Advertisement

Targeted Therapies and Molecular Diagnostics of Gastrointestinal Cancers

  • Davendra Sohal
  • Antonia R. Sepulveda
  • Weijing SunEmail author
Chapter
Part of the Molecular Pathology Library book series (MPLB, volume 7)

Abstract

Clinical applications of genomic medicine and molecular diagnostics based on testing of tumor tissues are becoming a reality in clinical practice, with significant impact on personalized therapies for cancer patients. Advances in targeted therapies for cancers of the gastrointestinal tract have recently emerged and are rapidly moving targets. In this chapter, we review the targeted therapies that are currently standard of practice in colorectal and gastric cancers, requiring specific molecular testing for selection of candidate patients for therapy.

Keywords

Gastric Cancer Epidermal Growth Factor Receptor Lynch Syndrome KRAS Mutation BRAF Mutation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Lurje G, Lenz HJ. EGFR signaling and drug discovery. Oncology. 2009;77:400–10.PubMedCrossRefGoogle Scholar
  2. 2.
    Arkenau HT. Gastric cancer in the era of molecularly targeted agents: current drug development strategies. J Cancer Res Clin Oncol. 2009;135:855–66.PubMedCrossRefGoogle Scholar
  3. 3.
    Sakai K, Mori S, Kawamoto T, et al. Expression of epidermal growth factor receptors on normal human gastric epithelia and gastric carcinomas. J Natl Cancer Inst. 1986;77:1047–52.PubMedGoogle Scholar
  4. 4.
    Srinivasan R, Leverton KE, Sheldon H, Hurst HC, Sarraf C, Gullick WJ. Intracellular expression of the truncated extracellular domain of c-erbB-3/HER3. Cell Signal. 2001;13:321–30.PubMedCrossRefGoogle Scholar
  5. 5.
    Hirata A, Hosoi F, Miyagawa M, et al. HER2 overexpression increases sensitivity to gefitinib, an epidermal growth factor receptor tyrosine kinase inhibitor, through inhibition of HER2/HER3 heterodimer formation in lung cancer cells. Cancer Res. 2005;65:4253–60.PubMedCrossRefGoogle Scholar
  6. 6.
    Tanner M, Hollmen M, Junttila TT, et al. Amplification of HER-2 in gastric carcinoma: association with Topoisomerase IIalpha gene amplification, intestinal type, poor prognosis and sensitivity to trastuzumab. Ann Oncol. 2005;16:273–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Gravalos C, Jimeno A. HER2 in gastric cancer: a new prognostic factor and a novel therapeutic target. Ann Oncol. 2008;19:1523–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Allgayer H, Babic R, Gruetzner KU, Tarabichi A, Schildberg FW, Heiss MM. c-erbB-2 is of independent prognostic relevance in gastric cancer and is associated with the expression of tumor-associated protease systems. J Clin Oncol. 2000;18:2201–9.PubMedGoogle Scholar
  9. 9.
    Yano T, Doi T, Ohtsu A, et al. Comparison of HER2 gene amplification assessed by fluorescence in situ hybridization and HER2 protein expression assessed by immunohistochemistry in gastric cancer. Oncol Rep. 2006;15:65–71.PubMedGoogle Scholar
  10. 10.
    Yonemura Y, Ninomiya I, Ohoyama S, et al. Expression of c-erbB-2 oncoprotein in gastric carcinoma. Immunoreactivity for c-erbB-2 protein is an independent indicator of poor short-term prognosis in patients with gastric carcinoma. Cancer. 1991;67:2914–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Ananiev J, Gulubova M, Manolova I, Tchernev G. Prognostic significance of HER2/neu expression in gastric cancer. Wien Klin Wochenschr. 2011;123:450–4.PubMedCrossRefGoogle Scholar
  12. 12.
    Park DI, Yun JW, Park JH, et al. HER-2/neu amplification is an independent prognostic factor in gastric cancer. Dig Dis Sci. 2006;51:1371–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Bang YJ, Van Cutsem E, Feyereislova A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376:687–97.PubMedCrossRefGoogle Scholar
  14. 14.
    Ruschoff J, Hanna W, Bilous M, et al. HER2 testing in gastric cancer: a practical approach. Mod Pathol. 2012;25(5):637–50.PubMedCrossRefGoogle Scholar
  15. 15.
    Mrklic I, Bendic A, Kunac N, et al. Her-2/neu assessment for gastric carcinoma: validation of scoring system. Hepatogastroenterology. 2012;59:300–3.PubMedGoogle Scholar
  16. 16.
    Kim MA, Lee HJ, Yang HK, Bang YJ, Kim WH. Heterogeneous amplification of ERBB2 in primary lesions is responsible for the discordant ERBB2 status of primary and metastatic lesions in gastric carcinoma. Histopathology. 2011;59:822–31.PubMedCrossRefGoogle Scholar
  17. 17.
    Giuffre G, Ieni A, Barresi V, Caruso RA, Tuccari G. HER2 status in unusual histological variants of gastric adenocarcinomas. J Clin Pathol. 2012;65:237–41.PubMedCrossRefGoogle Scholar
  18. 18.
    Park YS, Hwang HS, Park HJ, et al. Comprehensive analysis of HER2 expression and gene amplification in gastric cancers using immunohistochemistry and in situ hybridization: which scoring system should we use? Hum Pathol. 2012;43:413–22.PubMedCrossRefGoogle Scholar
  19. 19.
    Hofmann M, Stoss O, Shi D, et al. Assessment of a HER2 scoring system for gastric cancer: results from a validation study. Histopathology. 2008;52:797–805.PubMedCrossRefGoogle Scholar
  20. 20.
    Bozzetti C, Negri FV, Lagrasta CA, et al. Comparison of HER2 status in primary and paired metastatic sites of gastric carcinoma. Br J Cancer. 2011;104:1372–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Moelans CB, Milne AN, Morsink FH, Offerhaus GJ, van Diest PJ. Low frequency of HER2 amplification and overexpression in early onset gastric cancer. Cell Oncol (Dordr). 2011;34:89–95.CrossRefGoogle Scholar
  22. 22.
    Ruschoff J, Dietel M, Baretton G, et al. HER2 diagnostics in gastric cancer-guideline validation and development of standardized immunohistochemical testing. Virchows Arch. 2010;457:299–307.PubMedCrossRefGoogle Scholar
  23. 23.
    de la Chapelle A, Hampel H. Clinical relevance of microsatellite instability in colorectal cancer. J Clin Oncol. 2010;28:3380–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Sepulveda A. Microsatellite: Medscape, 2009.Google Scholar
  25. 25.
    Ionov Y, Peinado MA, Malkhosyan S, Shibata D, Perucho M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature. 1993;363: 558–61.PubMedCrossRefGoogle Scholar
  26. 26.
    Thibodeau SN, Bren G, Schaid D. Microsatellite instability in cancer of the proximal colon. Science. 1993;260:816–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Leach FS, Nicolaides NC, Papadopoulos N, et al. Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell. 1993;75:1215–25.PubMedCrossRefGoogle Scholar
  28. 28.
    Fishel R, Lescoe MK, Rao MR, et al. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell. 1993;75:1027–38.PubMedCrossRefGoogle Scholar
  29. 29.
    Bronner CE, Baker SM, Morrison PT, et al. Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature. 1994;368:258–61.PubMedCrossRefGoogle Scholar
  30. 30.
    Papadopoulos N, Nicolaides NC, Wei YF, et al. Mutation of a mutL homolog in hereditary colon cancer. Science. 1994;263:1625–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Liu B, Farrington SM, Petersen GM, et al. Genetic instability occurs in the majority of young patients with colorectal cancer. Nat Med. 1995;1:348–52.PubMedCrossRefGoogle Scholar
  32. 32.
    Miyaki M, Konishi M, Tanaka K, et al. Germline mutation of MSH6 as the cause of hereditary nonpolyposis colorectal cancer. Nat Genet. 1997;17:271–2.PubMedCrossRefGoogle Scholar
  33. 33.
    Moslein G, Tester DJ, Lindor NM, et al. Microsatellite instability and mutation analysis of hMSH2 and hMLH1 in patients with sporadic, familial and hereditary colorectal cancer. Hum Mol Genet. 1996;5:1245–52.PubMedCrossRefGoogle Scholar
  34. 34.
    Benachenhou N, Guiral S, Gorska-Flipot I, Michalski R, Labuda D, Sinnett D. Allelic losses and DNA methylation at DNA mismatch repair loci in sporadic colorectal cancer. Carcinogenesis. 1998;19:1925–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Cunningham JM, Christensen ER, Tester DJ, et al. Hypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability. Cancer Res. 1998;58:3455–60.PubMedGoogle Scholar
  36. 36.
    Kane MF, Loda M, Gaida GM, et al. Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res. 1997;57:808–11.PubMedGoogle Scholar
  37. 37.
    Miyakura Y, Sugano K, Konishi F, et al. Extensive methylation of hMLH1 promoter region predominates in proximal colon cancer with microsatellite instability. Gastroenterology. 2001;121:1300–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP. CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA. 1999;96:8681–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Veigl ML, Kasturi L, Olechnowicz J, et al. Biallelic inactivation of hMLH1 by epigenetic gene silencing, a novel mechanism causing human MSI cancers. Proc Natl Acad Sci USA. 1998;95:8698–702.PubMedCrossRefGoogle Scholar
  40. 40.
    Stone JG, Robertson D, Houlston RS. Immunohistochemistry for MSH2 and MHL1: a method for identifying mismatch repair deficient colorectal cancer. J Clin Pathol. 2001;54:484–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Gryfe R, Kim H, Hsieh ET, et al. Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer. N Engl J Med. 2000;342:69–77.PubMedCrossRefGoogle Scholar
  42. 42.
    Benatti P, Gafa R, Barana D, et al. Microsatellite instability and colorectal cancer prognosis. Clin Cancer Res. 2005;11:8332–40.PubMedCrossRefGoogle Scholar
  43. 43.
    Ribic CM, Sargent DJ, Moore MJ, et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med. 2003;349: 247–57.PubMedCrossRefGoogle Scholar
  44. 44.
    Kim GP, Colangelo LH, Wieand HS, et al. Prognostic and predictive roles of high-degree microsatellite instability in colon cancer: a National Cancer Institute-National Surgical Adjuvant Breast and Bowel Project Collaborative Study. J Clin Oncol. 2007;25:767–72.PubMedCrossRefGoogle Scholar
  45. 45.
    Bertagnolli MM, Niedzwiecki D, Compton CC, et al. Microsatellite instability predicts improved response to adjuvant therapy with irinotecan, fluorouracil, and leucovorin in stage III colon cancer: Cancer and Leukemia Group B Protocol 89803. J Clin Oncol. 2009;27:1814–21.PubMedCrossRefGoogle Scholar
  46. 46.
    Sargent DJ, Marsoni S, Monges G, et al. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J Clin Oncol. 2010;28:3219–26.PubMedCrossRefGoogle Scholar
  47. 47.
    Kerr DJ, Midgley R. Defective mismatch repair in colon cancer: a prognostic or predictive biomarker? J Clin Oncol. 2010;28:3210–2.PubMedCrossRefGoogle Scholar
  48. 48.
    Kozuch P, Malamud S, Wasserman C, Homel P, Mirzoyev T, Grossbard M. Phase II trial of erlotinib and capecitabine for patients with previously untreated metastatic colorectal cancer. Clin Colorectal Cancer. 2009;8:38–42.PubMedCrossRefGoogle Scholar
  49. 49.
    Fisher GA, Kuo T, Ramsey M, et al. A phase II study of gefitinib, 5-fluorouracil, leucovorin, and oxaliplatin in previously untreated patients with metastatic colorectal cancer. Clin Cancer Res. 2008;14:7074–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Bardelli A, Siena S. Molecular mechanisms of resistance to cetuximab and panitumumab in colorectal cancer. J Clin Oncol. 2010;28:1254–61.PubMedCrossRefGoogle Scholar
  51. 51.
    De Roock W, Claes B, Bernasconi D, et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol. 2010;11:753–62.PubMedCrossRefGoogle Scholar
  52. 52.
    De Roock W, Jonker DJ, Di Nicolantonio F, et al. Association of KRAS p.G13D mutation with outcome in patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab. JAMA. 2010;304:1812–20.PubMedCrossRefGoogle Scholar
  53. 53.
    Bos JL, Fearon ER, Hamilton SR, et al. Prevalence of ras gene mutations in human colorectal cancers. Nature. 1987;327:293–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Deng G, Bell I, Crawley S, et al. BRAF mutation is frequently present in sporadic colorectal cancer with methylated hMLH1, but not in hereditary nonpolyposis colorectal cancer. Clin Cancer Res. 2004;10:191–5.PubMedCrossRefGoogle Scholar
  55. 55.
    Palomaki GE, McClain MR, Melillo S, Hampel HL, Thibodeau SN. EGAPP supplementary evidence review: DNA testing strategies aimed at reducing morbidity and mortality from Lynch syndrome. Genet Med. 2009;11:42–65.PubMedCrossRefGoogle Scholar
  56. 56.
    Roth AD, Tejpar S, Delorenzi M, et al. Prognostic role of KRAS and BRAF in stage II and III resected colon cancer: results of the translational study on the PETACC-3, EORTC 40993, SAKK 60–00 trial. J Clin Oncol. 2010;28:466–74.PubMedCrossRefGoogle Scholar
  57. 57.
    Hutchins G, Southward K, Handley K, et al. Value of mismatch repair, KRAS, and BRAF mutations in predicting recurrence and benefits from chemotherapy in colorectal cancer. J Clin Oncol. 2011;29:1261–70.PubMedCrossRefGoogle Scholar
  58. 58.
    Rizzo S, Bronte G, Fanale D, et al. Prognostic vs predictive molecular biomarkers in colorectal cancer: is KRAS and BRAF wild type status required for anti-EGFR therapy? Cancer Treat Rev. 2010;36(Suppl 3):S56–61.PubMedCrossRefGoogle Scholar
  59. 59.
    Grothey A. EGFR antibodies in colorectal cancer: where do they belong? J Clin Oncol. 2010;28:4668–70.PubMedCrossRefGoogle Scholar
  60. 60.
    Karapetis CS, Khambata-Ford S, Jonker DJ, et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med. 2008;359:1757–65.PubMedCrossRefGoogle Scholar
  61. 61.
    Allegra CJ, Jessup JM, Somerfield MR, et al. American Society of Clinical Oncology provisional clinical opinion: testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy. J Clin Oncol. 2009;27:2091–6.PubMedCrossRefGoogle Scholar
  62. 62.
    Prenen H, Tejpar S, Van Cutsem E. New strategies for treatment of KRAS mutant metastatic colorectal cancer. Clin Cancer Res. 2010;16:2921–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Flaherty KT, Puzanov I, Kim KB, et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med. 2010;363:809–19.PubMedCrossRefGoogle Scholar
  64. 64.
    Prahallad A, Sun C, Huang S, et al. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature. 2012;483:100–3.PubMedCrossRefGoogle Scholar
  65. 65.
    Jhawer M, Goel S, Wilson AJ, et al. PIK3CA mutation/PTEN expression status predicts response of colon cancer cells to the epidermal growth factor receptor inhibitor cetuximab. Cancer Res. 2008;68:1953–61.PubMedCrossRefGoogle Scholar
  66. 66.
    Halilovic E, She QB, Ye Q, et al. PIK3CA mutation uncouples tumor growth and cyclin D1 regulation from MEK/ERK and mutant KRAS signaling. Cancer Res. 2010;70:6804–14.PubMedCrossRefGoogle Scholar
  67. 67.
    Prenen H, De Schutter J, Jacobs B, et al. PIK3CA mutations are not a major determinant of resistance to the epidermal growth factor receptor inhibitor cetuximab in metastatic colorectal cancer. Clin Cancer Res. 2009;15:3184–8.PubMedCrossRefGoogle Scholar
  68. 68.
    Sartore-Bianchi A, Martini M, Molinari F, et al. PIK3CA mutations in colorectal cancer are associated with clinical resistance to EGFR-targeted monoclonal antibodies. Cancer Res. 2009;69:1851–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Brachmann SM, Hofmann I, Schnell C, et al. Specific apoptosis induction by the dual PI3K/mTor inhibitor NVP-BEZ235 in HER2 amplified and PIK3CA mutant breast cancer cells. Proc Natl Acad Sci USA. 2009;106:22299–304.PubMedCrossRefGoogle Scholar
  70. 70.
    Serra V, Markman B, Scaltriti M, et al. NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Res. 2008;68:8022–30.PubMedCrossRefGoogle Scholar
  71. 71.
    De Roock W, De Vriendt V, Normanno N, Ciardiello F, Tejpar S. KRAS, BRAF, PIK3CA, and PTEN mutations: implications for targeted therapies in metastatic colorectal cancer. Lancet Oncol. 2011;12:594–603.PubMedCrossRefGoogle Scholar
  72. 72.
    She QB, Halilovic E, Ye Q, et al. 4E-BP1 is a key effector of the oncogenic activation of the AKT and ERK signaling pathways that integrates their function in tumors. Cancer Cell. 2010;18:39–51.PubMedCrossRefGoogle Scholar
  73. 73.
    Ogino S, Meyerhardt JA, Cantor M, et al. Molecular alterations in tumors and response to combination chemotherapy with gefitinib for advanced colorectal cancer. Clin Cancer Res. 2005;11:6650–6.PubMedCrossRefGoogle Scholar
  74. 74.
    Chung KY, Shia J, Kemeny NE, et al. Cetuximab shows activity in colorectal cancer patients with tumors that do not express the epidermal growth factor receptor by immunohistochemistry. J Clin Oncol. 2005;23:1803–10.PubMedCrossRefGoogle Scholar
  75. 75.
    Cejas P, Lopez-Gomez M, Aguayo C, et al. Analysis of the concordance in the EGFR pathway status between primary tumors and related metastases of colorectal cancer patients: Implications for cancer therapy. Curr Cancer Drug Targets. 2012;12(2):124–31.PubMedCrossRefGoogle Scholar
  76. 76.
    Baas JM, Krens LL, Guchelaar HJ, Morreau H, Gelderblom H. Concordance of predictive markers for EGFR inhibitors in primary tumors and metastases in colorectal cancer: a review. Oncologist. 2011;16:1239–49.PubMedCrossRefGoogle Scholar
  77. 77.
    Funkhouser WK Jr, Lubin IM, Monzon FA, et al. Relevance, pathogenesis, and testing algorithm for mismatch repair-defective colorectal carcinomas: a report of the association for molecular pathology. J Mol Diagn. 2012;14:91–103.PubMedCrossRefGoogle Scholar
  78. 78.
    CAP. Frequently Asked Questions About ER/PgR Testing Guidelines, 2012.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Davendra Sohal
    • 1
  • Antonia R. Sepulveda
    • 2
  • Weijing Sun
    • 3
    Email author
  1. 1.Solid Tumor OncologyTaussig Cancer Institute, Cleveland ClinicClevelandUSA
  2. 2.Department of Pathology & Cell BiologyColumbia UniversityNew YorkUSA
  3. 3.Department of Medicine, Hematology-OncologyUniversity of Pittsburgh School of Medicine, UPMC Cancer PavilionPittsburghUSA

Personalised recommendations