Molecular Pathology of Barrett’s Metaplasia and Esophageal Adenocarcinoma

  • Mamoun YounesEmail author
Part of the Molecular Pathology Library book series (MPLB, volume 7)


Barrett’s metaplasia (BM), also called Barrett’s esophagus, is a condition in which the normal squamous lining of the esophagus is replaced to variable extent by columnar epithelium containing intestinal-type goblet cells. It is generally believed to be a complication of chronic gastroesophageal reflux disease (GERD), with obesity, smoking, and alcohol considered contributing factors. Persons with BM have a significantly increased risk for the development of esophageal adenocarcinoma that has been on the rise in the USA and Western Europe since the 1970s and is associated with poor survival. Early detection and surgical resection, when the tumor is still at an early stage, offer the best chance for survival. Understanding the molecular basis of this disease is essential to developing effective prevention and treatment strategies. In this chapter, we review the molecular changes that occur during the progression from normal squamous epithelium to BM and eventually to adenocarcinoma. We also discuss clinical relevance of some of the most common molecular markers.


Epidermal Growth Factor Receptor Intestinal Metaplasia Reflux Esophagitis CDX2 Expression Acid Suppression Therapy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Wang KK, Sampliner RE. Updated guidelines 2008 for the diagnosis. Surveillance and therapy of Barrett’s Esophagus. Am J Gastroenterol. 2008;103(3):788–797.PubMedCrossRefGoogle Scholar
  2. 2.
    Younes M, Miller CC. Incidence and survival trends of esophageal carcinoma in the United States: racial and gender differences by histological type. Scand J Gastroenterol. 2002;37(12):1359–1365.PubMedCrossRefGoogle Scholar
  3. 3.
    Brown LM, Devesa SS, Chow WH. Incidence of adenocarcinoma of the esophagus among white Americans by sex, stage, and age. J Natl Cancer Inst. 2008;100(16):1184–1187.PubMedCrossRefGoogle Scholar
  4. 4.
    Cen P, Banki F, Cheng L, Khalil K, Du XL, Fallon M, et al. Changes in age, stage distribution, and survival of patients with esophageal adenocarcinoma over three decades in the United States. Ann Surg Oncol. 2012;19:1685–1691.PubMedCrossRefGoogle Scholar
  5. 5.
    Hong J, Resnick M, Behar J, Wang LJ, Wands J, DeLellis RA, et al. Acid-induced p16 hypermethylation contributes to development of esophageal adenocarcinoma via activation of NADPH oxidase NOX5-S. Am J Physiol Gastrointest Liver Physiol. 2010;299(3):G697–706.PubMedCrossRefGoogle Scholar
  6. 6.
    Xiao H, Li T-KK, Yang J-MM, Liu LF. Acidic pH induces topoisomerase II-mediated DNA damage. Proc Natl Acad Sci USA. 2003;100(9):5205–5210.PubMedCrossRefGoogle Scholar
  7. 7.
    Hamoui N, Peters JH, Schneider S, Uchida K, Yang D, Vallb ohmer D, et al. Increased acid exposure in patients with gastroesophageal reflux disease influences cyclooxygenase-2 gene expression in the squamous epithelium of the lower esophagus. Arch Surg. 2004;139(7):712-6. discussion 716–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Carlson N, Lechago J, Richter J, Sampliner RE, Peterson L, Santella RM, et al. Acid suppression therapy may not alter malignant progression in Barrett’s metaplasia showing p53 protein accumulation. Am J Gastroenterol. 2002;97(6):1340–1345.PubMedCrossRefGoogle Scholar
  9. 9.
    Lao-Sirieix P, Roy A, Worrall C, Vowler SL, Gardiner S, Fitzgerald RC. Effect of acid suppression on molecular predictors for esophageal cancer. Cancer Epidemiol Biomarkers Prev. 2006;15(2):288–293.PubMedCrossRefGoogle Scholar
  10. 10.
    Abu-Sneineh A, Tam W, Schoeman M, Fraser R, Ruszkiewicz AR, Smith E, et al. The effects of high-dose esomeprazole on gastric and oesophageal acid exposure and molecular markers in Barrett’s oesophagus. Aliment Pharmacol Ther. 2010;32(8):1023–1030.PubMedCrossRefGoogle Scholar
  11. 11.
    Jenkins GJS, D’Souza FR, Suzen SH, Eltahir ZS, James SA, Parry JM, et al. Deoxycholic acid at neutral and acid pH, is genotoxic to oesophageal cells through the induction of ROS: The potential role of anti-oxidants in Barrett’s oesophagus. Carcinogenesis. 2007; 28(1):136–142.PubMedCrossRefGoogle Scholar
  12. 12.
    Liu L, Ergun G, Ertan A, Woods K, Sachs I, Younes M. Detection of oxidative DNA damage in oesophageal biopsies of patients with reflux symptoms and normal pH monitoring. Aliment Pharmacol Ther. 2003;18(7):693–698.PubMedCrossRefGoogle Scholar
  13. 13.
    Jenkins GJS, Harries K, Doak SH, Wilmes A, Griffiths AP, Baxter JN, et al. The bile acid deoxycholic acid (DCA) at neutral pH activates NF-kappaB and induces IL-8 expression in oesophageal cells in vitro. Carcinogenesis. 2004;25(3):317–323.PubMedCrossRefGoogle Scholar
  14. 14.
    Huo X, Juergens S, Zhang X, Rezaei D, Yu C, Strauch ED, et al. Deoxycholic acid causes DNA damage while inducing apoptotic resistance through NF-\kappa\B activation in benign Barrett’s epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2011;301: 278–86.CrossRefGoogle Scholar
  15. 15.
    Freund JN, Domon-Dell C, Kedinger M, Duluc I. The Cdx-1 and Cdx-2 homeobox genes in the intestine. Biochem Cell Biol. 1998;76(6):957–969.PubMedGoogle Scholar
  16. 16.
    Eda A, Osawa H, Satoh K, Yanaka I, Kihira K, Ishino Y, et al. Aberrant expression of CDX2 in Barrett’s epithelium and inflammatory esophageal mucosa. J Gastroenterol. 2003;38(1): 14–22.PubMedCrossRefGoogle Scholar
  17. 17.
    Mutoh H, Sakurai S, Satoh K, Osawa H, Hakamata Y, Takeuchi T, et al. Cdx1 induced intestinal metaplasia in the transgenic mouse stomach: comparative study with Cdx2 transgenic mice. Gut. 2004;53(10):1416–1423.PubMedCrossRefGoogle Scholar
  18. 18.
    Mutoh H, Hakamata Y, Sato K, Eda A, Yanaka I, Honda S, et al. Conversion of gastric mucosa to intestinal metaplasia in Cdx2-expressing transgenic mice. Biochem Biophys Res Commun. 2002;294(2):470–479.PubMedCrossRefGoogle Scholar
  19. 19.
    Silberg DG, Sullivan J, Kang E, Swain GP, Moffett J, Sund NJ, et al. Cdx2 ectopic expression induces gastric intestinal metaplasia in transgenic mice. Gastroenterology. 2002;122(3):689-696.PubMedCrossRefGoogle Scholar
  20. 20.
    Marchetti M, Caliot E, Pringault E. Chronic acid exposure leads to activation of the cdx2 intestinal homeobox gene in a long-term culture of mouse esophageal keratinocytes. J Cell Sci. 2003;116(Pt 8):1429–1436.PubMedCrossRefGoogle Scholar
  21. 21.
    Kazumori H, Ishihara S, Rumi MAK, Kadowaki Y, Kinoshita Y. Bile acids directly augment caudal related homeobox gene Cdx2 expression in oesophageal keratinocytes in Barrett’s epithelium. Gut. 2006;55(1):16–25.PubMedCrossRefGoogle Scholar
  22. 22.
    Debruyne PR, Witek M, Gong L, Birbe R, Chervoneva I, Jin T, et al. Bile acids induce ectopic expression of intestinal guanylyl cyclase C Through nuclear factor-kappaB and Cdx2 in human esophageal cells. Gastroenterology. 2006;130(4):1191–1206.PubMedCrossRefGoogle Scholar
  23. 23.
    Moons LMG, Bax DA, Kuipers EJ, Van Dekken H, Haringsma J, Van Vliet AHM, et al. The homeodomain protein CDX2 is an early marker of Barrett’s oesophagus. J Clin Pathol. 2004;57(10):1063–1068.PubMedCrossRefGoogle Scholar
  24. 24.
    Wong NACS, Wilding J, Bartlett S, Liu Y, Warren BF, Piris J, et al. CDX1 is an important molecular mediator of Barrett’s metaplasia. Proc Natl Acad Sci USA. 2005;102(21):7565–7570.PubMedCrossRefGoogle Scholar
  25. 25.
    Rahman FB, Kadowaki Y, Ishihara S, Tobita H, Imaoka H, Fukuhara H, et al. Fibroblast-derived HB-EGF promotes Cdx2 expression in esophageal squamous cells. Lab Invest. 2010;90(7):1033–1048.PubMedCrossRefGoogle Scholar
  26. 26.
    Kerkhof M, Bax DA, Moons LMG, van Vuuren AJ, Van Dekken H, Steyerberg EW, et al. Does CDX2 expression predict Barrett’s metaplasia in oesophageal columnar epithelium without goblet cells? Aliment Pharmacol Ther. 2006;24(11–12):1613–1621.PubMedCrossRefGoogle Scholar
  27. 27.
    Abdalla SI, Lao-Sirieix P, Novelli MR, Lovat LB, Sanderson IR, Fitzgerald RC. Gastrin-induced cyclooxygenase-2 expression in Barrett’s carcinogenesis. Clin Cancer Res. 2004;10(14):4784–4792.PubMedCrossRefGoogle Scholar
  28. 28.
    Vallb Ohmer D, DeMeester SR, Oh DS, Banki F, Kuramochi H, Shimizu D, et al. Antireflux surgery normalizes cyclooxygenase-2 expression in squamous epithelium of the distal esophagus. Am J Gastroenterol. 2006;101(7):1458–1466.CrossRefGoogle Scholar
  29. 29.
    Ferguson HR, Wild CP, Anderson LA, Murphy SJ, Johnston BT, Murray LJ, et al. Cyclooxygenase-2 and inducible nitric oxide synthase gene polymorphisms and risk of reflux esophagitis, Barrett’s esophagus, and esophageal adenocarcinoma. Cancer Epidemiol Biomarkers Prev. 2008;17(3):727–731.PubMedCrossRefGoogle Scholar
  30. 30.
    Kuramochi H, Vallb Ohmer D, Uchida K, Schneider S, Hamoui N, Shimizu D, et al. Quantitative, tissue-specific analysis of cyclooxygenase gene expression in the pathogenesis of Barrett’s adenocarcinoma. J Gastrointest Surg. 2004;8(8):1007-16. discussion 1016–7.PubMedCrossRefGoogle Scholar
  31. 31.
    van der Woude CJ, Jansen PLM, Tiebosch ATGM, Beuving A, Homan M, Kleibeuker JH, et al. Expression of apoptosis-related proteins in Barrett’s metaplasia-dysplasia-carcinoma sequence: a switch to a more resistant phenotype. Hum Pathol. 2002;33(7):686–692.PubMedCrossRefGoogle Scholar
  32. 32.
    Villanacci V, Rossi E, Zambelli C, Galletti A, Cestari R, Missale G, et al. COX-2, CDX2, and CDC2 immunohistochemical assessment for dysplasia-carcinoma progression in Barrett’s esophagus. Dig Liver Dis. 2007;39(4):305–311.PubMedCrossRefGoogle Scholar
  33. 33.
    Arber N, Lightdale C, Rotterdam H, Han KH, Sgambato A, Yap E, et al. Increased expression of the cyclin D1 gene in Barrett’s esophagus. Cancer Epidemiol Biomarkers Prev. 1996;5(6):457–459.PubMedGoogle Scholar
  34. 34.
    Izzo JG, Wu T-T, Wu X, Ensor J, Luthra R, Pan J, et al. Cyclin D1 guanine/adenine 870 polymorphism with altered protein expression is associated with genomic instability and aggressive clinical biology of esophageal adenocarcinoma. J Clin Oncol. 2007;25(6): 698–707.PubMedCrossRefGoogle Scholar
  35. 35.
    Avissar NE, Toia L, Hu Y, Watson TJ, Jones C, Raymond DP, et al. Bile acid alone, or in combination with acid, induces CDX2 expression through activation of the epidermal growth factor receptor (EGFR). J Gastrointest Surg. 2009;13(2):212–222.PubMedCrossRefGoogle Scholar
  36. 36.
    Cronin J, McAdam E, Danikas A, Tselepis C, Griffiths P, Baxter J, et al. Epidermal growth factor receptor (EGFR) is overexpressed in high-grade dysplasia and adenocarcinoma of the esophagus and may represent a biomarker of histological progression in Barrett’s esophagus (BE). Am J Gastroenterol. 2011;106(1):46–56.PubMedCrossRefGoogle Scholar
  37. 37.
    al-Kasspooles M, Moore JH, Orringer MB, Beer DG. Amplification and over-expression of the EGFR and erbB-2 genes in human esophageal adenocarcinomas. Int J Cancer. 1993;54(2):213–219.PubMedCrossRefGoogle Scholar
  38. 38.
    Miller CT, Moy JR, Lin L, Schipper M, Normolle D, Brenner DE, et al. Gene amplification in esophageal adenocarcinomas and Barrett’s with high-grade dysplasia. Clin Cancer Res. 2003;9(13):4819–4825.PubMedGoogle Scholar
  39. 39.
    Sommerer F, Vieth M, Markwarth A, Rohrich K, Vomschloss S, May A, et al. Mutations of BRAF and KRAS2 in the development of Barrett’s adenocarcinoma. Oncogene. 2004;23(2):554–558.PubMedCrossRefGoogle Scholar
  40. 40.
    Jankowski J, Coghill G, Hopwood D, Wormsley KG. Oncogenes and onco-suppressor gene in adenocarcinoma of the oesophagus. Gut. 1992;33(8):1033–1038.PubMedCrossRefGoogle Scholar
  41. 41.
    Walch A, Specht K, Bink K, Zitzelsberger H, Braselmann H, Bauer M, et al. Her-2/neu gene amplification, elevated mRNA expression, and protein overexpression in the metaplasia-dysplasia-adenocarcinoma sequence of Barrett’s esophagus. Lab Invest. 2001;81(6):791–801.PubMedCrossRefGoogle Scholar
  42. 42.
    Walch A, Bink K, Gais P, Stangl S, Hutzler P, Aubele M, et al. Evaluation of c-erbB-2 overexpression and Her-2/neu gene copy number heterogeneity in Barrett’s adenocarcinoma. Anal Cell Pathol. 2000;20(1):25–32.PubMedGoogle Scholar
  43. 43.
    Brien TP, Odze RD, Sheehan CE, McKenna BJ, Ross JS. HER-2/neu gene amplification by FISH predicts poor survival in Barrett’s esophagus-associated adenocarcinoma. Hum Pathol. 2000;31(1):35–39.PubMedCrossRefGoogle Scholar
  44. 44.
    Bang Y-J, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. The Lancet. 2010;376(9742):687–697.CrossRefGoogle Scholar
  45. 45.
    Hu Y, Bandla S, Godfrey TE, Tan D, Luketich JD, Pennathur A, et al. HER2 amplification, overexpression and score criteria in esophageal adenocarcinoma. Mod Pathol. 2011;24(7):899–907.PubMedCrossRefGoogle Scholar
  46. 46.
    Muzeau F, Flejou JF, Belghiti J, Thomas G, Hamelin R. Infrequent microsatellite instability in oesophageal cancers. Br J Cancer. 1997;75(9):1336–1339.PubMedCrossRefGoogle Scholar
  47. 47.
    Meltzer SJ, Yin J, Manin B, Rhyu MG, Cottrell J, Hudson E, et al. Microsatellite instability occurs frequently and in both diploid and aneuploid cell populations of Barrett’s-associated esophageal adenocarcinomas. Cancer Res. 1994;54(13):3379–3382.PubMedGoogle Scholar
  48. 48.
    Keller G, Rotter M, Vogelsang H, Bischoff P, Becker KF, Mueller J, et al. Microsatellite instability in adenocarcinomas of the upper gastrointestinal tract. Relation to clinicopathological data and family history. Am J Pathol. 1995;147(3):593–600.PubMedGoogle Scholar
  49. 49.
    Gleeson CM, Sloan JM, McGuigan JA, Ritchie AJ, Weber JL, Russell SE. Ubiquitous somatic alterations at microsatellite alleles occur infrequently in Barrett’s-associated esophageal adenocarcinoma. Cancer Res. 1996;56(2):259–263.PubMedGoogle Scholar
  50. 50.
    Gu J, Ajani JA, Hawk ET, Ye Y, Lee JH, Bhutani MS, et al. Genome-wide catalogue of chromosomal aberrations in Barrett’s esophagus and esophageal adenocarcinoma: a high-density single nucleotide polymorphism array analysis. Cancer Prev Res (Phila). 2010;3(9):1176–1186.CrossRefGoogle Scholar
  51. 51.
    Doak SH, Jenkins GJS, Parry EM, D’Souza FR, Griffiths AP, Toffazal N, et al. Chromosome 4 hyperploidy represents an early genetic aberration in premalignant Barrett’s oesophagus. Gut. 2003;52(5):623–628.PubMedCrossRefGoogle Scholar
  52. 52.
    Gaj P, Mikula M, Wyrwicz LS, Regula J, Ostrowski J. Barrett’s esophagus associates with a variant of IL23R gene. Acta Biochim Pol. 2008;55(2):365–369.PubMedGoogle Scholar
  53. 53.
    Moons LMG, Kusters JG, van Delft JHM, Kuipers EJ, Gottschalk R, Geldof H, et al. A pro-inflammatory genotype predisposes to Barrett’s esophagus. Carcinogenesis. 2008;29(5):926–931.PubMedCrossRefGoogle Scholar
  54. 54.
    Gough MD, Ackroyd R, Majeed AW, Bird NC. Prediction of malignant potential in reflux disease: are cytokine polymorphisms important? Am J Gastroenterol. 2005;100(5):1012–1018.PubMedCrossRefGoogle Scholar
  55. 55.
    Dvorakova K, Payne CM, Ramsey L, Holubec H, Sampliner R, Dominguez J, et al. Increased expression and secretion of interleukin-6 in patients with Barrett’s esophagus. Clin Cancer Res. 2004;10(6):2020–2028.PubMedCrossRefGoogle Scholar
  56. 56.
    Oh DS, DeMeester SR, Vallbohmer D, Mori R, Kuramochi H, Hagen JA, et al. Reduction of interleukin 8 gene expression in reflux esophagitis and Barrett’s esophagus with antireflux surgery. Arch Surg. 2007;142(6):554–9. discussion 559–60.PubMedCrossRefGoogle Scholar
  57. 57.
    Fitzgerald RC, Onwuegbusi BA, Bajaj-Elliott M, Saeed IT, Burnham WR, Farthing MJG. Diversity in the oesophageal phenotypic response to gastro-oesophageal reflux: immunological determinants. Gut. 2002;50(4):451–459.PubMedCrossRefGoogle Scholar
  58. 58.
    Zhong Y-QQ, Lin Y, Xu Z. Expression of IFN-γ and IL-4 in the esophageal mucosa of patients with Reflux Esophagitis and Barrett’s Esophagus and their relationship with endoscopic and histologic grading. Dig Dis Sci. 2011;56:2865–70.PubMedCrossRefGoogle Scholar
  59. 59.
    Eads CA, Lord RV, Kurumboor SK, Wickramasinghe K, Skinner ML, Long TI, et al. Fields of aberrant CpG island hypermethylation in Barrett’s esophagus and associated adenocarcinoma. Cancer Res. 2000;60(18):5021–5026.PubMedGoogle Scholar
  60. 60.
    Kawakami K, Brabender J, Lord RV, Groshen S, Greenwald BD, Krasna MJ, et al. Hypermethylated APC DNA in plasma and prognosis of patients with esophageal adenocarcinoma. J Natl Cancer Inst. 2000;92(22):1805–1811.PubMedCrossRefGoogle Scholar
  61. 61.
    Clement G, Braunschweig R, Pasquier N, Bosman FT, Benhattar J. Alterations of the Wnt signaling pathway during the neoplastic progression of Barrett’s esophagus. Oncogene. 2006;25(21):3084–3092.PubMedCrossRefGoogle Scholar
  62. 62.
    Clement G, Braunschweig R, Pasquier N, Bosman FT, Benhattar J. Methylation of APC, TIMP3, and TERT: a new predictive marker to distinguish Barrett’s oesophagus patients at risk for malignant transformation. J Pathol. 2006;208(1):100–107.PubMedCrossRefGoogle Scholar
  63. 63.
    Clement G, Guilleret I, He B, Yagui-Beltran A, Lin Y-CC, You L, et al. Epigenetic alteration of the Wnt inhibitory factor-1 promoter occurs early in the carcinogenesis of Barrett’s esophagus. Cancer Sci. 2008;99(1):46–53.PubMedGoogle Scholar
  64. 64.
    Lee O-JJ, Schneider-Stock R, McChesney PA, Kuester D, Roessner A, Vieth M, et al. Hypermethylation and loss of expression of glutathione peroxidase-3 in Barrett’s tumorigenesis. Neoplasia. 2005;7(9):854–861.PubMedCrossRefGoogle Scholar
  65. 65.
    Schulmann K, Sterian A, Berki A, Yin J, Sato F, Xu Y, et al. Inactivation of p16, RUNX3, and HPP1 occurs early in Barrett’s-associated neoplastic progression and predicts progression risk. Oncogene. 2005;24(25):4138–4148.PubMedGoogle Scholar
  66. 66.
    Hamilton JP, Sato F, Jin Z, Greenwald BD, Ito T, Mori Y, et al. Reprimo methylation is a potential biomarker of Barrett’s-Associated esophageal neoplastic progression. Clin Cancer Res. 2006;12(22):6637–6642.PubMedCrossRefGoogle Scholar
  67. 67.
    Onwuegbusi BA, Aitchison A, Chin S-FF, Kranjac T, Mills I, Huang Y, et al. Impaired transforming growth factor beta signalling in Barrett’s carcinogenesis due to frequent SMAD4 inactivation. Gut. 2006;55(6):764–774.PubMedCrossRefGoogle Scholar
  68. 68.
    Tischoff I, Hengge UR, Vieth M, Ell C, Stolte M, Weber A, et al. Methylation of SOCS-3 and SOCS-1 in the carcinogenesis of Barrett’s adenocarcinoma. Gut. 2007;56(8):1047–1053.PubMedCrossRefGoogle Scholar
  69. 69.
    Kuester D, Dar AA, Moskaluk CC, Krueger S, Meyer F, Hartig R, et al. Early involvement of death-associated protein kinase promoter hypermethylation in the carcinogenesis of Barrett’s esophageal adenocarcinoma and its association with clinical progression. Neoplasia. 2007;9(3):236–245.PubMedCrossRefGoogle Scholar
  70. 70.
    Kuester D, El-Rifai W, Peng D, Ruemmele P, Kroeckel I, Peters B, et al. Silencing of MGMT expression by promoter hypermethylation in the metaplasia-dysplasia-carcinoma sequence of Barrett’s esophagus. Cancer Lett. 2009;275(1):117–126.PubMedCrossRefGoogle Scholar
  71. 71.
    Abdelatif OM, Chandler FW, Mills LR, McGuire BS, Pantazis CG, Barrett JM. Differential expression of c-myc and H-ras oncogenes in Barrett’s epithelium. A study using colorimetric in situ hybridization. Arch Pathol Lab Med. 1991;115(9):880–885.PubMedGoogle Scholar
  72. 72.
    Schmidt MK, Meurer L, Volkweis BS, Edelweiss MI, Schirmer CC, Kruel CDP, et al. c-Myc overexpression is strongly associated with metaplasia-dysplasia-adenocarcinoma sequence in the esophagus. Dis Esophagus. 2007;20(3):212–216.PubMedCrossRefGoogle Scholar
  73. 73.
    Sorsdahl K, Casson AG, Troster M, Van Meyel D, Inculet R, Chambers AF. p53 and ras gene expression in human esophageal cancer and Barrett’s epithelium: a prospective study. Cancer Detect Prev. 1994;18(3):179–185.PubMedGoogle Scholar
  74. 74.
    Trautmann B, Wittekind C, Strobel D, Meixner H, Keymling J, Gossner L, et al. K-ras point mutations are rare events in premalignant forms of Barrett’s oesophagus. Eur J Gastroenterol Hepatol. 1996;8(8):799–804.PubMedGoogle Scholar
  75. 75.
    Barrett MT, Sanchez CA, Galipeau PC, Neshat K, Emond M, Reid BJ. Allelic loss of 9p21 and mutation of the CDKN2/p16 gene develop as early lesions during neoplastic progression in Barrett’s esophagus. Oncogene. 1996;13(9):1867–1873.PubMedGoogle Scholar
  76. 76.
    Paulson TG, Galipeau PC, Xu L, Kissel HD, Li X, Blount PL, et al. p16 mutation spectrum in the premalignant condition Barrett’s esophagus. PLoS One. 2008;3(11):e3809.PubMedCrossRefGoogle Scholar
  77. 77.
    Wong DJ, Barrett MT, Stoger R, Emond MJ, Reid BJ. p16INK4a promoter is hypermethylated at a high frequency in esophageal adenocarcinomas. Cancer Res. 1997;57(13):2619–2622.PubMedGoogle Scholar
  78. 78.
    Bian Y-SS, Osterheld M-CC, Fontolliet C, Bosman FT, Benhattar J. p16 inactivation by methylation of the CDKN2A promoter occurs early during neoplastic progression in Barrett’s esophagus. Gastroenterology. 2002;122(4):1113–1121.PubMedCrossRefGoogle Scholar
  79. 79.
    Klump B, Hsieh CJ, Holzmann K, Gregor M, Porschen R. Hypermethylation of the CDKN2/p16 promoter during neoplastic progression in Barrett’s esophagus. Gastroenterology. 1998;115(6):1381–1386.PubMedCrossRefGoogle Scholar
  80. 80.
    Wong DJ, Paulson TG, Prevo LJ, Galipeau PC, Longton G, Blount PL, et al. p16(INK4a) lesions are common, early abnormalities that undergo clonal expansion in Barrett’s metaplastic epithelium. Cancer Res. 2001;61(22):8284–8289.PubMedGoogle Scholar
  81. 81.
    Maley CC, Galipeau PC, Li X, Sanchez CA, Paulson TG, Reid BJ. Selectively advantageous mutations and hitchhikers in neoplasms: p16 lesions are selected in Barrett’s esophagus. Cancer Res. 2004;64(10):3414–3427.PubMedCrossRefGoogle Scholar
  82. 82.
    Leedham SJ, Preston SL, McDonald SAC, Elia G, Bhandari P, Poller D, et al. Individual crypt genetic heterogeneity and the origin of metaplastic glandular epithelium in human Barrett’s oesophagus. Gut. 2008;57(8):1041–1048.PubMedCrossRefGoogle Scholar
  83. 83.
    Casson AG, Mukhopadhyay T, Cleary KR, Ro JY, Levin B, Roth JA. p53 gene mutations in Barrett’s epithelium and esophageal cancer. Cancer Res. 1991;51(16):4495–4499.PubMedGoogle Scholar
  84. 84.
    Blount PL, Ramel S, Raskind WH, Haggitt RC, Sanchez CA, Dean PJ, et al. 17p allelic deletions and p53 protein overexpression in Barrett’s adenocarcinoma. Cancer Res. 1991;51(20):5482–5486.PubMedGoogle Scholar
  85. 85.
    Hamelin R, Flejou JF, Muzeau F, Potet F, Laurent-Puig P, Fekete F, et al. TP53 gene mutations and p53 protein immunoreactivity in malignant and premalignant Barrett’s esophagus. Gastroenterology. 1994;107(4):1012–1018.PubMedGoogle Scholar
  86. 86.
    Ramel S, Reid BJ, Sanchez CA, Blount PL, Levine DS, Neshat K, et al. Evaluation of p53 protein expression in Barrett’s esophagus by two-parameter flow cytometry. Gastroenterology. 1992;102(4 Pt 1):1220–1228.PubMedGoogle Scholar
  87. 87.
    Younes M, Lebovitz RM, Lechago LV, Lechago J. p53 protein accumulation in Barrett’s metaplasia, dysplasia, and carcinoma: a follow-up study. Gastroenterology. 1993;105(6):1637–1642.PubMedGoogle Scholar
  88. 88.
    Younes M, Ertan A, Lechago LV, Somoano JR, Lechago J. p53 Protein accumulation is a specific marker of malignant potential in Barrett’s metaplasia. Dig Dis Sci. 1997;42(4):697–701.PubMedCrossRefGoogle Scholar
  89. 89.
    Weston AP, Banerjee SK, Sharma P, Tran TM, Richards R, Cherian R. p53 protein overexpression in low grade dysplasia (LGD) in Barrett’s esophagus: immunohistochemical marker predictive of progression. Am J Gastroenterol. 2001;96(5):1355–1362.PubMedCrossRefGoogle Scholar
  90. 90.
    Blount PL, Galipeau PC, Sanchez CA, Neshat K, Levine DS, Yin J, et al. 17p allelic losses in diploid cells of patients with Barrett’s esophagus who develop aneuploidy. Cancer Res. 1994;54(9):2292–2295.PubMedGoogle Scholar
  91. 91.
    Neshat K, Sanchez CA, Galipeau PC, Blount PL, Levine DS, Joslyn G, et al. p53 mutations in Barrett’s adenocarcinoma and high-grade dysplasia. Gastroenterology. 1994;106(6):1589–1595.PubMedGoogle Scholar
  92. 92.
    Coggi G, Bosari S, Roncalli M, Graziani D, Bossi P, Viale G, et al. p53 protein accumulation and p53 gene mutation in esophageal carcinoma. A molecular and immunohistochemical study with clinicopathologic correlations. Cancer. 1997;79(3):425–432.PubMedCrossRefGoogle Scholar
  93. 93.
    Doak SH, Jenkins GJS, Parry EM, Griffiths AP, Shah V, Baxter JN, et al. Characterisation of p53 status at the gene, chromosomal and protein levels in oesophageal adenocarcinoma. Br J Cancer. 2003;89(9):1729–1735.PubMedCrossRefGoogle Scholar
  94. 94.
    Vaninetti NM, Geldenhuys L, Porter GA, Risch H, Hainaut P, Guernsey DL, et al. Inducible nitric oxide synthase, nitrotyrosine and p53 mutations in the molecular pathogenesis of Barrett’s esophagus and esophageal adenocarcinoma. Mol Carcinog. 2008;47(4):275–285.PubMedCrossRefGoogle Scholar
  95. 95.
    Younes M, Lechago J, Chakraborty S, Ostrowski M, Bridges M, Meriano F, et al. Relationship between dysplasia, p53 protein accumulation, DNA ploidy, and Glut1 overexpression in Barrett metaplasia. Scand J Gastroenterol. 2000;35(2):131–137.PubMedCrossRefGoogle Scholar
  96. 96.
    Reid BJ, Haggitt RC, Rubin CE, Rabinovitch PS. Barrett’s esophagus. Correlation between flow cytometry and histology in detection of patients at risk for adenocarcinoma. Gastroenterology. 1987;93(1):1–11.PubMedGoogle Scholar
  97. 97.
    Robaszkiewicz M, Hardy E, Volant A, Nousbaum JB, Cauvin JM, Calament G, et al. Flow cytometric analysis of cellular DNA content in Barret’s esophagus. A study of 66 cases. Gastroenterol Clin Biol. 1991;15(10):703–710.PubMedGoogle Scholar
  98. 98.
    Reid BJ, Blount PL, Rubin CE, Levine DS, Haggitt RC, Rabinovitch PS. Flow-cytometric and histological progression to malignancy in Barrett’s esophagus: prospective endoscopic surveillance of a cohort. Gastroenterology. 1992;102(4 Pt 1):1212–1219.PubMedGoogle Scholar
  99. 99.
    Menke-Pluymers MB, Mulder AH, Hop WC, van Blankenstein M, Tilanus HW. Dysplasia and aneuploidy as markers of malignant degeneration in Barrett’s oesophagus. The Rotterdam Oesophageal Tumour Study Group. Gut. 1994;35(10):1348–1351.PubMedCrossRefGoogle Scholar
  100. 100.
    Giménez A, Minguela A, Parrilla P, Bermejo J, Pérez D, Molina J, et al. Flow cytometric DNA analysis and p53 protein expression show a good correlation with histologic findings in patients with Barrett’s esophagus. Cancer. 1998;83(4):641–651.PubMedCrossRefGoogle Scholar
  101. 101.
    Maley CC, Galipeau PC, Li X, Sanchez CA, Paulson TG, Blount PL, et al. The combination of genetic instability and clonal expansion predicts progression to esophageal adenocarcinoma. Cancer Res. 2004;64(20):7629–7633.PubMedCrossRefGoogle Scholar
  102. 102.
    Galipeau PC, Li X, Blount PL, Maley CC, Sanchez CA, Odze RD, et al. NSAIDs modulate CDKN2A, TP53, and DNA content risk for progression to esophageal adenocarcinoma. PLoS Med. 2007;4(2):e67.PubMedCrossRefGoogle Scholar
  103. 103.
    Wang JS, Guo M, Montgomery EA, Thompson RE, Cosby H, Hicks L, et al. DNA promoter hypermethylation of p16 and APC predicts neoplastic progression in Barrett’s esophagus. Am J Gastroenterol. 2009;104(9):2153–2160.PubMedCrossRefGoogle Scholar
  104. 104.
    Jin Z, Cheng Y, Gu W, Zheng Y, Sato F, Mori Y, et al. A multicenter, double-blinded validation study of methylation biomarkers for progression prediction in Barrett’s esophagus. Cancer Res. 2009;69(10):4112–4115.PubMedCrossRefGoogle Scholar
  105. 105.
    Yang H, Gu J, Wang KK, Zhang W, Xing J, Chen Z, et al. MicroRNA expression signatures in Barrett’s esophagus and esophageal adenocarcinoma. Clin Cancer Res. 2009;15(18): 5744–5752.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of PathologyUniversity of Texas Medical School at HoustonHoustonUSA

Personalised recommendations