J Med. 2003;349(23):2241–2252.PubMedCrossRefGoogle Scholar
  228. 228.
    Morita M, Kumashiro R, Kubo N, et al. Alcohol drinking, cigarette smoking, and the development of squamous cell carcinoma of the esophagus: epidemiology, clinical findings, and prevention. Int J Clin Oncol. 2010;15(2):126–134.PubMedCrossRefGoogle Scholar
  229. 229.
    Fong LYY, Jiang Y, Rawahneh ML, et al. Zinc supplementation suppresses 4-nitroquinoline 1-oxide-induced rat oral carcinogenesis. Carcinogenesis. 2011;32(4):554–560.PubMedCrossRefGoogle Scholar
  230. 230.
    Taccioli C, Wan S-G, Liu C-G, et al. Zinc replenishment reverses overexpression of the proinflammatory mediator S100A8 and esophageal preneoplasia in the rat. Gastroenterology. 2009;136(3): 953–966.PubMedCrossRefGoogle Scholar
  231. 231.
    Munoz N, Wahrendorf J, Bang LJ, et al. No effect of riboflavine, retinol, and zinc on prevalence of precancerous lesions of oesophagus. Randomised double-blind intervention study in high-risk population of China. Lancet. 1985;2(8447):111–114.PubMedCrossRefGoogle Scholar
  232. 232.
    Wang GQ, Abnet CC, Shen Q, et al. Histological precursors of oesophageal squamous cell carcinoma: results from a 13 year ­prospective follow up study in a high risk population. Gut. 2005;54(2):187–192.PubMedCrossRefGoogle Scholar
  233. 233.
    Wattenberg LW. Chemoprevention of cancer. Cancer Res. 1985; 45(1):1–8.PubMedGoogle Scholar
  234. 234.
    Barch DH, Fox CC. Dietary ellagic acid reduces the esophageal microsomal metabolism of methylbenzylnitrosamine. Cancer Lett. 1989;44(1):39–44.PubMedCrossRefGoogle Scholar
  235. 235.
    Mandal S, Stoner GD. Inhibition of N-nitrosobenzylmethylamine-induced esophageal tumorigenesis in rats by ellagic acid. Carcinogenesis. 1990;11(1):55–61.PubMedCrossRefGoogle Scholar
  236. 236.
    Brady JF, Li DC, Ishizaki H, Yang CS. Effect of diallyl sulfide on rat liver microsomal nitrosamine metabolism and other monooxygenase activities. Cancer Res. 1988;48(21):5937–5940.PubMedGoogle Scholar
  237. 237.
    Wargovich MJ, Woods C, Eng VW, Stephens LC, Gray K. Chemoprevention of N-nitrosomethylbenzylamine-induced esophageal cancer in rats by the naturally occurring thioether, diallyl sulfide. Cancer Res. 1988;48(23):6872–6875.PubMedGoogle Scholar
  238. 238.
    Mori Y, Tatematsu K, Koide A, Sugie S, Tanaka T, Mori H. Modification by curcumin of mutagenic activation of carcinogenic N-nitrosamines by extrahepatic cytochromes P-450 2B1 and 2E1 in rats. Cancer Sci. 2006;97(9):896–904.PubMedCrossRefGoogle Scholar
  239. 239.
    Ushida J, Sugie S, Kawabata K, et al. Chemopreventive effect of curcumin on N-nitrosomethylbenzylamine-induced esophageal carcinogenesis in rats. Jpn J Cancer Res. 2000;91(9):893–898.PubMedCrossRefGoogle Scholar
  240. 240.
    Lin JK. Suppression of protein kinase C and nuclear oncogene expression as possible action mechanisms of cancer chemoprevention by Curcumin. Arch Pharm Res. 2004;27(7):683–692.PubMedCrossRefGoogle Scholar
  241. 241.
    Hecht SS. Chemoprevention by isothiocyanates. J Cell Biochem Suppl. 1995;22:195–209.PubMedCrossRefGoogle Scholar
  242. 242.
    Hecht SS. Inhibition of carcinogenesis by isothiocyanates. Drug Metab Rev. 2000;32(3–4):395–411.PubMedCrossRefGoogle Scholar
  243. 243.
    Carlson DG, Daxenbichler ME, VanEtten CH, Tookey HL, Williams PH. Glucosinolates in crucifer vegetables: turnips and rutabagas. J Agric Food Chem. 1981;29(6):1235–1239.PubMedCrossRefGoogle Scholar
  244. 244.
    Stoner GD, Morrissey DT, Heur YH, Daniel EM, Galati AJ, Wagner SA. Inhibitory effects of phenethyl isothiocyanate on N-nitrosobenzylmethylamine carcinogenesis in the rat esophagus. Cancer Res. 1991;51(8):2063–2068.PubMedGoogle Scholar
  245. 245.
    Siglin JC, Barch DH, Stoner GD. Effects of dietary phenethyl ­isothiocyanate, ellagic acid, sulindac and calcium on the induction and progression of N-nitrosomethylbenzylamine-induced eso­phageal carcinogenesis in rats. Carcinogenesis. 1995;16(5):1101–1106.PubMedCrossRefGoogle Scholar
  246. 246.
    Hu G, Han C, Wild CP, Hall J, Chen J. Lack of effects of selenium on N-nitrosomethylbenzylamine-induced tumorigenesis, DNA methylation, and oncogene expression in rats and mice. Nutr Cancer. 1992;18(3):287–295.PubMedCrossRefGoogle Scholar
  247. 247.
    Wang ZY, Wang LD, Lee MJ, et al. Inhibition of N-nitrosomethylbenzylamine-induced esophageal tumorigenesis in rats by green and black tea. Carcinogenesis. 1995;16(9):2143–2148.PubMedCrossRefGoogle Scholar
  248. 248.
    Chen T, Nines RG, Peschke SM, Kresty LA, Stoner GD. Chemopreventive effects of a selective nitric oxide synthase inhibitor on carcinogen-induced rat esophageal tumorigenesis. Cancer Res. 2004;64(10):3714–3717.PubMedCrossRefGoogle Scholar
  249. 249.
    Li Z, Shimada Y, Kawabe A, et al. Suppression of N-nitrosomethylbenzylamine (NMBA)-induced esophageal tumorigenesis in F344 rats by JTE-522, a selective COX-2 inhibitor. Carcinogenesis. 2001;22(4):547–551.PubMedCrossRefGoogle Scholar
  250. 250.
    Li ZG, Hong T, Shimada Y, et al. Suppression of N-nitrosomethylbenzylamine (NMBA)-induced esophageal tumorigenesis in F344 rats by resveratrol. Carcinogenesis. 2002;23(9): 1531–1536.PubMedCrossRefGoogle Scholar
  251. 251.
    Fujiwara Y, Osugi H, Morimura K, et al. Suppressive effect of CPT-11 on rat esophageal tumorigenesis induced by N-nitrosomethylbenzylamine. Oncol Rep. 2004;12(6):1169–1176.PubMedGoogle Scholar
  252. 252.
    Okines A, Sharma B, Cunningham D. Perioperative management of esophageal cancer. Nat Rev Clin Oncol. 2010;7(4):231–238.PubMedCrossRefGoogle Scholar
  253. 253.
    Quiros RM, Bui CL. Multidisciplinary approach to esophageal and gastric cancer. Surg Clin North Am. 2009;89(1):79–96.PubMedCrossRefGoogle Scholar
  254. 254.
    Mathew R, Arora S, Khanna R, et al. Alterations in p53 and pRb pathways and their prognostic significance in oesophageal cancer. Eur J Cancer. 2002;38(6):832–841.PubMedCrossRefGoogle Scholar
  255. 255.
    Shibagaki I, Tanaka H, Shimada Y, et al. p53 mutation, murine double minute 2 amplification, and human papillomavirus infection are frequently involved but not associated with each other in esophageal squamous cell carcinoma. Clin Cancer Res. 1995 Jul;1(7):769–773.PubMedCrossRefGoogle Scholar
  256. 256.
    Bahl R, Arora S, Nath N, et al. Novel polymorphism in p21(waf1/cip1) cyclin dependent kinase inhibitor gene: association with human esophageal cancer. Oncogene. 2000 Jan 20;19(3):323–328.PubMedCrossRefGoogle Scholar
  257. 257.
    Nie Y, Liao J, Zhao X, et al. Detection of multiple gene hypermethylation in the development of esophageal squamous cell carcinoma. Carcinogenesis. 2002 Oct;23(10):1713–1720.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of GastroenterologyUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Division of GastroenterologyUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations