Advertisement

Circulating Tumor Cells and Nucleic Acids for Tumor Diagnosis

  • Loren JosephEmail author
Chapter
Part of the Molecular Pathology Library book series (MPLB, volume 7)

Abstract

After decades of glacial progress, important clinical roles for circulating tumor cells (CTC) and circulating tumor nucleic acids (CNA) are coming into focus at an accelerating pace. Advances in immunohistochemistry, image cytometry, and molecular biology have converged to the point where circulating tumor cells can be analyzed by methods ranging from morphology through 10-color immunohistochemistry and FISH to whole genome/transcriptome analysis of single cells. Cell-free circulating tumor nucleic acids (genomic DNA, mRNA, miRNA) can also be quantified and comprehensively analyzed for changes like mutation and methylation. Circulating tumor cells and tumor nucleic acids can be found in most patients with gastrointestinal malignancy. One test for circulating tumor cells is already FDA approved for use in determining therapy in metastatic colon cancer. Exciting studies have shown the successful application of CTC and CNA analysis to monitor minimal residual disease by targeting tumor-specific mutations and gene rearrangements. This approach should expand dramatically as whole genome and whole transcriptome analysis of tumors becomes standard practice. MicroRNA profiling of plasma appears to be a promising way to screen for many epithelial malignancies. Measurement of circulating methylated DNA sequences has shown impressive specificity and sensitivity for detection of colon cancer. The role of circulating tumor cells in the cancer ecosystem (the primary, the stroma, the metastases, the disseminated tumor cells and immune cells) could remain elusive even as a clinical role is defined but the ability to fully characterize CTC and uncover detailed genomic relationships could also open a window onto tumor dormancy and metastasis.

Keywords

Gastric Cancer Esophageal Cancer Circulate Tumor Cell Minimal Residual Disease Disseminate Tumor Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Maheswaran S, Haber DA. Circulating tumor cells: a window into cancer biology and metastasis. Curr Opin Genet Dev. 2010;20(1): 96–99.PubMedCrossRefGoogle Scholar
  2. 2.
    Nagrath S, Sequist LV, Maheswaran S, et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature. 2007;450(7173):1235–1239.PubMedCrossRefGoogle Scholar
  3. 3.
    Maheswaran S, Sequist LV, Nagrath S, et al. Detection of mutations in EGFR in circulating lung-cancer cells. N Engl J Med. 2008;359(4):366–377.PubMedCrossRefGoogle Scholar
  4. 4.
    Leary RJ, Kinde I, Diehl F, et al. Development of personalized tumor biomarkers using massively parallel sequencing. Sci Transl Med. 2010;2(20):20.CrossRefGoogle Scholar
  5. 5.
    Müller V, Alix-Panabières C, Pantel K. Insights into minimal residual disease in cancer patients: Implications for anti-cancer therapies. Eur J Cancer. 2010;46(7):1189–1197.PubMedCrossRefGoogle Scholar
  6. 6.
    Ashworth TR. A case of cancer in which cells similar to those in the tumours were seen in the blood after death. Med J Aust. 1869;14:146–147.Google Scholar
  7. 7.
    Perlin E, Moquin RB. Serum DNA levels in patients with malignant disease. Am J Clin Pathol. 1972;58(5):601–602.PubMedGoogle Scholar
  8. 8.
    Marrinucci D, Bethel K, Bruce RH, et al. Case study of the morphologic variation of circulating tumor cells. Hum Pathol. 2007;38(3):514–519.PubMedCrossRefGoogle Scholar
  9. 9.
    Horton AP, Kumar K, Liu H, et al. Quantitative immunophenotyping of circulating tumor cells in blood using microfluidic screening chip integrated with hyperspectral microscope. 2009.Google Scholar
  10. 10.
    Swennenhuis JF, Tibbe AGJ, Levink R, Sipkema RCJ, Terstappen LWMM. Characterization of circulating tumor cells by fluorescence in situ hybridization. Cytometry A. 2009;75(6):520–527.PubMedGoogle Scholar
  11. 11.
    Ntouroupi TG, Ashraf SQ, McGregor SB, et al. Detection of circulating tumour cells in peripheral blood with an automated scanning fluorescence microscope. Br J Cancer. 2008;99(5):789–795.PubMedCrossRefGoogle Scholar
  12. 12.
    Stoecklein NH, Hosch SB, Bezler M, et al. Direct genetic analysis of single disseminated cancer cells for prediction of outcome and therapy selection in esophageal cancer. Cancer Cell. 2008;13(5): 441–453.PubMedCrossRefGoogle Scholar
  13. 13.
    Pantel K, Alix-Panabières C, Riethdorf S. Cancer micrometastases. Nat Rev Clin Oncol. 2009;6(6):339–351.PubMedCrossRefGoogle Scholar
  14. 14.
    Yachida S, Jones S, Bozic I, et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature. 2010;467(7319):1114–1117.PubMedCrossRefGoogle Scholar
  15. 15.
    Nguyen DX, Massague J. Genetic determinants of cancer metastasis. Nat Rev Genet. 2007;8(5):341–352.PubMedCrossRefGoogle Scholar
  16. 16.
    Aguirre-Ghiso JA. On the theory of tumor self-seeding: implications for metastasis progression in humans. Breast Cancer Res. 2010;12(2):304.PubMedCrossRefGoogle Scholar
  17. 17.
    Kim MY, Oskarsson T, Acharyya S, et al. Tumor self-seeding by circulating cancer cells. Cell. 2009;139(7):1315–1326.PubMedCrossRefGoogle Scholar
  18. 18.
    Hölzel D, Eckel R, Emeny RT, Engel J. Distant metastases do not metastasize. Cancer Metastasis Rev. 2010;29(4):737–750.PubMedCrossRefGoogle Scholar
  19. 19.
    Cohen SJ, Punt CJ, Iannotti N, et al. Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J Clin Oncol. 2008;26(19):3213–3221.PubMedCrossRefGoogle Scholar
  20. 20.
    Cohen SJ, Punt CJ, Iannotti N, et al. Prognostic significance of circulating tumor cells in patients with metastatic colorectal cancer. Ann Oncol. 2009;20(7):1223–1229.PubMedCrossRefGoogle Scholar
  21. 21.
    Lalmahomed ZS, Kraan J, Gratama JW, Mostert B, Sleijfer S, Verhoef C. Circulating tumor cells and sample size: the more, the better. J Clin Oncol. 2010;3:1–2.Google Scholar
  22. 22.
    Hoffmann AC, Warnecke-Eberz U, Luebke T, et al. Survivin mRNA in peripheral blood is frequently detected and significantly decreased following resection of gastrointestinal cancers. J Surg Oncol. 2007;95(1):51–54.PubMedCrossRefGoogle Scholar
  23. 23.
    Hiraiwa K, Takeuchi H, Hasegawa H, et al. Clinical significance of circulating tumor cells in blood from patients with gastrointestinal cancers. Ann Surg Oncol. 2008;15(11):3092–3100.PubMedCrossRefGoogle Scholar
  24. 24.
    Allard WJ, Matera J, Miller MC, et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res. 2004;10(20):6897–6904.PubMedCrossRefGoogle Scholar
  25. 25.
    Yen LC, Yeh YS, Chen CW, et al. Detection of KRAS oncogene in peripheral blood as a predictor of the response to cetuximab plus chemotherapy in patients with metastatic colorectal cancer. Clin Cancer Res. 2009;15(13):4508–4513.PubMedCrossRefGoogle Scholar
  26. 26.
    Gazzaniga P, Naso G, Gradilone A, et al. Chemosensitivity profile assay of circulating cancer cells: prognostic and predictive value in epithelial tumors. Int J Cancer. 2010;126(10):2437–2447.PubMedGoogle Scholar
  27. 27.
    Miller MC, Doyle GV, Terstappen LW. Significance of circulating tumor cells detected by the Cell Search System in patients with metastatic breast colorectal and prostate cancer. J Oncol. 2010;2010:617421.PubMedCrossRefGoogle Scholar
  28. 28.
    Stott SL, Lee RJ, Nagrath S, et al. Isolation and characterization of circulating tumor cells from patients with localized and metastatic prostate cancer. Sci Transl Med. 2010;2(25):25ra23.PubMedCrossRefGoogle Scholar
  29. 29.
    de Mascarel I, MacGrogan G, Debled M, Brouste V, Mauriac L. Distinction between isolated tumor cells and micrometastases in breast cancer: is it reliable and useful? Cancer. 2008;112(8): 1672–1678.PubMedCrossRefGoogle Scholar
  30. 30.
    Talmadge JE, Fidler IJ. AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res. 2010;70(14):5649–5669.PubMedCrossRefGoogle Scholar
  31. 31.
    Fehm T, Sagalowsky A, Clifford E, et al. Cytogenetic evidence that circulating epithelial cells in patients with carcinoma are malignant. Clin Cancer Res. 2002;8(7):2073–2084.PubMedGoogle Scholar
  32. 32.
    Hardingham JE, Hewett PJ, Sage RE, et al. Molecular detection of blood-borne epithelial cells in colorectal cancer patients and in patients with benign bowel disease. Int J Cancer. 2000;89(1):8–13.PubMedCrossRefGoogle Scholar
  33. 33.
    Wong CS, Cheung MT, Ma BB, et al. Isolated tumor cells and circulating CK20 mRNA in pN0 colorectal cancer patients. Int J Surg Pathol. 2008;16(2):119–126.PubMedCrossRefGoogle Scholar
  34. 34.
    Wong SC, Chan CM, Ma BB, et al. Clinical significance of cytokeratin 20-positive circulating tumor cells detected by a refined immunomagnetic enrichment assay in colorectal cancer patients. Clin Cancer Res. 2009;15(3):1005–1012.PubMedCrossRefGoogle Scholar
  35. 35.
    Kim S-J, Fidler IJ. The pathogenesis of cancer metastasis: relevance to therapy. Principles of Cancer Biotherapy. 2009:1–24.Google Scholar
  36. 36.
    Bockhorn M, Roberge S, Sousa C, Jain RK, Munn LL. Differential gene expression in metastasizing cells shed from kidney tumors. Cancer Res. 2004;64(7):2469–2473.PubMedCrossRefGoogle Scholar
  37. 37.
    Ramaswamy S, Ross KN, Lander ES, Golub TR. A molecular signature of metastasis in primary solid tumors. Nat Genet. 2003;33(1):49–54.PubMedCrossRefGoogle Scholar
  38. 38.
    Fidler IJ, Kripke ML. Genomic analysis of primary tumors does not address the prevalence of metastatic cells in the population. Nat Genet. 2003;34(1):23.PubMedCrossRefGoogle Scholar
  39. 39.
    Bockhorn M, Jain RK, Munn LL. Active versus passive mechanisms in metastasis: do cancer cells crawl into vessels, or are they pushed? Lancet Oncol. 2007;8(5):444–448.PubMedCrossRefGoogle Scholar
  40. 40.
    Holmgren L, O’Reilly MS, Folkman J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med. 1995;1(2):149–153.PubMedCrossRefGoogle Scholar
  41. 41.
    Larson CJ, Moreno JG, Pienta KJ, et al. Apoptosis of circulating tumor cells in prostate cancer patients. Cytometry A. 2004;62(1): 46–53.PubMedCrossRefGoogle Scholar
  42. 42.
    Linder S, Havelka AM, Ueno T, Shoshan MC. Determining tumor apoptosis and necrosis in patient serum using cytokeratin 18 as a biomarker. Cancer Lett. 2004;214(1):1–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Mehes G, Witt A, Kubista E, Ambros PF. Circulating breast cancer cells are frequently apoptotic. Am J Pathol. 2001;159(1):17–20.PubMedCrossRefGoogle Scholar
  44. 44.
    Rossi E, Basso U, Celadin R, et al. M30 Neoepitope expression in epithelial cancer: quantification of apoptosis in circulating tumor cells by Cell Search analysis. Clin Cancer Res. 2010;16(21):5233.PubMedCrossRefGoogle Scholar
  45. 45.
    Lohela M, Werb Z. Intravital imaging of stromal cell dynamics in tumors. Curr Opin Genet Dev. 2010;20(1):72–78.PubMedCrossRefGoogle Scholar
  46. 46.
    He W, Wang H, Hartmann LC, Cheng J-X, Low PS. In vivo quantitation of rare circulating tumor cells by multiphoton intra­vital flow cytometry. Proc Natl Acad Sci USA. 2007;104(28): 11760–11765.PubMedCrossRefGoogle Scholar
  47. 47.
    Condeelis J, Segall JE. Intravital imaging of cell movement in tumours. Nat Rev Cancer. 2003;3(12):921–930.PubMedCrossRefGoogle Scholar
  48. 48.
    Friedl P, Gilmour D. Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol. 2009;10(7):445–457.PubMedCrossRefGoogle Scholar
  49. 49.
    Liotta LA, Kleinerman J, Saidel GM. Quantitative relationships of intravascular tumor cells, tumor vessels, and pulmonary metastases following tumor implantation. Cancer Res. 1974;34(5):997–1004.PubMedGoogle Scholar
  50. 50.
    Chang YS, di Tomaso E, McDonald DM, Jones R, Jain RK, Munn LL. Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. Proc Natl Acad Sci USA. 2000;97(26): 14608–14613.PubMedCrossRefGoogle Scholar
  51. 51.
    Folkman J. Can mosaic tumor vessels facilitate molecular diagnosis of cancer? Proc Natl Acad Sci USA. 2001;98(2):398–400.PubMedCrossRefGoogle Scholar
  52. 52.
    Wyckoff JB, Jones JG, Condeelis JS, Segall JE. A critical step in metastasis: in vivo analysis of intravasation at the primary tumor. Cancer Res. 2000;60(9):2504–2511.PubMedGoogle Scholar
  53. 53.
    Hashizume H, Baluk P, Morikawa S, et al. Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol. 2000;156(4):1363–1380.PubMedCrossRefGoogle Scholar
  54. 54.
    Ji R-C. Lymphatic endothelial cells, tumor lymphangiogenesis and metastasis: New insights into intratumoral and peritumoral lymphatics. Cancer Metastasis Rev. 2006;25(4):677–694.PubMedCrossRefGoogle Scholar
  55. 55.
    Sleeman J, Schmid A, Thiele W. Tumor lymphatics. Semin Cancer Biol. 2009;19(5):285–297.PubMedCrossRefGoogle Scholar
  56. 56.
    Pries AR, Hopfner M, le Noble F, Dewhirst MW, Secomb TW. The shunt problem: control of functional shunting in normal and tumour vasculature. Nat Rev Cancer. 2010;10(8):587–593.PubMedCrossRefGoogle Scholar
  57. 57.
    Ameri K, Luong R, Zhang H, et al. Circulating tumour cells demonstrate an altered response to hypoxia and an aggressive phenotype. Br J Cancer. 2010;102(3):561–569.PubMedCrossRefGoogle Scholar
  58. 58.
    Butler TP, Gullino PM. Quantitation of cell shedding into efferent blood of mammary adenocarcinoma. Cancer Res. 1975;35(3): 512–516.PubMedGoogle Scholar
  59. 59.
    Del Monte U. Does the cell number 10(9) still really fit one gram of tumor tissue? Cell Cycle. 2009;8(3):505–506.PubMedCrossRefGoogle Scholar
  60. 60.
    Meng S, Tripathy D, Frenkel EP, et al. Circulating tumor cells in patients with breast cancer dormancy. Clin Cancer Res. 2004;10(24):8152–8162.PubMedCrossRefGoogle Scholar
  61. 61.
    Patel H, Le Marer N, Wharton RQ, et al. Clearance of circulating tumor cells after excision of primary colorectal cancer. Ann Surg. 2002;235(2):226.PubMedCrossRefGoogle Scholar
  62. 62.
    Sieuwerts AM, Kraan J, Bolt J, et al. Anti-epithelial cell adhesion molecule antibodies and the detection of circulating normal-like breast tumor cells. J Natl Cancer Inst. 2009;101(1):61–66.PubMedCrossRefGoogle Scholar
  63. 63.
    Dimmler A, Gerhards R, Betz C, et al. Transcription of cytokeratins 8, 18, and 19 in bone marrow and limited expression of cytokeratins 7 and 20 by carcinoma cells: inherent limitations for RT-PCR in the detection of isolated tumor cells. Lab Invest. 2001;81(10):1351–1361.PubMedCrossRefGoogle Scholar
  64. 64.
    Vlems F, Soong R, Diepstra H, et al. Effect of blood sample handling and reverse transcriptase-polymerase chain reaction assay sensitivity on detection of CK20 expression in healthy donor blood. Diagn Mol Pathol. 2002;11(2):90–97.PubMedCrossRefGoogle Scholar
  65. 65.
    Vlems FA, Ladanyi A, Gertler R, et al. Reliability of quantitative reverse-transcriptase-PCR-based detection of tumour cells in the blood between different laboratories using a standardised protocol. Eur J Cancer. 2003;39(3):388–396.PubMedCrossRefGoogle Scholar
  66. 66.
    Tarin D, Thompson EW, Newgreen DF. The fallacy of epithelial mesenchymal transition in neoplasia. Cancer Res. 2005;65(14):5996–6000. discussion 6000–5991.PubMedCrossRefGoogle Scholar
  67. 67.
    Bonnomet A, Brysse A, Tachsidis A, et al. Epithelial-to-mesenchymal transitions and circulating tumor cells. J Mammary Gland Biol Neoplasia. 2010;7:1–13.Google Scholar
  68. 68.
    Aktas B, Tewes M, Fehm T, Hauch S, Kimmig R, Kasimir-Bauer S. Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Res. 2009;11(4):R46.PubMedCrossRefGoogle Scholar
  69. 69.
    Vona G, Sabile A, Louha M, et al. Isolation by size of epithelial tumor cells: a new method for the immunomorphological and molecular characterization of circulating tumor cells. Am J Pathol. 2000;156(1):57–63.PubMedCrossRefGoogle Scholar
  70. 70.
    Balasubramanian P, Yang L, Lang JC, et al. Confocal images of circulating tumor cells obtained using a methodology and technology that removes normal cells. Mol Pharm. 2009;6(5):1402–1408.PubMedCrossRefGoogle Scholar
  71. 71.
    Fidler IJ. Metastasis: guantitative analysis of distribution and fate of tumor embolilabeled with 125 I-5-iodo-2′-deoxyuridine. J Natl Cancer Inst. 1970;45(4):773–782.PubMedGoogle Scholar
  72. 72.
    Fidler IJ. The relationship of embolic homogeneity, number, size and viability to the incidence of experimental metastasis. Eur J Cancer. 1973;9(3):223–227.PubMedGoogle Scholar
  73. 73.
    Liotta LA, Saidel MG, Kleinerman J. The significance of hematogenous tumor cell clumps in the metastatic process. Cancer Res. 1976;36(3):889–894.PubMedGoogle Scholar
  74. 74.
    Konstantopoulos K, Thomas SN. Cancer cells in transit: the vascular interactions of tumor cells. Annu Rev Biomed Eng. 2009;11(1):177–202.PubMedCrossRefGoogle Scholar
  75. 75.
    Losi L, Baisse B, Bouzourene H, Benhattar J. Evolution of intratumoral genetic heterogeneity during colorectal cancer progression. Carcinogenesis. 2005;26(5):916–922.PubMedCrossRefGoogle Scholar
  76. 76.
    Torres L, Ribeiro FR, Pandis N, Andersen JA, Heim S, Teixeira MR. Intratumor genomic heterogeneity in breast cancer with clonal divergence between primary carcinomas and lymph node metastases. Breast Cancer Res Treat. 2007;102(2):143–155.PubMedCrossRefGoogle Scholar
  77. 77.
    Navin N, Krasnitz A, Rodgers L, et al. Inferring tumor progression from genomic heterogeneity. Genome Res. 2010;20(1): 68–80.PubMedCrossRefGoogle Scholar
  78. 78.
    Katz RL, He W, Khanna A, et al. Genetically abnormal circulating cells in lung cancer patients: an antigen-independent fluorescence in situ hybridization-based case–control study. Clin Cancer Res. 2010;16(15):3976–3987.PubMedCrossRefGoogle Scholar
  79. 79.
    Klein CA. Parallel progression of primary tumours and metastases. Nat Rev Cancer. 2009;9(4):302–312.PubMedCrossRefGoogle Scholar
  80. 80.
    Alix-Panabières C, Riethdorf S, Pantel K. Circulating tumor cells and bone marrow micrometastasis. Clin Cancer Res. 2008;14(16): 5013–5021.PubMedCrossRefGoogle Scholar
  81. 81.
    Röcken M. Early tumor dissemination, but late metastasis: insights into tumor dormancy. J Clin Invest. 2010;120(6):1800–1803.PubMedCrossRefGoogle Scholar
  82. 82.
    Eyles J, Puaux A-L, Wang X, et al. Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma. J Clin Invest. 2010;120(6):2030–2039.PubMedCrossRefGoogle Scholar
  83. 83.
    Tarin D, Price JE, Kettlewell MG, Souter RG, Vass AC, Crossley B. Mechanisms of human tumor metastasis studied in patients with peritoneovenous shunts. Cancer Res. 1984;44(8):3584–3592.PubMedGoogle Scholar
  84. 84.
    Naumov GN, MacDonald IC, Chambers AF, Groom AC. Solitary cancer cells as a possible source of tumour dormancy? Semin Cancer Biol. 2001;11(4):271–276.PubMedCrossRefGoogle Scholar
  85. 85.
    Goodison S, Kawai K, Hihara J, et al. Prolonged dormancy and site-specific growth potential of cancer cells spontaneously disseminated from nonmetastatic breast tumors as revealed by labeling with green fluorescent protein. Clin Cancer Res. 2003;9(10 Pt 1): 3808–3814.PubMedGoogle Scholar
  86. 86.
    Lam NYL, Rainer TH, Chiu RWK, Lo YMD. EDTA is a better anticoagulant than heparin or citrate for delayed blood processing for plasma DNA analysis. Clin Chem. 2004;50(1):256–257.PubMedCrossRefGoogle Scholar
  87. 87.
    Benoy IH, Elst H, Van Dam P, et al. Detection of circulating tumour cells in blood by quantitative real-time RT-PCR: effect of pre-analytical time. Clin Chem Lab Med. 2006;44(9):1082–1087.PubMedCrossRefGoogle Scholar
  88. 88.
    Kagan M, Howard D, Bendele T, et al. A sample preparation and analysis system for identification of circulating tumor cells. J Clin Ligand Assay. 2002;25(1):104–110.Google Scholar
  89. 89.
    Allard WJ, Hayes DF, Repollet MI, et al. A cellular preservative improves the specificity and yield of circulating tumor cells in carcinoma patients 2003.Google Scholar
  90. 90.
    Gascoyne PRC, Noshari J, Anderson TJ, Becker FF. Isolation of rare cells from cell mixtures by dielectrophoresis. Electrophoresis. 2009;30(8):1388–1398.PubMedCrossRefGoogle Scholar
  91. 91.
    Viator JA, Gupta S, Goldschmidt BS, et al. Gold nanoparticle mediated detection of prostate cancer cells using photoacoustic flowmetry with optical reflectance. J Biomed Nanotechnol. 2010;6(2):187–191.PubMedCrossRefGoogle Scholar
  92. 92.
    Tkaczyk ER, Zhong CF, Ye JY, et al. In vivo monitoring of multiple circulating cell populations using two-photon flow cytometry. Opt Commun. 2008;281(4):888–894.PubMedCrossRefGoogle Scholar
  93. 93.
    Zheng S, Lin H, Liu J-Q, et al. Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells. J Chromatogr A. 2007;1162(2):154–161.PubMedCrossRefGoogle Scholar
  94. 94.
    Lee H, Sun E, Ham D, Weissleder R. Chip-NMR biosensor for detection and molecular analysis of cells. Nat Med. 2008;14(8): 869–874.PubMedCrossRefGoogle Scholar
  95. 95.
    Galanzha EI, Shashkov EV, Tuchin VV, Zharov VP. In vivo multispectral, multiparameter, photoacoustic lymph flow cytometry with natural cell focusing, label-free detection and multicolor nanoparticle probes. Cytometry. 2008;73A(10):884–894.CrossRefGoogle Scholar
  96. 96.
    Neugebauer U, Clement JH, Bocklitz T, Krafft C, Popp J. Identification and differentiation of single cells from peripheral blood by Raman spectroscopic imaging. J Biophoton. 2010;3:579–87.CrossRefGoogle Scholar
  97. 97.
    Paris PL, Kobayashi Y, Zhao Q, et al. Functional phenotyping and genotyping of circulating tumor cells from patients with castration resistant prostate cancer. Cancer Lett. 2009;277(2):164–173.PubMedCrossRefGoogle Scholar
  98. 98.
    Lu J, Fan T, Zhao Q, et al. Isolation of circulating epithelial and tumor progenitor cells with an invasive phenotype from breast cancer patients. Int J Cancer. 2010;126(3):669–683.PubMedCrossRefGoogle Scholar
  99. 99.
    Fuchs AB, Romani A, Freida D, et al. Electronic sorting and recovery of single live cells from microlitre sized samples. Lab Chip. 2006;6(1):121.PubMedCrossRefGoogle Scholar
  100. 100.
    Sega EI, Low PS. Tumor detection using folate receptor-targeted imaging agents. Cancer Metastasis Rev. 2008;27(4):655–664.PubMedCrossRefGoogle Scholar
  101. 101.
    Georgakoudi I, Solban N, Novak J, et al. In vivo flow cytometry: a new method for enumerating circulating cancer cells. Cancer Res. 2004;64(15):5044–5047.PubMedCrossRefGoogle Scholar
  102. 102.
    Hu Y, Fan L, Zheng J, et al. Detection of circulating tumor cells in breast cancer patients utilizing multiparameter flow cytometry and assessment of the prognosis of patients in different CTCs levels. Cytometry A. 2010;77(3):213–219.PubMedGoogle Scholar
  103. 103.
    Deng G, Herrler M, Burgess D, Manna E, Krag D, Burke JF. Enrichment with anti-cytokeratin alone or combined with anti-EpCAM antibodies significantly increases the sensitivity for circulating tumor cell detection in metastatic breast cancer patients. Breast Cancer Res. 2008;10(4):R69.PubMedCrossRefGoogle Scholar
  104. 104.
    Antolovic D, Galindo L, Carstens A, et al. Heterogeneous detection of circulating tumor cells in patients with colorectal cancer by immunomagnetic enrichment using different EpCAM-specific antibodies. BMC Biotechnol. 2010;10:35.PubMedCrossRefGoogle Scholar
  105. 105.
    Krüger WH, Jung R, Detlefsen B, et al. Interference of cytokeratin-20 and mammaglobin-reverse-transcriptase polymerase chain assays designed for the detection of disseminated cancer cells. Med Oncol. 2001;18(1):33–38.PubMedCrossRefGoogle Scholar
  106. 106.
    Jung R, Petersen K, Krüger W, et al. Detection of micrometastasis by cytokeratin 20 RT-PCR is limited due to stable background transcription in granulocytes. Br J Cancer. 1999;81(5):870–873.PubMedCrossRefGoogle Scholar
  107. 107.
    Lara O, Tong X, Zborowski M, et al. Enrichment of rare cancer cells through depletion of normal cells using density and flow-through, immunomagnetic cell separation. Exp Hematol. 2004;32(10):891–904.PubMedGoogle Scholar
  108. 108.
    Marrinucci D, Bethel K, Lazar D, et al. Cytomorphology of circulating colorectal tumor cells:a small case series. J Oncol. 2010;2010:861341. doi: 10.1155/2010/861341.PubMedCrossRefGoogle Scholar
  109. 109.
    Basiji DA, Ortyn WE, Liang L, Venkatachalam V, Morrissey P. Cellular image analysis and imaging by flow cytometry. Clin Lab Med. 2007;27(3):653–670.PubMedCrossRefGoogle Scholar
  110. 110.
    Hsieh HB, Marrinucci D, Bethel K, et al. High speed detection of circulating tumor cells. Biosens Bioelectron. 2006;21(10): 1893–1899.PubMedCrossRefGoogle Scholar
  111. 111.
    Gerstner AOH, Laffers W, Tárnok A. Clinical applications of slide-based cytometry - an update. J Biophoton. 2009;2(8–9): 463–469.CrossRefGoogle Scholar
  112. 112.
    Baldus SE, Schaefer K-L, Engers R, Hartleb D, Stoecklein NH, Gabbert HE. Prevalence and heterogeneity of KRAS, BRAF, and PIK3CA mutations in primary colorectal adenocarcinomas and their corresponding metastases. Clin Cancer Res. 2010;16(3): 790–799.PubMedCrossRefGoogle Scholar
  113. 113.
    Smirnov DA, Zweitzig DR, Foulk BW, et al. Global gene expression profiling of circulating tumor cells. Cancer Res. 2005;65(12): 4993–4997.PubMedCrossRefGoogle Scholar
  114. 114.
    Ozsolak F, Ting DT, Wittner BS, et al. Amplification-free digital gene expression profiling from minute cell quantities. Nature Methods. 2010;2165:1–4.Google Scholar
  115. 115.
    Paliwal A, Vaissière T, Herceg Z. Quantitative detection of DNA methylation states in minute amounts of DNA from body fluids. METHODS. 2010;16:1–6.Google Scholar
  116. 116.
    Polzer B, Hartmann CH, Klein CA. Genome and transcriptome analysis of single tumor cells. Weinheim: Wiley-VCH Verlag GmbH & Co KGaA; 2009.Google Scholar
  117. 117.
    Alexander S, Koehl GE, Hirschberg M, Geissler EK, Friedl P. Dynamic imaging of cancer growth and invasion: a modified skin-fold chamber model. Histochem Cell Biol. 2008;130(6):1147–1154.PubMedCrossRefGoogle Scholar
  118. 118.
    Mandel P, Metais P. Les acides nucleiques du plasma sanguin chez l’hommes. C R Acad Sci (Paris). 1948;142:241–243.Google Scholar
  119. 119.
    Leon SA, Shapiro B, Sklaroff DM, Yaros MJ. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res. 1977;37:646–650.PubMedGoogle Scholar
  120. 120.
    Gormally E, Vineis P, Matullo G, et al. TP53 and KRAS2 ­mutations in plasma DNA of healthy subjects and subsequent cancer occurrence: a prospective study. Cancer Res. 2006;66(13): 6871–6876.PubMedCrossRefGoogle Scholar
  121. 121.
    Fleischhacker M, Schmidt B. Circulating nucleic acids (CNAs) and cancer–a survey. Biochim Biophys Acta. 2007;1775(1):181–232.PubMedGoogle Scholar
  122. 122.
    Xie L, Qian X, Liu B. MicroRNAs: novel biomarkers for gastrointestinal carcinomas. Mol Cell Biochem. 2010;27:1–9.Google Scholar
  123. 123.
    Rosenwald S, Gilad S, Benjamin S, et al. Validation of a microRNA-based qRT-PCR test for accurate identification of tumor tissue origin. Mod Pathol. 2010;23(6):814–823.PubMedCrossRefGoogle Scholar
  124. 124.
    Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA. 2008;105(30):10513–10518.PubMedCrossRefGoogle Scholar
  125. 125.
    Lodes MJ, Caraballo M, Suciu D, Munro S, Kumar A, Anderson B. Detection of cancer with serum miRNAs on an oligonucleotide microarray. PLoS One. 2009;4(7):e6229.PubMedCrossRefGoogle Scholar
  126. 126.
    Kosaka N, Iguchi H, Ochiya T. Circulating microRNA in body fluid: A new potential biomarker for cancer diagnosis and prognosis. Cancer Sci. 2010;101:2087–2092.PubMedCrossRefGoogle Scholar
  127. 127.
    Shen J, Todd NW, Zhang H, et al. Plasma microRNAs as potential biomarkers for non-small-cell lung cancer. Lab Invest. 2011;91:579–87.PubMedCrossRefGoogle Scholar
  128. 128.
    Bishop JA, Benjamin H, Cholakh H, Chajut A, Clark DP, Westra WH. Accurate classification of non-small cell lung carcinoma using a novel microRNA-based approach. Clin Cancer Res. 2010;16(2):610–619.PubMedCrossRefGoogle Scholar
  129. 129.
    Li J, Harris L, Mamon H, et al. Whole genome amplification of plasma-circulating DNA enables expanded screening for allelic imbalance in plasma. J Mol Diagn. 2006;8(1):22–30.PubMedCrossRefGoogle Scholar
  130. 130.
    Van der Vaart M, Semenov DV, Kuligina EV, Richter VA, Pretorius PJ. Characterisation of circulating DNA by parallel tagged sequencing on the 454 platform. Clinica Chimica Acta. 2009;409(1–2):21–27.CrossRefGoogle Scholar
  131. 131.
    Beck J, Urnovitz HB, Mitchell WM, Schutz E. Next generation sequencing of serum circulating nucleic acids from patients with invasive ductal breast cancer reveals differences to healthy and nonmalignant controls. Mol Cancer Res. 2010;8(3):335–342.PubMedCrossRefGoogle Scholar
  132. 132.
    Fan HC, Blumenfeld YJ, Chitkara U, Hudgins L, Quake SR. Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood. Proc Natl Acad Sci USA. 2008;105(42):16266–16271.PubMedCrossRefGoogle Scholar
  133. 133.
    Lui YY, Chik KW, Chiu RW, Ho CY, Lam CW, Lo YM. Predominant hematopoietic origin of cell-free DNA in plasma and serum after sex-mismatched bone marrow transplantation. Clin Chem. 2002;48(3):421–427.PubMedGoogle Scholar
  134. 134.
    Rainer TH, Wong LK, Lam W, et al. Prognostic use of circulating plasma nucleic acid concentrations in patients with acute stroke. Clin Chem. 2003;49(4):562–569.PubMedCrossRefGoogle Scholar
  135. 135.
    Raptis L, Menard HA. Quantitation and characterization of plasma DNA in normals and patients with systemic lupus erythematosus. J Clin Invest. 1980;66(6):1391–1399.PubMedCrossRefGoogle Scholar
  136. 136.
    Gornik I, Wagner J, Gašparović V, Lauc G, Gornik O. Free serum DNA is an early predictor of severity in acute pancreatitis. Clin Biochem. 2008;42(1–2):38–43.PubMedGoogle Scholar
  137. 137.
    Stroun M, Anker P. Prehistory of the notion of circulating nucleic acids in plasma/serum (CNAPS): birth of a hypothesis. Ann N Y Acad Sci. 2006;1075:10–20.PubMedCrossRefGoogle Scholar
  138. 138.
    Cheng C, Omura-Minamisawa M, Kang Y, Hara T, Koike I, Inoue T. Quantification of circulating cell-free DNA in the plasma of cancer patients during radiation therapy. Cancer Sci. 2009;100(2):303–309.PubMedCrossRefGoogle Scholar
  139. 139.
    Shapiro B, Chakrabarty M, Cohn EM, Leon SA. Determination of circulating DNA levels in patients with benign or malignant gastrointestinal disease. Cancer. 1983;51(11):2116–2120.PubMedCrossRefGoogle Scholar
  140. 140.
    Gormally E, Hainaut P, Caboux E, et al. Amount of DNA in plasma and cancer risk: a prospective study. Int J Cancer. 2004;111(5):746–749.PubMedCrossRefGoogle Scholar
  141. 141.
    Gormally E, Caboux E, Vineis P, Hainaut P. Circulating free DNA in plasma or serum as biomarker of carcinogenesis: practical aspects and biological significance. Mutat Res. 2007;635(2–3):105–117.PubMedGoogle Scholar
  142. 142.
    Beck J, Urnovitz HB, Riggert J, Clerici M, Schutz E. Profile of the circulating DNA in apparently healthy individuals. Clin Chem. 2009;55(4):730–738.PubMedCrossRefGoogle Scholar
  143. 143.
    Yoon K-A, Park S, Lee SH, Kim JH, Lee JS. Comparison of circulating plasma DNA levels between lung cancer patients and healthy controls. J Mol Diagn. 2009;11(3):182–185.PubMedCrossRefGoogle Scholar
  144. 144.
    Chen XQ, Stroun M, Magnenat JL, et al. Microsatellite alterations in plasma DNA of small cell lung cancer patients. Nat Med. 1996;2(9):1033–1035.PubMedCrossRefGoogle Scholar
  145. 145.
    Mulcahy HE, Lyautey J, Lederrey C, et al. Plasma DNA K-ras mutations in patients with gastrointestinal malignancies. Ann N Y Acad Sci. 2000;906:25–28.PubMedCrossRefGoogle Scholar
  146. 146.
    Ziegler A, Zangemeister-Wittke U, Stahel RA. Circulating DNA: a new diagnostic gold mine? Cancer Treat Rev. 2002;28(5):255–271.PubMedCrossRefGoogle Scholar
  147. 147.
    Jahr S, Hentze H, Englisch S, et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 2001;61(4):1659–1665.PubMedGoogle Scholar
  148. 148.
    Stroun M, Maurice P, Vasioukhin V, et al. The origin and mechanism of circulating DNA. Ann N Y Acad Sci. 2000;906:161–168.PubMedCrossRefGoogle Scholar
  149. 149.
    Thierry AR, Mouliere F, Gongora C, et al. Origin and quantification of circulating DNA in mice with human colorectal cancer xenografts. Nucl Acids Res. 2010;21:1–17.Google Scholar
  150. 150.
    Kawamura MT, Paschoal ME, da Costa Carvalho MD. In vitro interaction of serum protein with circulating DNA of lung cancer patient. Int J Mol Med. 1999;4(2):187–190.PubMedGoogle Scholar
  151. 151.
    Fournie GJ, Courtin JP, Laval F, et al. Plasma DNA as a marker of cancerous cell death. Investigations in patients suffering from lung cancer and in nude mice bearing human tumours. Cancer Lett. 1995;91(2):221–227.PubMedCrossRefGoogle Scholar
  152. 152.
    Deligezer U, Akisik EE, Erten N, Dalay N. Sequence-specific histone methylation is detectable on circulating nucleosomes in plasma. Clin Chem. 2008;54(7):1125–1131.PubMedCrossRefGoogle Scholar
  153. 153.
    Lo YM, Zhang J, Leung TN, Lau TK, Chang AM, Hjelm NM. Rapid clearance of fetal DNA from maternal plasma. Am J Hum Genet. 1999;64(1):218–224.PubMedCrossRefGoogle Scholar
  154. 154.
    Grady WM, Rajput A, Lutterbaugh JD, Markowitz SD. Detection of aberrantly methylated hMLH1 promoter DNA in the serum of patients with microsatellite unstable colon cancer. Cancer Res. 2001;61(3):900–902.PubMedGoogle Scholar
  155. 155.
    Leung WK, To K-F, Man EPS, et al. Quantitative detection of promoter hypermethylation in multiple genes in the serum of patients with colorectal cancer. Am J Gastroenterol. 2005;100(10):2274–2279.PubMedCrossRefGoogle Scholar
  156. 156.
    Tsui NBY, Ng EKO, Lo YMD. Stability of endogenous and added RNA in blood specimens, serum, and plasma. Clin Chem. 2002;48(10):1647–1653.PubMedGoogle Scholar
  157. 157.
    El-Hefnawy T, Raja S, Kelly L, et al. Characterization of amplifiable, circulating RNA in plasma and its potential as a tool for cancer diagnostics. Clin Chem. 2004;50(3):564–573.PubMedCrossRefGoogle Scholar
  158. 158.
    Garcia JM, Garcia V, Pena C, et al. Extracellular plasma RNA from colon cancer patients is confined in a vesicle-like structure and is mRNA-enriched. RNA. 2008;14(7):1424–1432.PubMedCrossRefGoogle Scholar
  159. 159.
    Hunter MP, Ismail N, Zhang X, et al. Detection of microRNA expression in human peripheral blood microvesicles. PLoS One. 2008;3(11):e3694.PubMedCrossRefGoogle Scholar
  160. 160.
    Rosell R, Wei J, Taron M. Circulating MicroRNA signatures of tumor-derived exosomes for early diagnosis of non-small-cell lung cancer. Clin Lung Cancer. 2009;10(1):8–9.PubMedCrossRefGoogle Scholar
  161. 161.
    Jen J, Wu L, Sidransky D. An overview on the isolation and ­analysis of circulating tumor DNA in plasma and serum. Ann N Y Acad Sci. 2000;906:8–12.PubMedCrossRefGoogle Scholar
  162. 162.
    Sozzi G, Roz L, Conte D, et al. Effects of prolonged storage of whole plasma or isolated plasma DNA on the results of circulating DNA quantification assays. J Natl Cancer Inst. 2005;97(24): 1848–1850.PubMedCrossRefGoogle Scholar
  163. 163.
    Page K, Powles T, Slade MJ, et al. The importance of careful blood processing in isolation of cell-free DNA. Ann N Y Acad Sci. 2006;1075:313–317.PubMedCrossRefGoogle Scholar
  164. 164.
    Xue X, Teare MD, Holen I, Zhu YM, Woll PJ. Optimizing the yield and utility of circulating cell-free DNA from plasma and serum. Clin Chim Acta. 2009;404(2):100–104.PubMedCrossRefGoogle Scholar
  165. 165.
    Schmidt B, Weickmann S, Witt C, Fleischhacker M. Integrity of cell-free plasma DNA in patients with lung cancer and nonmalignant lung disease. Ann N Y Acad Sci. 2008;1137:207–213.PubMedCrossRefGoogle Scholar
  166. 166.
    Wu T-L, Zhang D, Chia J-H, K-h T, Sun C-F, Wu JT. Cell-free DNA: measurement in various carcinomas and establishment of normal reference range. Clin Chim Acta. 2002;321(1–2):77–87.PubMedCrossRefGoogle Scholar
  167. 167.
    Jung K, Fleischhacker M, Rabien A. Cell-free DNA in the blood as a solid tumor biomarker—A critical appraisal of the literature. Clin Chim Acta. 2010;411(21–22):1611–1624.PubMedCrossRefGoogle Scholar
  168. 168.
    Li M, Diehl F, Dressman D, Vogelstein B, Kinzler KW. BEAMing up for detection and quantification of rare sequence variants. Nat Methods. 2006;3(2):95–97.PubMedCrossRefGoogle Scholar
  169. 169.
    Li M, Chen WD, Papadopoulos N, et al. Sensitive digital quantification of DNA methylation in clinical samples. Nat Biotechnol. 2009;27(9):858–863.PubMedCrossRefGoogle Scholar
  170. 170.
    Sepulveda AR, Jones D, Ogino S, et al. CpG methylation analysis–current status of clinical assays and potential applications in molecular diagnostics: a report of the Association for Molecular Pathology. J Mol Diagn. 2009;11(4):266–278.PubMedCrossRefGoogle Scholar
  171. 171.
    Tierling S, Schuster M, Tetzner R, Walter J. A combined HM-PCR/SNuPE method for high sensitive detection of rare DNA methylation. Epigenetics Chromatin. 2010;3(1):12.PubMedCrossRefGoogle Scholar
  172. 172.
    Van der Auwera I, Elst HJ, Laere SJV, et al. The presence of circulating total DNA and methylated genes is associated with circulating tumour cells in blood from breast cancer patients. 2009;100(8):1277–1286.Google Scholar
  173. 173.
    Brabender J, Vallbohmer D, Grimminger P, et al. ERCC1 RNA expression in peripheral blood predicts minor histopathological response to neoadjuvant radio-chemotherapy in patients with locally advanced cancer of the esophagus. J Gastrointest Surg. 2008;12(11):1815–1821.PubMedCrossRefGoogle Scholar
  174. 174.
    Cao M, Yie SM, Wu SM, et al. Detection of survivin-expressing circulating cancer cells in the peripheral blood of patients with esophageal squamous cell carcinoma and its clinical significance. Clin Exp Metastasis. 2009;26(7):751–758.PubMedCrossRefGoogle Scholar
  175. 175.
    Grimminger P, Vallbohmer D, Hoffmann A, et al. Quantitative analysis of survivin RNA expression in blood as a non-invasive predictor of response to neoadjuvant radiochemotherapy in esophageal cancer. J Surg Oncol. 2009;100(6):447–451.PubMedCrossRefGoogle Scholar
  176. 176.
    Hashimoto T, Kajiyama Y, Tsutsumi-Ishii Y, Nagaoka I, Tsurumaru M. Circulating micrometastases of esophageal cancer detected by carcinoembryonic antigen mRNA reverse transcriptase-polymerase chain reaction: clinical implications. Dis Esophagus. 2008;21(8):690–696.PubMedCrossRefGoogle Scholar
  177. 177.
    Ikoma D, Ichikawa D, Ueda Y, et al. Circulating tumor cells and aberrant methylation as tumor markers in patients with esophageal cancer. Anticancer Res. 2007;27(1B):535–539.PubMedGoogle Scholar
  178. 178.
    Ito H, Kanda T, Nishimaki T, Sato H, Nakagawa S, Hatakeyama K. Detection and quantification of circulating tumor cells in patients with esophageal cancer by real-time polymerase chain reaction. J Exp Clin Cancer Res. 2004;23:455–464.PubMedGoogle Scholar
  179. 179.
    Kaganoi J, Shimada Y, Kano M, Okumura T, Watanabe G, Imamura M. Detection of circulating oesophageal squamous cancer cells in peripheral blood and its impact on prognosis. Br J Surg. 2004;91(8):1055–1060.PubMedCrossRefGoogle Scholar
  180. 180.
    Koike M, Hibi K, Kasai Y, Ito K, Akiyama S, Nakao A. Molecular detection of circulating esophageal squamous cell cancer cells in the peripheral blood. Clin Cancer Res. 2002;8(9):2879.PubMedGoogle Scholar
  181. 181.
    Liu Z, Jiang M, Zhao J, Ju H. Circulating tumor cells in perioperative esophageal cancer patients: quantitative assay system and potential clinical utility. Clin Cancer Res. 2007;13(10):2992–2997.PubMedCrossRefGoogle Scholar
  182. 182.
    Nakamura T, Yasumura T, Hayashi K, et al. Immunocytochemical detection of circulating esophageal carcinoma cells by immunomagnetic separation. Anticancer Res. 2000;20(6C):4739–4744.PubMedGoogle Scholar
  183. 183.
    Nakashima S, Natsugoe S, Matsumoto M, et al. Clinical significance of circulating tumor cells in blood by molecular detection and tumor markers in esophageal cancer. Surgery. 2003;133(2):162–169.PubMedCrossRefGoogle Scholar
  184. 184.
    Setoyama T, Natsugoe S, Okumura H, et al. Carcinoembryonic antigen messenger RNA expression in blood predicts recurrence in esophageal cancer. Clin Cancer Res. 2006;12(20):5972.PubMedCrossRefGoogle Scholar
  185. 185.
    Tanaka K, Yano M, Motoori M, et al. CEA-antigen and SCC-Antigen mRNA expression in peripheral blood predict hematogenous recurrence after resection in patients with esophageal cancer. Ann Surg Oncol. 2010;22:1–8.Google Scholar
  186. 186.
    Xi L, Nicastri DG, El-Hefnawy T, Hughes SJ, Luketich JD, Godfrey TE. Optimal markers for real-time quantitative reverse transcription PCR detection of circulating tumor cells from melanoma, breast, colon, esophageal, head and neck, and lung cancers. Clin Chem. 2007;53(7):1206–1215.PubMedCrossRefGoogle Scholar
  187. 187.
    Jung R, Kruger W, Hosch S, et al. Specificity of reverse transcriptase polymerase chain reaction assays designed for the detection of circulating cancer cells is influenced by cytokines in vivo and in vitro. Br J Cancer. 1998;78(9):1194–1198.PubMedCrossRefGoogle Scholar
  188. 188.
    Ratovitski EA, Patturajan M, Hibi K, Trink B, Yamaguchi K, Sidransky D. p53 associates with and targets Delta Np63 into a protein degradation pathway. Proc Natl Acad Sci USA. 2001;98(4):1817–1822.PubMedCrossRefGoogle Scholar
  189. 189.
    Takeshita H, Ichikawa D, Komatsu S, et al. Prediction of CCND1 amplification using plasma DNA as a prognostic marker in oesophageal squamous cell carcinoma. Br J Cancer. 2011;102(9): 1378–1383.CrossRefGoogle Scholar
  190. 190.
    Kawakami K, Brabender J, Lord RV, et al. Hypermethylated APC DNA in plasma and prognosis of patients with esophageal adenocarcinoma. J Natl Cancer Inst. 2000;92(22):1805–1811.PubMedCrossRefGoogle Scholar
  191. 191.
    Hoffmann AC, Vallbohmer D, Prenzel K, et al. Methylated DAPK and APC promoter DNA detection in peripheral blood is significantly associated with apparent residual tumor and outcome. J Cancer Res Clin Oncol. 2009;135(9):1231–1237.PubMedCrossRefGoogle Scholar
  192. 192.
    Hibi K, Taguchi M, Nakayama H, et al. Molecular detection of p16 promoter methylation in the serum of patients with esophageal squamous cell carcinoma. Clin Cancer Res. 2001;7(10):3135–3138.PubMedGoogle Scholar
  193. 193.
    Kuester D, Dar AA, Moskaluk CC, et al. Early involvement of death-associated protein kinase promoter hypermethylation in the carcinogenesis of Barrett’s esophageal adenocarcinoma and its association with clinical progression. Neoplasia. 2007;9(3):236–245.PubMedCrossRefGoogle Scholar
  194. 194.
    Schildhaus HU, Krockel I, Lippert H, Malfertheiner P, Roessner A, Schneider-Stock R. Promoter hypermethylation of p16INK4a, E-cadherin, O6-MGMT, DAPK and FHIT in adenocarcinomas of the esophagus, esophagogastric junction and proximal stomach. Int J Oncol. 2005;26(6):1493–1500.PubMedGoogle Scholar
  195. 195.
    Bertazza L, Mocellin S, Marchet A, et al. Survivin gene levels in the peripheral blood of patients with gastric cancer independently predict survival. J Transl Med. 2009;7:111.PubMedCrossRefGoogle Scholar
  196. 196.
    Chen X-M, Chen G-Y, Wang Z-R, Zhu F-S, Wang X-L, Zhang X. Detection of micrometastasis of gastric carcinoma in peripheral blood circulation. World J Gastroenterol. 2004;10(6):804–808.PubMedGoogle Scholar
  197. 197.
    Czopek J, Bialas M, Rudzki Z, et al. The relationship between gastric cancer cells circulating in the blood and microsatellite instability positive gastric carcinomas. Aliment Pharmacol Ther. 2002;16(Suppl 2):128–136.PubMedCrossRefGoogle Scholar
  198. 198.
    Illert B, Fein M, Otto C, et al. Disseminated tumor cells in the blood of patients with gastric cancer are an independent predictive marker of poor prognosis. Scand J Gastroenterol. 2005;40(7): 843–849.PubMedCrossRefGoogle Scholar
  199. 199.
    Kita Y, Fukagawa T, Mimori K, et al. Expression of uPAR mRNA in peripheral blood is a favourite marker for metastasis in gastric cancer cases. Br J Cancer. 2009;100(1):153–159.PubMedCrossRefGoogle Scholar
  200. 200.
    Kolodziejczyk P, Pituch-Noworolska A, Drabik G, et al. The effects of preoperative chemotherapy on isolated tumour cells in the blood and bone marrow of gastric cancer patients. Br J Cancer. 2007;97(5):589–592.PubMedCrossRefGoogle Scholar
  201. 201.
    Majima T, Ichikura T, Takayama E, Chochi K, Mochizuki H. Detecting circulating cancer cells using reverse transcriptase-polymerase chain reaction for cytokeratin mRNA in peripheral blood from patients with gastric cancer. Jpn J Clin Oncol. 2000;30(11):499.PubMedCrossRefGoogle Scholar
  202. 202.
    Matsusaka S, Chin K, Ogura M, et al. Circulating tumor cells as a surrogate marker for determining response to chemotherapy in patients with advanced gastric cancer. Cancer Sci. 2010;101: 1067–71.PubMedCrossRefGoogle Scholar
  203. 203.
    Mimori K, Fukagawa T, Kosaka Y, et al. A large-scale study of MT1-MMP as a marker for isolated tumor cells in peripheral blood and bone marrow in gastric cancer cases. Ann Surg Oncol. 2008;15(10):2934–2942.PubMedCrossRefGoogle Scholar
  204. 204.
    Mimori K, Fukagawa T, Kosaka Y, et al. Hematogenous metastasis in gastric cancer requires isolated tumor cells and expression of vascular endothelial growth factor receptor-1. Clin Cancer Res. 2008;14(9):2609–2616.PubMedCrossRefGoogle Scholar
  205. 205.
    Noh YH, Im G, Ku JH, Lee YS, Ahn MJ. Detection of tumor cell contamination in peripheral blood by RT-PCR in gastrointestinal cancer patients. J Korean Med Sci. 1999;14(6):623–628.PubMedGoogle Scholar
  206. 206.
    Park SC, Park JG, Yang HK. Detection of cancer cells in peripheral blood of stomach cancer patients using RT-PCR amplification of tumour-specific mRNAs. Aliment Pharmacol Ther. 2002;16(2):137–144.PubMedCrossRefGoogle Scholar
  207. 207.
    Pituch-Noworolska A, Drabik G, Szatanek R, et al. Immunophenotype of isolated tumour cells in the blood, bone marrow and lymph nodes of patients with gastric cancer. Pol J Pathol. 2007;58(2):93–97.PubMedGoogle Scholar
  208. 208.
    Shin JH, Chung J, Kim HO, et al. Detection of cancer cells in peripheral blood of stomach cancer patients using RT-PCR amplification of tumour-specific mRNAs. Aliment Pharmacol Ther. 2002;16(Suppl 2):137–144.PubMedCrossRefGoogle Scholar
  209. 209.
    Sumikura S, Ishigami S, Natsugoe S, et al. Disseminated cancer cells in the blood and expression of sialylated antigen in gastric cancer. Cancer Lett. 2003;200(1):77–83.PubMedCrossRefGoogle Scholar
  210. 210.
    Szatanek R, Drabik G, Baran J, et al. Detection of isolated tumour cells in the blood and bone marrow of patients with gastric cancer by combined sorting, isolation and determination of MAGE-1, -2 mRNA expression. Oncol Rep. 2008;19(4):1055–1060.PubMedGoogle Scholar
  211. 211.
    Wang D-R, Chen G-Y, Liu X-L, et al. CD44v6 in peripheral blood and bone marrow of patients with gastric cancer as micro-metastasis. World J Gastroenterol. 2006;12(1):36–42.PubMedGoogle Scholar
  212. 212.
    Wu C-H, Lin S-R, Yu F-J, et al. Development of a high-throughput membrane-array method for molecular diagnosis of circulating tumor cells in patients with gastric cancers. Int J Cancer. 2006;119(2):373–379.PubMedCrossRefGoogle Scholar
  213. 213.
    Wu CH, Lin SR, Hsieh JS, et al. Molecular detection of disseminated tumor cells in the peripheral blood of patients with gastric cancer: evaluation of their prognostic significance. Dis Markers. 2006;22(3):103–109.PubMedGoogle Scholar
  214. 214.
    Yie SM, Lou B, Ye SR, et al. Detection of survivin-expressing circulating cancer cells (CCCs) in peripheral blood of patients with gastric and colorectal cancer reveals high risks of relapse. Ann Surg Oncol. 2008;15(11):3073–3082.PubMedCrossRefGoogle Scholar
  215. 215.
    Zhou H, Guo JM, Lou YR, et al. Detection of circulating tumor cells in peripheral blood from patients with gastric cancer using microRNA as a marker. J Mol Med. 2010;88(7):709–717.PubMedCrossRefGoogle Scholar
  216. 216.
    Kang GH, Lee S, Cho NY, et al. DNA methylation profiles of gastric carcinoma characterized by quantitative DNA methylation analysis. Lab Invest. 2008;88(2):161–170.PubMedCrossRefGoogle Scholar
  217. 217.
    Bernal C, Aguayo F, Villarroel C, et al. Reprimo as a potential biomarker for early detection in gastric cancer. Clin Cancer Res. 2008;14(19):6264–6269.PubMedCrossRefGoogle Scholar
  218. 218.
    Ohki R, Nemoto J, Murasawa H, et al. Reprimo, a new candidate mediator of the p53-mediated cell cycle arrest at the G2 phase. J Biol Chem. 2000;275(30):22627–22630.PubMedCrossRefGoogle Scholar
  219. 219.
    Luo J, Zhu Y, Yang G, Gong L, Wang B, Liu H. Loss of Reprimo and S100A2 expression in human gastric adenocarcinoma. Diagn Cytopathol. 2011;39:752–7.PubMedCrossRefGoogle Scholar
  220. 220.
    Hamilton JP, Sato F, Greenwald BD, et al. Promoter methylation and response to chemotherapy and radiation in esophageal cancer. Clin Gastroenterol Hepatol. 2006;4(6):701–708.PubMedCrossRefGoogle Scholar
  221. 221.
    Hamilton JP, Sato F, Jin Z, et al. Reprimo methylation is a potential biomarker of Barrett’s-Associated esophageal neoplastic progression. Clin Cancer Res. 2006;12(22):6637–6642.PubMedCrossRefGoogle Scholar
  222. 222.
    Tsujiura M, Ichikawa D, Komatsu S, et al. Circulating microRNAs in plasma of patients with gastric cancers. Br J Cancer. 2010;102(7):1174–1179.PubMedCrossRefGoogle Scholar
  223. 223.
    Sergeant G, Penninckx F, Topal B. Quantitative RT-PCR detection of colorectal tumor cells in peripheral blood–a systematic review. J Surg Res. 2008;150(1):144–152.PubMedCrossRefGoogle Scholar
  224. 224.
    Rahbari NN, Aigner M, Thorlund K, et al. Meta-analysis shows that detection of circulating tumor cells indicates poor prognosis in patients with colorectal cancer. Gastroenterology. 2010;138(5): 1714–1726.PubMedCrossRefGoogle Scholar
  225. 225.
    Lagoudianakis EE, Kataki A, Manouras A, et al. Detection of epithelial cells by RT-PCR targeting CEA, CK20, and TEM-8 in colorectal carcinoma patients using OncoQuick density gradient centrifugation system. J Surg Res. 2009;155(2):183–190.PubMedCrossRefGoogle Scholar
  226. 226.
    Garrigos N, Gallego J, Guillen-Ponce C, et al. Circulating tumour cell analysis as an early marker for relapse in stage II and III colorectal cancer patients: a pilot study. Clin Transl Oncol. 2010; 12(2):142–147.PubMedCrossRefGoogle Scholar
  227. 227.
    Konigsberg R, Gneist M, Jahn-Kuch D, et al. Circulating tumor cells in metastatic colorectal cancer: efficacy and feasibility of different enrichment methods. Cancer Lett. 2010;293(1):117–123.PubMedCrossRefGoogle Scholar
  228. 228.
    Yang MJ, Chiu HH, Wang HM, et al. Enhancing detection of circulating tumor cells with activating KRAS oncogene in patients with colorectal cancer by weighted chemiluminescent membrane array method. Ann Surg Oncol. 2010;17(2):624–633.PubMedCrossRefGoogle Scholar
  229. 229.
    Miller MC, Doyle GV, Terstappen LWMM. Significance of circulating tumor cells detected by the cell search system in patients with metastatic breast colorectal and prostate cancer. J Oncol. 2010;2010:1–9.CrossRefGoogle Scholar
  230. 230.
    Harless WW. Revisiting perioperative chemotherapy: the critical importance of targeting residual cancer prior to wound healing. BMC Cancer. 2009;9:118.PubMedCrossRefGoogle Scholar
  231. 230.
    Wind J, Tuynman JB, Tibbe AGJ, et al. Circulating tumour cells during laparoscopic and open surgery for primary colonic cancer in portal and peripheral blood. Eur J Surg Oncol. 2009;35(9):942–950.PubMedCrossRefGoogle Scholar
  232. 232.
    Peach G, Kim C, Zacharakis E, Purkayastha S, Ziprin P. Prognostic significance of circulating tumour cells following surgical resection of colorectal cancers: a systematic review. Br J Cancer. 2010;102(9):1327–1334.PubMedCrossRefGoogle Scholar
  233. 233.
    Kim MS, Lee J, Sidransky D. DNA methylation markers in ­colorectal cancer. Cancer Metastasis Rev. 2010;29(1):181–206.PubMedCrossRefGoogle Scholar
  234. 234.
    Zou H-Z, Yu B-M, Wang Z-W, et al. Detection of aberrant p16 methylation in the serum of colorectal cancer patients. Clin Cancer Res. 2002;8(1):188–191.PubMedGoogle Scholar
  235. 235.
    Nakayama H, Hibi K, Taguchi M, et al. Molecular detection of p16 promoter methylation in the serum of colorectal cancer patients. Cancer Lett. 2002;188(1–2):115–119.PubMedCrossRefGoogle Scholar
  236. 236.
    Nakayama G, Hibi K, Kodera Y, Koike M, Fujiwara M, Nakao A. P16 methylation in serum as a potential marker for the malignancy of colorectal carcinoma. Anticancer Res. 2007;27(5A):3367–3370.PubMedGoogle Scholar
  237. 237.
    Ebert MPA, Mooney SH, Tonnes-Priddy L, et al. Hypermethylation of the TPEF/HPP1 gene in primary and metastatic colorectal cancers. Neoplasia. 2005;7(8):771–778.PubMedCrossRefGoogle Scholar
  238. 238.
    Sabbioni S, Miotto E, Veronese A, et al. Multigene methylation analysis of gastrointestinal tumors: TPEF emerges as a frequent tumor-specific aberrantly methylated marker that can be detected in peripheral blood. Mol Diagn. 2003;7(3–4):201–207.PubMedCrossRefGoogle Scholar
  239. 239.
    Wallner M, Herbst A, Behrens A, et al. Methylation of serum DNA is an independent prognostic marker in colorectal cancer. Clin Cancer Res. 2006;12(24):7347–7352.PubMedCrossRefGoogle Scholar
  240. 240.
    Model F, Osborn N, Ahlquist D, et al. Identification and validation of colorectal neoplasia-specific methylation markers for accurate classification of disease. Mol Cancer Res. 2007;5(2):153–163.PubMedCrossRefGoogle Scholar
  241. 241.
    Lofton-Day C, Model F, Devos T, et al. DNA methylation biomarkers for blood-based colorectal cancer screening. Clin Chem. 2008;54(2):414–423.PubMedCrossRefGoogle Scholar
  242. 242.
    Tänzer M, Balluff B, Distler J, et al. Performance of epigenetic markers SEPT9 and ALX4 in plasma for detection of colorectal precancerous lesions. PLoS ONE. 2010;5(2):e9061.PubMedCrossRefGoogle Scholar
  243. 243.
    Zou H, Harrington JJ, Shire AM, et al. Highly methylated genes in colorectal neoplasia: implications for screening. Cancer Epidemiol Biomarkers Prev. 2007;16(12):2686–2696.PubMedCrossRefGoogle Scholar
  244. 244.
    He Q, Chen H-Y, Bai E-Q, et al. Development of a multiplex MethyLight assay for the detection of multigene methylation in human colorectal cancer. Cancer Genet Cytogenet. 2010;202(1):1–10.PubMedCrossRefGoogle Scholar
  245. 245.
    Chen W-D, Han ZJ, Skoletsky J, et al. Detection in fecal DNA of colon cancer-specific methylation of the nonexpressed vimentin gene. JNCI J Natl Cancer Inst. 2005;97(15):1124–1132.CrossRefGoogle Scholar
  246. 246.
    Shirahata A, Sakata M, Sakuraba K, et al. Vimentin methylation as a marker for advanced colorectal carcinoma. Anticancer Res. 2009;29(1):279–281.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of PathologyThe University of ChicagoChicagoUSA

Personalised recommendations