Molecular Mechanisms of Tumor Metastasis

  • Andrew D. Rhim
  • Davendra Sohal
  • Hiroshi NakagawaEmail author
Part of the Molecular Pathology Library book series (MPLB, volume 7)


Metastatic disease is the major cause of cancer-related death. Treatment of advanced metastatic disease is nonexistent in the vast majority of tumor cases. Even as the study of metastasis has exploded over the past few years, many questions still remain. In this chapter, we will provide the groundwork for a general understanding of the biology of metastasis with special emphasis on tumor microenvironment and cell heterogeneity; genetic changes in tumor cells associated with metastasis; importance of epithelial to mesenchymal transition in metastasis; senescence and cancer stem cell theory; circulating tumor cells and timing of dissemination and metastasis. We also discuss colorectal and pancreatic carcinomas, two specific cancers of the digestive organs, regarding mechanisms, detection, models, and therapeutic targeting of invasion and metastasis.


Vascular Endothelial Growth Factor Epidermal Growth Factor Receptor Pancreatic Cancer Esophageal Squamous Cell Carcinoma Circulate Tumor Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.PubMedCrossRefGoogle Scholar
  2. 2.
    Paget S. Paget, Stephen paper reproduced from the Lancet, 1889. Cancer Metastasis Rev. 1989;8(2):98–101.PubMedGoogle Scholar
  3. 3.
    McCluggage WG, Wilkinson N. Metastatic neoplasms involving the ovary: a review with an emphasis on morphological and immunohistochemical features. Histopathology. 2005;47(3):231–47.PubMedCrossRefGoogle Scholar
  4. 4.
    Glickman JN. Section II: pathology and pathologic staging of esophageal cancer. Semin Thorac Cardiovasc Surg. 2003;15(2):167–79.PubMedCrossRefGoogle Scholar
  5. 5.
    Jass JR, Barker M, Fraser L, et al. APC mutation and tumour budding in colorectal cancer. J Clin Pathol. 2003;56(1):69–73.PubMedCrossRefGoogle Scholar
  6. 6.
    Ono M, Sakamoto M, Ino Y, et al. Cancer cell morphology at the invasive front and expression of cell adhesion-related carbohydrate in the primary lesion of patients with colorectal carcinoma with liver metastasis. Cancer. 1996;78(6):1179–86.PubMedCrossRefGoogle Scholar
  7. 7.
    Chiang AC, Massague J. Molecular basis of metastasis. N Engl J Med. 2008;359(26):2814–23.PubMedCrossRefGoogle Scholar
  8. 8.
    Nguyen DX, Bos PD, Massague J. Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer. 2009;9(4):274–84.PubMedCrossRefGoogle Scholar
  9. 9.
    Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61(5):759–67.PubMedCrossRefGoogle Scholar
  10. 10.
    Singh A, Greninger P, Rhodes D, et al. A gene expression signature associated with “K-Ras addiction” reveals regulators of EMT and tumor cell survival. Cancer Cell. 2009;15(6):489–500.PubMedCrossRefGoogle Scholar
  11. 11.
    Nakahara M, Isozaki K, Hirota S, et al. A novel gain-of-function mutation of c-kit gene in gastrointestinal stromal tumors. Gastroenterology. 1998;115(5):1090–5.PubMedCrossRefGoogle Scholar
  12. 12.
    Pelengaris S, Khan M, Evan GI. Suppression of Myc-induced apoptosis in beta cells exposes multiple oncogenic properties of Myc and triggers carcinogenic progression. Cell. 2002;109(3):321–34.PubMedCrossRefGoogle Scholar
  13. 13.
    Peifer M. Beta-catenin as oncogene: the smoking gun. Science. 1997;275(5307):1752–3.PubMedCrossRefGoogle Scholar
  14. 14.
    Wang S, Liu Z, Wang L, Zhang X. NF-kappaB signaling pathway, inflammation and colorectal cancer. Cell Mol Immunol. 2009;6(5):327–34.PubMedCrossRefGoogle Scholar
  15. 15.
    Levental KR, Yu H, Kass L, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell. 2009;139(5):891–906.PubMedCrossRefGoogle Scholar
  16. 16.
    Erler JT, Bennewith KL, Cox TR, et al. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell. 2009;15(1):35–44.PubMedCrossRefGoogle Scholar
  17. 17.
    Kang Y, Siegel PM, Shu W, et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell. 2003;3(6):537–49.PubMedCrossRefGoogle Scholar
  18. 18.
    Su J, You P, Li WL, et al. The existence of multipotent stem cells with epithelial-mesenchymal transition features in the human liver bud. Int J Biochem Cell Biol. 2010;42(12):2047–55.PubMedCrossRefGoogle Scholar
  19. 19.
    Rukstalis JM, Habener JF. Snail2, a mediator of epithelial-mesenchymal transitions, expressed in progenitor cells of the developing endocrine pancreas. Gene Expr Patterns. 2007;7(4):471–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Qian X, Karpova T, Sheppard AM, McNally J, Lowy DR. E-cadherin-mediated adhesion inhibits ligand-dependent activation of diverse receptor tyrosine kinases. EMBO J. 2004;23(8):1739–48.PubMedCrossRefGoogle Scholar
  21. 21.
    Guo W, Giancotti FG. Integrin signalling during tumour progression. Nat Rev Mol Cell Biol. 2004;5(10):816–26.PubMedCrossRefGoogle Scholar
  22. 22.
    Tarin D, Thompson EW, Newgreen DF. The fallacy of epithelial mesenchymal transition in neoplasia. Cancer Res. 2005;65(14):5996–6000.PubMedCrossRefGoogle Scholar
  23. 23.
    Trimboli AJ, Fukino K, de Bruin A, et al. Direct evidence for epithelial-mesenchymal transitions in breast cancer. Cancer Res. 2008;68(3):937–45.PubMedCrossRefGoogle Scholar
  24. 24.
    Bellovin DI, Bates RC, Muzikansky A, Rimm DL, Mercurio AM. Altered localization of p120 catenin during epithelial to mesenchymal transition of colon carcinoma is prognostic for aggressive disease. Cancer Res. 2005;65(23):10938–45.PubMedCrossRefGoogle Scholar
  25. 25.
    Kim MA, Lee HS, Lee HE, Kim JH, Yang HK, Kim WH. Prognostic importance of epithelial-mesenchymal transition-related protein expression in gastric carcinoma. Histopathology. 2009;54(4):442–51.PubMedCrossRefGoogle Scholar
  26. 26.
    Sun T, Zhao N, Zhao XL, et al. Expression and functional significance of Twist1 in hepatocellular carcinoma: its role in vasculogenic mimicry. Hepatology. 2010;51(2):545–56.PubMedCrossRefGoogle Scholar
  27. 27.
    Yang MH, Chen CL, Chau GY, et al. Comprehensive analysis of the independent effect of twist and snail in promoting metastasis of hepatocellular carcinoma. Hepatology. 2009;50(5):1464–74.PubMedCrossRefGoogle Scholar
  28. 28.
    Ohta H, Aoyagi K, Fukaya M, et al. Cross talk between hedgehog and epithelial-mesenchymal transition pathways in gastric pit cells and in diffuse-type gastric cancers. Br J Cancer. 2009;100(2):389–98.PubMedCrossRefGoogle Scholar
  29. 29.
    Isohata N, Aoyagi K, Mabuchi T, et al. Hedgehog and epithelial-mesenchymal transition signaling in normal and malignant epithelial cells of the esophagus. Int J Cancer. 2009;125(5):1212–21.PubMedCrossRefGoogle Scholar
  30. 30.
    Bates RC, Bellovin DI, Brown C, et al. Transcriptional activation of integrin beta6 during the epithelial-mesenchymal transition defines a novel prognostic indicator of aggressive colon carcinoma. J Clin Invest. 2005;115(2):339–47.PubMedGoogle Scholar
  31. 31.
    Yu J, Ohuchida K, Mizumoto K, et al. MicroRNA, hsa-miR-200c, is an independent prognostic factor in pancreatic cancer and its upregulation inhibits pancreatic cancer invasion but increases cell proliferation. Mol Cancer. 2010;9:169.PubMedCrossRefGoogle Scholar
  32. 32.
    Wellner U, Schubert J, Burk UC, et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol. 2009;11(12):1487–95.PubMedCrossRefGoogle Scholar
  33. 33.
    Schwock J, Bradley G, Ho JC, et al. SNAI1 expression and the mesenchymal phenotype: an immunohistochemical study performed on 46 cases of oral squamous cell carcinoma. BMC Clin Pathol. 2010;10:1.PubMedCrossRefGoogle Scholar
  34. 34.
    Shioiri M, Shida T, Koda K, et al. Slug expression is an independent prognostic parameter for poor survival in colorectal carcinoma patients. Br J Cancer. 2006;94(12):1816–22.PubMedCrossRefGoogle Scholar
  35. 35.
    Jethwa P, Naqvi M, Hardy RG, et al. Overexpression of Slug is associated with malignant progression of esophageal adenocarcinoma. World J Gastroenterol. 2008;14(7):1044–52.PubMedCrossRefGoogle Scholar
  36. 36.
    Castro Alves C, Rosivatz E, Schott C, et al. Slug is overexpressed in gastric carcinomas and may act synergistically with SIP1 and Snail in the down-regulation of E-cadherin. J Pathol. 2007;211(5):507–15.PubMedCrossRefGoogle Scholar
  37. 37.
    Natsugoe S, Uchikado Y, Okumura H, et al. Snail plays a key role in E-cadherin-preserved esophageal squamous cell carcinoma. Oncol Rep. 2007;17(3):517–23.PubMedGoogle Scholar
  38. 38.
    Usami Y, Satake S, Nakayama F, et al. Snail-associated epithelial-mesenchymal transition promotes oesophageal squamous cell carcinoma motility and progression. J Pathol. 2008;215(3):330–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Sasaki K, Natsugoe S, Ishigami S, et al. Significance of Twist expression and its association with E-cadherin in esophageal squamous cell carcinoma. J Exp Clin Cancer Res. 2009;28:158.PubMedCrossRefGoogle Scholar
  40. 40.
    Ru GQ, Wang HJ, Xu WJ, Zhao ZS. Upregulation of twist in gastric carcinoma associated with tumor invasion and poor prognosis. Pathol Oncol Res. 2010;17:341–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Cates JM, Byrd RH, Fohn LE, Tatsas AD, Washington MK, Black CC. Epithelial-mesenchymal transition markers in pancreatic ductal adenocarcinoma. Pancreas. 2009;38(1):e1–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Jin H, Morohashi S, Sato F, et al. Vimentin expression of esophageal squamous cell carcinoma and its aggressive potential for lymph node metastasis. Biomed Res. 2010;31(2):105–12.PubMedCrossRefGoogle Scholar
  43. 43.
    Javle MM, Gibbs JF, Iwata KK, et al. Epithelial-mesenchymal transition (EMT) and activated extracellular signal-regulated kinase (p-Erk) in surgically resected pancreatic cancer. Ann Surg Oncol. 2007;14(12):3527–33.PubMedCrossRefGoogle Scholar
  44. 44.
    van Roy F, Berx G. The cell–cell adhesion molecule E-cadherin. Cell Mol Life Sci. 2008;65(23):3756–88.PubMedCrossRefGoogle Scholar
  45. 45.
    Becker KF, Atkinson MJ, Reich U, et al. Exon skipping in the E-cadherin gene transcript in metastatic human gastric carcinomas. Hum Mol Genet. 1993;2(6):803–4.PubMedCrossRefGoogle Scholar
  46. 46.
    Machado JC, Oliveira C, Carvalho R, et al. E-cadherin gene (CDH1) promoter methylation as the second hit in sporadic diffuse gastric carcinoma. Oncogene. 2001;20(12):1525–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Oliveira C, Seruca R, Carneiro F. Genetics, pathology, and clinics of familial gastric cancer. Int J Surg Pathol. 2006;14(1):21–33.PubMedCrossRefGoogle Scholar
  48. 48.
    Guilford P, Hopkins J, Harraway J, et al. E-cadherin germline mutations in familial gastric cancer. Nature. 1998;392(6674):402–5.PubMedCrossRefGoogle Scholar
  49. 49.
    Nass SJ, Herman JG, Gabrielson E, et al. Aberrant methylation of the estrogen receptor and E-cadherin 5 CpG islands increases with malignant progression in human breast cancer. Cancer Res. 2000;60(16):4346–8.PubMedGoogle Scholar
  50. 50.
    Kanai Y, Ushijima S, Tsuda H, Sakamoto M, Hirohashi S. Aberrant DNA methylation precedes loss of heterozygosity on chromosome 16 in chronic hepatitis and liver cirrhosis. Cancer Lett. 2000;148(1):73–80.PubMedCrossRefGoogle Scholar
  51. 51.
    Takeno S, Noguchi T, Fumoto S, Kimura Y, Shibata T, Kawahara K. E-cadherin expression in patients with esophageal squamous cell carcinoma: promoter hypermethylation, Snail overexpression, and clinicopathologic implications. Am J Clin Pathol. 2004;122(1):78–84.PubMedCrossRefGoogle Scholar
  52. 52.
    Koizume S, Tachibana K, Sekiya T, Hirohashi S, Shiraishi M. Heterogeneity in the modification and involvement of chromatin components of the CpG island of the silenced human CDH1 gene in cancer cells. Nucleic Acids Res. 2002;30(21):4770–80.PubMedCrossRefGoogle Scholar
  53. 53.
    Perl AK, Wilgenbus P, Dahl U, Semb H, Christofori G. A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature. 1998;392(6672):190–3.PubMedCrossRefGoogle Scholar
  54. 54.
    Derksen PW, Liu X, Saridin F, et al. Somatic inactivation of E-cadherin and p53 in mice leads to metastatic lobular mammary carcinoma through induction of anoikis resistance and angiogenesis. Cancer Cell. 2006;10(5):437–49.PubMedCrossRefGoogle Scholar
  55. 55.
    Onder TT, Gupta PB, Mani SA, Yang J, Lander ES, Weinberg RA. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res. 2008;68(10):3645–54.PubMedCrossRefGoogle Scholar
  56. 56.
    Hazan RB, Qiao R, Keren R, Badano I, Suyama K. Cadherin switch in tumor progression. Ann N Y Acad Sci. 2004;1014:155–63.PubMedCrossRefGoogle Scholar
  57. 57.
    Wheelock MJ, Shintani Y, Maeda M, Fukumoto Y, Johnson KR. Cadherin switching. J Cell Sci. 2008;121(Pt 6):727–35.PubMedCrossRefGoogle Scholar
  58. 58.
    Islam S, Carey TE, Wolf GT, Wheelock MJ, Johnson KR. Expression of N-cadherin by human squamous carcinoma cells induces a scattered fibroblastic phenotype with disrupted cell–cell adhesion. J Cell Biol. 1996;135(6 Pt 1):1643–54.PubMedCrossRefGoogle Scholar
  59. 59.
    Nieman MT, Prudoff RS, Johnson KR, Wheelock MJ. N-cadherin promotes motility in human breast cancer cells regardless of their E-cadherin expression. J Cell Biol. 1999;147(3):631–44.PubMedCrossRefGoogle Scholar
  60. 60.
    Hazan RB, Phillips GR, Qiao RF, Norton L, Aaronson SA. Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion, and metastasis. J Cell Biol. 2000;148(4):779–90.PubMedCrossRefGoogle Scholar
  61. 61.
    Hulit J, Suyama K, Chung S, et al. N-cadherin signaling potentiates mammary tumor metastasis via enhanced extracellular signal-regulated kinase activation. Cancer Res. 2007;67(7):3106–16.PubMedCrossRefGoogle Scholar
  62. 62.
    Deramaudt TB, Takaoka M, Upadhyay R, et al. N-cadherin and keratinocyte growth factor receptor mediate the functional interplay between Ki-RASG12V and p53V143A in promoting pancreatic cell migration, invasion, and tissue architecture disruption. Mol Cell Biol. 2006;26(11):4185–200.PubMedCrossRefGoogle Scholar
  63. 63.
    Li G, Satyamoorthy K, Herlyn M. N-cadherin-mediated intercellular interactions promote survival and migration of melanoma cells. Cancer Res. 2001;61(9):3819–25.PubMedGoogle Scholar
  64. 64.
    Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871–90.PubMedCrossRefGoogle Scholar
  65. 65.
    Zavadil J, Bottinger EP. TGF-beta and epithelial-to-mesenchymal transitions. Oncogene. 2005;24(37):5764–74.PubMedCrossRefGoogle Scholar
  66. 66.
    Cui W, Fowlis DJ, Bryson S, et al. TGFbeta1 inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell. 1996;86(4):531–42.PubMedCrossRefGoogle Scholar
  67. 67.
    Miettinen PJ, Ebner R, Lopez AR, Derynck R. TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J Cell Biol. 1994;127(6 Pt 2):2021–36.PubMedCrossRefGoogle Scholar
  68. 68.
    Brown KA, Aakre ME, Gorska AE, et al. Induction by transforming growth factor-beta1 of epithelial to mesenchymal transition is a rare event in vitro. Breast Cancer Res. 2004;6(3):R215–31.PubMedCrossRefGoogle Scholar
  69. 69.
    Pino MS, Kikuchi H, Zeng M, et al. Epithelial to mesenchymal transition is impaired in colon cancer cells with microsatellite instability. Gastroenterology. 2010;138(4):1406–17.PubMedCrossRefGoogle Scholar
  70. 70.
    Postigo AA, Depp JL, Taylor JJ, Kroll KL. Regulation of Smad signaling through a differential recruitment of coactivators and corepressors by ZEB proteins. EMBO J. 2003;22(10):2453–62.PubMedCrossRefGoogle Scholar
  71. 71.
    Postigo AA. Opposing functions of ZEB proteins in the regulation of the TGFbeta/BMP signaling pathway. EMBO J. 2003;22(10):2443–52.PubMedCrossRefGoogle Scholar
  72. 72.
    Yook JI, Li XY, Ota I, Fearon ER, Weiss SJ. Wnt-dependent regulation of the E-cadherin repressor snail. J Biol Chem. 2005;280(12):11740–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Wu Y, Deng J, Rychahou PG, Qiu S, Evers BM, Zhou BP. Stabilization of snail by NF-kappaB is required for inflammation-induced cell migration and invasion. Cancer Cell. 2009;15(5):416–28.PubMedCrossRefGoogle Scholar
  74. 74.
    Schietke R, Warnecke C, Wacker I, et al. The lysyl oxidases LOX and LOXL2 are necessary and sufficient to repress E-cadherin in hypoxia: insights into cellular transformation processes mediated by HIF-1. J Biol Chem. 2010;285(9):6658–69.PubMedCrossRefGoogle Scholar
  75. 75.
    Gustafsson MV, Zheng X, Pereira T, et al. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell. 2005;9(5):617–28.PubMedCrossRefGoogle Scholar
  76. 76.
    Sahlgren C, Gustafsson MV, Jin S, Poellinger L, Lendahl U. Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proc Natl Acad Sci USA. 2008;105(17):6392–7.PubMedCrossRefGoogle Scholar
  77. 77.
    Burk U, Schubert J, Wellner U, et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 2008;9(6):582–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Gregory PA, Bert AG, Paterson EL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008;10(5):593–601.PubMedCrossRefGoogle Scholar
  79. 79.
    Korpal M, Lee ES, Hu G, Kang Y. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem. 2008;283(22):14910–4.PubMedCrossRefGoogle Scholar
  80. 80.
    Park SM, Gaur AB, Lengyel E, Peter ME. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008;22(7):894–907.PubMedCrossRefGoogle Scholar
  81. 81.
    Brabletz S, Bajdak K, Meidhof S, et al. The ZEB1/miR-200 feedback loop controls Notch signalling in cancer cells. EMBO J. 2011;30(4):770–82.PubMedCrossRefGoogle Scholar
  82. 82.
    Vallejo DM, Caparros E, Dominguez M. Targeting Notch signalling by the conserved miR-8/200 microRNA family in development and cancer cells. EMBO J. 2011;30(4):756–69.PubMedCrossRefGoogle Scholar
  83. 83.
    Mani SA, Guo W, Liao MJ, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133(4):704–15.PubMedCrossRefGoogle Scholar
  84. 84.
    Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730–7.PubMedCrossRefGoogle Scholar
  85. 85.
    Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells. Nature. 2004;432(7015):396–401.PubMedCrossRefGoogle Scholar
  86. 86.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 2003;100(7):3983–8.PubMedCrossRefGoogle Scholar
  87. 87.
    Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005;65(23):10946–51.PubMedCrossRefGoogle Scholar
  88. 88.
    Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445(7123):111–5.PubMedCrossRefGoogle Scholar
  89. 89.
    Simeone DM. Pancreatic cancer stem cells: implications for the treatment of pancreatic cancer. Clin Cancer Res. 2008;14(18):5646–8.PubMedCrossRefGoogle Scholar
  90. 90.
    Hirschmann-Jax C, Foster AE, Wulf GG, et al. A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA. 2004;101(39):14228–33.PubMedCrossRefGoogle Scholar
  91. 91.
    Ginestier C, Hur MH, Charafe-Jauffret E, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1(5):555–67.PubMedCrossRefGoogle Scholar
  92. 92.
    Wang Z, Banerjee S, Li Y, Rahman KM, Zhang Y, Sarkar FH. Down-regulation of notch-1 inhibits invasion by inactivation of nuclear factor-kappaB, vascular endothelial growth factor, and matrix metalloproteinase-9 in pancreatic cancer cells. Cancer Res. 2006;66(5):2778–84.PubMedCrossRefGoogle Scholar
  93. 93.
    Zhang P, Yang Y, Zweidler-McKay PA, Hughes DP. Critical role of notch signaling in osteosarcoma invasion and metastasis. Clin Cancer Res. 2008;14(10):2962–9.PubMedCrossRefGoogle Scholar
  94. 94.
    Pannuti A, Foreman K, Rizzo P, et al. Targeting notch to target cancer stem cells. Clin Cancer Res. 2010;16(12):3141–52.PubMedCrossRefGoogle Scholar
  95. 95.
    Wang Z, Li Y, Ahmad A, et al. Targeting notch signaling pathway to overcome drug resistance for cancer therapy. Biochim Biophys Acta. 2010;1806:258–67.PubMedGoogle Scholar
  96. 96.
    Wang Z, Li Y, Kong D, et al. Acquisition of epithelial-mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the notch signaling pathway. Cancer Res. 2009;69(6):2400–7.PubMedCrossRefGoogle Scholar
  97. 97.
    Ansieau S, Bastid J, Doreau A, et al. Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell. 2008;14(1):79–89.PubMedCrossRefGoogle Scholar
  98. 98.
    Ansieau S, Hinkal G, Thomas C, Bastid J, Puisieux A. Early origin of cancer metastases: dissemination and evolution of premalignant cells. Cell Cycle. 2008;7(23):3659–63.PubMedCrossRefGoogle Scholar
  99. 99.
    Pantel K, Brakenhoff RH, Brandt B. Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat Rev Cancer. 2008;8(5):329–40.PubMedCrossRefGoogle Scholar
  100. 100.
    Cristofanilli M, Budd GT, Ellis MJ, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med. 2004;351(8):781–91.PubMedCrossRefGoogle Scholar
  101. 101.
    Sastre J, Maestro ML, Puente J, et al. Circulating tumor cells in colorectal cancer: correlation with clinical and pathological variables. Ann Oncol. 2008;19(5):935–8.PubMedCrossRefGoogle Scholar
  102. 102.
    Stott SL, Hsu CH, Tsukrov DI, et al. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc Natl Acad Sci USA. 2011;107(43):18392–7.CrossRefGoogle Scholar
  103. 103.
    Nagrath S, Sequist LV, Maheswaran S, et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature. 2007;450(7173):1235–9.PubMedCrossRefGoogle Scholar
  104. 104.
    Hiraiwa K, Takeuchi H, Hasegawa H, et al. Clinical significance of circulating tumor cells in blood from patients with gastrointestinal cancers. Ann Surg Oncol. 2008;15(11):3092–100.PubMedCrossRefGoogle Scholar
  105. 105.
    Maheswaran S, Haber DA. Circulating tumor cells: a window into cancer biology and metastasis. Curr Opin Genet Dev. 2010;20(1):96–9.PubMedCrossRefGoogle Scholar
  106. 106.
    Cairns J. Mutation selection and the natural history of cancer. Nature. 1975;255(5505):197–200.PubMedCrossRefGoogle Scholar
  107. 107.
    Klein G. Foulds’ dangerous idea revisited: the multistep development of tumors 40 years later. Adv Cancer Res. 1998;72:1–23.PubMedCrossRefGoogle Scholar
  108. 108.
    Olivier M, Langerod A, Carrieri P, et al. The clinical value of somatic TP53 gene mutations in 1,794 patients with breast cancer. Clin Cancer Res. 2006;12(4):1157–67.PubMedCrossRefGoogle Scholar
  109. 109.
    Engel J, Eckel R, Kerr J, et al. The process of metastasisation for breast cancer. Eur J Cancer. 2003;39(12):1794–806.PubMedCrossRefGoogle Scholar
  110. 110.
    Hidalgo M. Pancreatic cancer. N Engl J Med. 2010;362(17):1605–17.PubMedCrossRefGoogle Scholar
  111. 111.
    Abbruzzese JL, Abbruzzese MC, Hess KR, Raber MN, Lenzi R, Frost P. Unknown primary carcinoma: natural history and prognostic factors in 657 consecutive patients. J Clin Oncol. 1994;12(6):1272–80.PubMedGoogle Scholar
  112. 112.
    Klein CA. Parallel progression of primary tumours and metastases. Nat Rev Cancer. 2009;9(4):302–12.PubMedCrossRefGoogle Scholar
  113. 113.
    Bolin S, Nilsson E, Sjodahl R. Carcinoma of the colon and rectum–growth rate. Ann Surg. 1983;198(2):151–8.PubMedCrossRefGoogle Scholar
  114. 114.
    Spratt JS, Meyer JS, Spratt JA. Rates of growth of human neoplasms: Part II. J Surg Oncol. 1996;61(1):68–83.PubMedCrossRefGoogle Scholar
  115. 115.
    Finlay IG, Meek D, Brunton F, McArdle CS. Growth rate of hepatic metastases in colorectal carcinoma. Br J Surg. 1988;75(7):641–4.PubMedCrossRefGoogle Scholar
  116. 116.
    Spratt JS Jr, Spratt TL. Rates of growth of pulmonary metastases and host survival. Ann Surg. 1964;159:161–71.PubMedCrossRefGoogle Scholar
  117. 117.
    Peer PG, van Dijck JA, Hendriks JH, Holland R, Verbeek AL. Age-dependent growth rate of primary breast cancer. Cancer. 1993;71(11):3547–51.PubMedCrossRefGoogle Scholar
  118. 118.
    Kusama S, Spratt JS Jr, Donegan WL, Watson FR, Cunningham C. The cross rates of growth of human mammary carcinoma. Cancer. 1972;30(2):594–9.PubMedCrossRefGoogle Scholar
  119. 119.
    Okimura A, Hirano H, Nishigami T, et al. Immunohistochemical analyses of E-cadherin, beta-catenin, CD44s, and CD44v6 expressions, and Ki-67 labeling index in intraductal papillary mucinous neoplasms of the pancreas and associated invasive carcinomas. Med Mol Morphol. 2009;42(4):222–9.PubMedCrossRefGoogle Scholar
  120. 120.
    Yachida S, Jones S, Bozic I, et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature. 2010;467(7319):1114–7.PubMedCrossRefGoogle Scholar
  121. 121.
    Pence JC, Kizilbash AM, Kerns BJ, Marks JR, Iglehart JD. Proliferation index in various stages of breast cancer determined by Ki-67 immunostaining. J Surg Oncol. 1991;48(1):11–20.PubMedCrossRefGoogle Scholar
  122. 122.
    Cheng L, Pisansky TM, Sebo TJ, et al. Cell proliferation in prostate cancer patients with lymph node metastasis: a marker for progression. Clin Cancer Res. 1999;5(10):2820–3.PubMedGoogle Scholar
  123. 123.
    Agarwal B, Correa AM, Ho L. Survival in pancreatic carcinoma based on tumor size. Pancreas. 2008;36(1):e15–20.PubMedCrossRefGoogle Scholar
  124. 124.
    Frohlich A, Diederichs CG, Staib L, Vogel J, Beger HG, Reske SN. Detection of liver metastases from pancreatic cancer using FDG PET. J Nucl Med. 1999;40(2):250–5.PubMedGoogle Scholar
  125. 125.
    Sanger N, Effenberger KE, Riethdorf S, et al. Disseminated tumor cells in the bone marrow of patients with ductal carcinoma in situ. Int J Cancer. 2011;129:2522–6.PubMedCrossRefGoogle Scholar
  126. 126.
    Husemann Y, Geigl JB, Schubert F, et al. Systemic spread is an early step in breast cancer. Cancer Cell. 2008;13(1):58–68.PubMedCrossRefGoogle Scholar
  127. 127.
    Alix-Panabieres C, Riethdorf S, Pantel K. Circulating tumor cells and bone marrow micrometastasis. Clin Cancer Res. 2008;14(16):5013–21.PubMedCrossRefGoogle Scholar
  128. 128.
    Helo P, Cronin AM, Danila DC, et al. Circulating prostate tumor cells detected by reverse transcription-PCR in men with localized or castration-refractory prostate cancer: concordance with Cell Search assay and association with bone metastases and with survival. Clin Chem. 2009;55(4):765–73.PubMedCrossRefGoogle Scholar
  129. 129.
    Parmigiani G, Boca S, Lin J, Kinzler KW, Velculescu V, Vogelstein B. Design and analysis issues in genome-wide somatic mutation studies of cancer. Genomics. 2009;93(1):17–21.PubMedCrossRefGoogle Scholar
  130. 130.
    Campbell PJ, Yachida S, Mudie LJ, et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature. 2010;467(7319):1109–13.PubMedCrossRefGoogle Scholar
  131. 131.
    Podsypanina K, Du YC, Jechlinger M, Beverly LJ, Hambardzumyan D, Varmus H. Seeding and propagation of untransformed mouse mammary cells in the lung. Science. 2008;321(5897):1841–4.PubMedCrossRefGoogle Scholar
  132. 132.
    Edge S, Byrd DR, Compton CC, et al. AJCC Cancer Staging Manual. 7th ed. New York: Springer; 2010.Google Scholar
  133. 133.
    Royston D, Jackson DG. Mechanisms of lymphatic metastasis in human colorectal adenocarcinoma. J Pathol. 2009;217(5):608–19.PubMedCrossRefGoogle Scholar
  134. 134.
    Rudmik LR, Magliocco AM. Molecular mechanisms of hepatic metastasis in colorectal cancer. J Surg Oncol. 2005;92(4):347–59.PubMedCrossRefGoogle Scholar
  135. 135.
    Zucker S, Vacirca J. Role of matrix metalloproteinases (MMPs) in colorectal cancer. Cancer Metastasis Rev. 2004;23(1–2):101–17.PubMedCrossRefGoogle Scholar
  136. 136.
    Wang WS, Chen PM, Su Y. Colorectal carcinoma: from tumorigenesis to treatment. Cell Mol Life Sci. 2006;63(6):663–71.PubMedCrossRefGoogle Scholar
  137. 137.
    Kioi M, Yamamoto K, Higashi S, Koshikawa N, Fujita K, Miyazaki K. Matrilysin (MMP-7) induces homotypic adhesion of human colon cancer cells and enhances their metastatic potential in nude mouse model. Oncogene. 2003;22(54):8662–70.PubMedCrossRefGoogle Scholar
  138. 138.
    Adachi Y, Yamamoto H, Itoh F, Hinoda Y, Okada Y, Imai K. Contribution of matrilysin (MMP-7) to the metastatic pathway of human colorectal cancers. Gut. 1999;45(2):252–8.PubMedCrossRefGoogle Scholar
  139. 139.
    Hasegawa S, Koshikawa N, Momiyama N, et al. Matrilysin-specific antisense oligonucleotide inhibits liver metastasis of human colon cancer cells in a nude mouse model. Int J Cancer. 1998;76(6):812–6.PubMedCrossRefGoogle Scholar
  140. 140.
    Lengyel E, Wang H, Gum R, Simon C, Wang Y, Boyd D. Elevated urokinase-type plasminogen activator receptor expression in a colon cancer cell line is due to a constitutively activated extracellular signal-regulated kinase-1–dependent signaling cascade. Oncogene. 1997;14(21):2563–73.PubMedCrossRefGoogle Scholar
  141. 141.
    Harvey SR, Sait SN, Xu Y, Bailey JL, Penetrante RM, Markus G. Demonstration of urokinase expression in cancer cells of colon adenocarcinomas by immunohistochemistry and in situ hybridization. Am J Pathol. 1999;155(4):1115–20.PubMedCrossRefGoogle Scholar
  142. 142.
    Ganesh S, Sier CF, Heerding MM, Griffioen G, Lamers CB, Verspaget HW. Urokinase receptor and colorectal cancer survival. Lancet. 1994;344(8919):401–2.PubMedCrossRefGoogle Scholar
  143. 143.
    Belaguli NS, Aftab M, Rigi M, Zhang M, Albo D, Berger DH. GATA6 promotes colon cancer cell invasion by regulating urokinase plasminogen activator gene expression. Neoplasia. 2010;12(11):856–65.PubMedGoogle Scholar
  144. 144.
    Wang Y, Liang X, Wu S, Murrell GA, Doe WF. Inhibition of colon cancer metastasis by a 3¢- end antisense urokinase receptor mRNA in a nude mouse model. Int J Cancer. 2001;92(2):257–62.PubMedCrossRefGoogle Scholar
  145. 145.
    Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1995;1(1):27–31.PubMedCrossRefGoogle Scholar
  146. 146.
    Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science. 1989;246(4935):1306–9.PubMedCrossRefGoogle Scholar
  147. 147.
    Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 1999;13(1):9–22.PubMedGoogle Scholar
  148. 148.
    Rmali KA, Puntis MC, Jiang WG. Tumour-associated angiogenesis in human colorectal cancer. Colorectal Dis. 2007;9(1):3–14.PubMedCrossRefGoogle Scholar
  149. 149.
    Jain RK, Safabakhsh N, Sckell A, et al. Endothelial cell death, angiogenesis, and microvascular function after castration in an androgen-dependent tumor: role of vascular endothelial growth factor. Proc Natl Acad Sci USA. 1998;95(18):10820–5.PubMedCrossRefGoogle Scholar
  150. 150.
    Warren RS, Yuan H, Matli MR, Gillett NA, Ferrara N. Regulation by vascular endothelial growth factor of human colon cancer tumorigenesis in a mouse model of experimental liver metastasis. J Clin Invest. 1995;95(4):1789–97.PubMedCrossRefGoogle Scholar
  151. 151.
    Sund M, Zeisberg M, Kalluri R. Endogenous stimulators and inhibitors of angiogenesis in gastrointestinal cancers: basic science to clinical application. Gastroenterology. 2005;129(6):2076–91.PubMedCrossRefGoogle Scholar
  152. 152.
    Zeng M, Kikuchi H, Pino MS, Chung DC. Hypoxia activates the K-ras proto-oncogene to stimulate angiogenesis and inhibit apoptosis in colon cancer cells. PLoS One. 2010;5(6):e10966.PubMedCrossRefGoogle Scholar
  153. 153.
    Trisciuoglio D, Gabellini C, Desideri M, et al. Involvement of BH4 domain of bcl-2 in the regulation of HIF-1–mediated VEGF expression in hypoxic tumor cells. Cell Death Differ. 2011;18:1024–35.PubMedCrossRefGoogle Scholar
  154. 154.
    Jo JO, Kim SR, Bae MK, et al. Thymosin beta4 induces the expression of vascular endothelial growth factor (VEGF) in a hypoxia-inducible factor (HIF)-1alpha-dependent manner. Biochim Biophys Acta. 1803;11:1244–51.Google Scholar
  155. 155.
    Ning Y, Manegold PC, Hong YK, et al. Interleukin-8 is associated with proliferation, migration, angiogenesis and chemosensitivity in vitro and in vivo in colon cancer cell line models. Int J Cancer. 2011;128:2038–49.PubMedCrossRefGoogle Scholar
  156. 156.
    van Beijnum JR, Dings RP, van der Linden E, et al. Gene expression of tumor angiogenesis dissected: specific targeting of colon cancer angiogenic vasculature. Blood. 2006;108(7):2339–48.PubMedCrossRefGoogle Scholar
  157. 157.
    Fernandez FG, Drebin JA, Linehan DC, Dehdashti F, Siegel BA, Strasberg SM. Five-year survival after resection of hepatic metastases from colorectal cancer in patients screened by positron emission tomography with F-18 fluorodeoxyglucose (FDG-PET). Ann Surg. 2004;240(3):438–47. discussion 447–50.PubMedCrossRefGoogle Scholar
  158. 158.
    Abdalla EK, Vauthey JN, Ellis LM, et al. Recurrence and outcomes following hepatic resection, radiofrequency ablation, and combined resection/ablation for colorectal liver metastases. Ann Surg. 2004;239(6):818–25. discussion 825–7.PubMedCrossRefGoogle Scholar
  159. 159.
    Valls C, Lopez E, Guma A, et al. Helical CT versus CT arterial portography in the detection of hepatic metastasis of colorectal carcinoma. AJR Am J Roentgenol. 1998;170(5):1341–7.PubMedGoogle Scholar
  160. 160.
    Niekel MC, Bipat S, Stoker J. Diagnostic imaging of colorectal liver metastases with CT, MR imaging, FDG PET, and/or FDG PET/CT: a meta-analysis of prospective studies including patients who have not previously undergone treatment. Radiology. 2010;257(3):674–84.PubMedCrossRefGoogle Scholar
  161. 161.
    Floriani I, Torri V, Rulli E, et al. Performance of imaging modalities in diagnosis of liver metastases from colorectal cancer: a systematic review and meta-analysis. J Magn Reson Imaging. 2010;31(1):19–31.PubMedCrossRefGoogle Scholar
  162. 162.
    Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33.PubMedCrossRefGoogle Scholar
  163. 163.
    Engstrom PF, Arnoletti JP, Benson AB 3rd, et al. NCCN Clinical Practice Guidelines in Oncology: colon cancer. J Natl Compr Canc Netw. 2009;7(8):778–831.PubMedGoogle Scholar
  164. 164.
    Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285(21):1182–6.PubMedCrossRefGoogle Scholar
  165. 165.
    O’Dwyer PJ. The present and future of angiogenesis-directed treatments of colorectal cancer. Oncologist. 2006;11(9):992–8.PubMedCrossRefGoogle Scholar
  166. 166.
    Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350(23):2335–42.PubMedCrossRefGoogle Scholar
  167. 167.
    Giantonio BJ, Catalano PJ, Meropol NJ, et al. Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group Study E3200. J Clin Oncol. 2007;25(12):1539–44.PubMedCrossRefGoogle Scholar
  168. 168.
    Wolmark N, Yothers G, O’Connell M, et al. A phase III trial comparing mFOLFOX6 to mFOLFOX6 plus bevacizumab in stage II or III carcinoma of the colon: Results of NSABP Protocol C-08. J Clin Oncol. 2009. p. abstr LBA4.Google Scholar
  169. 169.
    De Gramont A, Van Cutsem E, Tabernero J, et al. AVANT: Results from a randomized, three-arm multinational phase III study to investigate bevacizumab with either XELOX or FOLFOX4 versus FOLFOX4 alone as adjuvant treatment for colon cancer. J Clin Oncol. 2011;29:362.CrossRefGoogle Scholar
  170. 170.
    Grothey A. EGFR antibodies in colorectal cancer: Where do they belong? J Clin Oncol. 2010;28:4668–70.PubMedCrossRefGoogle Scholar
  171. 171.
    Karapetis CS, Khambata-Ford S, Jonker DJ, et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med. 2008;359(17):1757–65.PubMedCrossRefGoogle Scholar
  172. 172.
    De Roock W, Claes B, Bernasconi D, et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol. 2010;11(8):753–62.PubMedCrossRefGoogle Scholar
  173. 173.
    Bardelli A, Siena S. Molecular mechanisms of resistance to cetuximab and panitumumab in colorectal cancer. J Clin Oncol. 2010;28(7):1254–61.PubMedCrossRefGoogle Scholar
  174. 174.
    Jhawer M, Goel S, Wilson AJ, et al. PIK3CA mutation/PTEN expression status predicts response of colon cancer cells to the epidermal growth factor receptor inhibitor cetuximab. Cancer Res. 2008;68(6):1953–61.PubMedCrossRefGoogle Scholar
  175. 175.
    Halilovic E, She QB, Ye Q, et al. PIK3CA mutation uncouples tumor growth and cyclin D1 regulation from MEK/ERK and mutant KRAS signaling. Cancer Res. 2010;70(17):6804–14.PubMedCrossRefGoogle Scholar
  176. 176.
    Prenen H, De Schutter J, Jacobs B, et al. PIK3CA mutations are not a major determinant of resistance to the epidermal growth factor receptor inhibitor cetuximab in metastatic colorectal cancer. Clin Cancer Res. 2009;15(9):3184–8.PubMedCrossRefGoogle Scholar
  177. 177.
    Sartore-Bianchi A, Martini M, Molinari F, et al. PIK3CA mutations in colorectal cancer are associated with clinical resistance to EGFR-targeted monoclonal antibodies. Cancer Res. 2009;69(5):1851–7.PubMedCrossRefGoogle Scholar
  178. 178.
    Brachmann SM, Hofmann I, Schnell C, et al. Specific apoptosis induction by the dual PI3K/mTor inhibitor NVP-BEZ235 in HER2 amplified and PIK3CA mutant breast cancer cells. Proc Natl Acad Sci USA. 2009;106(52):22299–304.PubMedCrossRefGoogle Scholar
  179. 179.
    Serra V, Markman B, Scaltriti M, et al. NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Res. 2008;68(19):8022–30.PubMedCrossRefGoogle Scholar
  180. 180.
    She QB, Halilovic E, Ye Q, et al. 4E-BP1 is a key effector of the oncogenic activation of the AKT and ERK signaling pathways that integrates their function in tumors. Cancer Cell. 2010;18(1):39–51.PubMedCrossRefGoogle Scholar
  181. 181.
    Hruban RH, Wilentz RE, Kern SE. Genetic progression in the pancreatic ducts. Am J Pathol. 2000;156(6):1821–5.PubMedCrossRefGoogle Scholar
  182. 182.
    Mihaljevic AL, Michalski CW, Friess H, Kleeff J. Molecular mechanism of pancreatic cancer–understanding proliferation, invasion, and metastasis. Langenbecks Arch Surg. 2010;395(4):295–308.PubMedCrossRefGoogle Scholar
  183. 183.
    Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell. 1988;53(4):549–54.PubMedCrossRefGoogle Scholar
  184. 184.
    Lohr M, Kloppel G, Maisonneuve P, Lowenfels AB, Luttges J. Frequency of K-ras mutations in pancreatic intraductal neoplasias associated with pancreatic ductal adenocarcinoma and chronic pancreatitis: a meta-analysis. Neoplasia. 2005;7(1):17–23.PubMedCrossRefGoogle Scholar
  185. 185.
    Morris JP, Wang SC, Hebrok M. KRAS, Hedgehog, Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma. Nat Rev Cancer. 2011;10(10):683–95.CrossRefGoogle Scholar
  186. 186.
    Hingorani SR, Petricoin EF, Maitra A, et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell. 2003;4(6):437–50.PubMedCrossRefGoogle Scholar
  187. 187.
    Habbe N, Shi G, Meguid RA, et al. Spontaneous induction of murine pancreatic intraepithelial neoplasia (mPanIN) by acinar cell targeting of oncogenic Kras in adult mice. Proc Natl Acad Sci USA. 2008;105(48):18913–8.PubMedCrossRefGoogle Scholar
  188. 188.
    Calhoun ES, Jones JB, Ashfaq R, et al. BRAF and FBXW7 (CDC4, FBW7, AGO, SEL10) mutations in distinct subsets of pancreatic cancer: potential therapeutic targets. Am J Pathol. 2003;163(4):1255–60.PubMedCrossRefGoogle Scholar
  189. 189.
    Asano T, Yao Y, Zhu J, Li D, Abbruzzese JL, Reddy SA. The PI 3–kinase/Akt signaling pathway is activated due to aberrant Pten expression and targets transcription factors NF-kappaB and c-Myc in pancreatic cancer cells. Oncogene. 2004;23(53):8571–80.PubMedCrossRefGoogle Scholar
  190. 190.
    Scarpa A, Capelli P, Mukai K, et al. Pancreatic adenocarcinomas frequently show p53 gene mutations. Am J Pathol. 1993;142(5):1534–43.PubMedGoogle Scholar
  191. 191.
    Morton JP, Timpson P, Karim SA, et al. Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer. Proc Natl Acad Sci USA. 2010;107(1):246–51.PubMedCrossRefGoogle Scholar
  192. 192.
    Pellegata NS, Sessa F, Renault B, et al. K-ras and p53 gene mutations in pancreatic cancer: ductal and nonductal tumors progress through different genetic lesions. Cancer Res. 1994;54(6):1556–60.PubMedGoogle Scholar
  193. 193.
    Caldas C, Hahn SA, da Costa LT, et al. Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma. Nat Genet. 1994;8(1):27–32.PubMedCrossRefGoogle Scholar
  194. 194.
    Bardeesy N, Aguirre AJ, Chu GC, et al. Both p16(Ink4a) and the p19(Arf)-p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse. Proc Natl Acad Sci USA. 2006;103(15):5947–52.PubMedCrossRefGoogle Scholar
  195. 195.
    Jiang J, Hui CC. Hedgehog signaling in development and cancer. Dev Cell. 2008;15(6):801–12.PubMedCrossRefGoogle Scholar
  196. 196.
    Thayer SP, di Magliano MP, Heiser PW, et al. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature. 2003;425(6960):851–6.PubMedCrossRefGoogle Scholar
  197. 197.
    Bailey JM, Swanson BJ, Hamada T, et al. Sonic hedgehog promotes desmoplasia in pancreatic cancer. Clin Cancer Res. 2008;14(19):5995–6004.PubMedCrossRefGoogle Scholar
  198. 198.
    Olive KP, Jacobetz MA, Davidson CJ, et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science. 2009;324(5933):1457–61.PubMedCrossRefGoogle Scholar
  199. 199.
    Nakajima S, Doi R, Toyoda E, et al. N-cadherin expression and epithelial-mesenchymal transition in pancreatic carcinoma. Clin Cancer Res. 2004;10(12 Pt 1):4125–33.PubMedCrossRefGoogle Scholar
  200. 200.
    Al-Aynati MM, Radulovich N, Riddell RH, Tsao MS. Epithelial-cadherin and beta-catenin expression changes in pancreatic intraepithelial neoplasia. Clin Cancer Res. 2004;10(4):1235–40.PubMedCrossRefGoogle Scholar
  201. 201.
    Campbell PJ, Yachida S, Mudie LJ, et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature. 2010;467(7319):1109–13.PubMedCrossRefGoogle Scholar
  202. 202.
    Moore MJ, Goldstein D, Hamm J, et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol. 2007;25(15):1960–6.PubMedCrossRefGoogle Scholar
  203. 203.
    Philip PA, Benedetti J, Corless CL, et al. Phase III study comparing gemcitabine plus cetuximab versus gemcitabine in patients with advanced pancreatic adenocarcinoma: Southwest Oncology Group-directed intergroup trial S0205. J Clin Oncol. 2010;28(22):3605–10.PubMedCrossRefGoogle Scholar
  204. 204.
    Cascinu S, Berardi R, Labianca R, et al. Cetuximab plus gemcitabine and cisplatin compared with gemcitabine and cisplatin alone in patients with advanced pancreatic cancer: a randomised, multicentre, phase II trial. Lancet Oncol. 2008;9(1):39–44.PubMedCrossRefGoogle Scholar
  205. 205.
    da Cunha Santos G, Dhani N, Tu D, et al. Molecular predictors of outcome in a phase 3 study of gemcitabine and erlotinib therapy in patients with advanced pancreatic cancer: National Cancer Institute of Canada Clinical Trials Group Study PA.3. Cancer. 2010;116(24):5599–607.PubMedCrossRefGoogle Scholar
  206. 206.
    Jimeno A, Tan AC, Coffa J, et al. Coordinated epidermal growth factor receptor pathway gene overexpression predicts epidermal growth factor receptor inhibitor sensitivity in pancreatic cancer. Cancer Res. 2008;68(8):2841–9.PubMedCrossRefGoogle Scholar
  207. 207.
    Jimeno A, Rubio-Viqueira B, Amador ML, et al. Dual mitogen-activated protein kinase and epidermal growth factor receptor inhibition in biliary and pancreatic cancer. Mol Cancer Ther. 2007;6(3):1079–88.PubMedCrossRefGoogle Scholar
  208. 208.
    Bang YJ, Van Cutsem E, Feyereislova A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2–positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376(9742):687–97.PubMedCrossRefGoogle Scholar
  209. 209.
    Kimura K, Sawada T, Komatsu M, et al. Antitumor effect of trastuzumab for pancreatic cancer with high HER-2 expression and enhancement of effect by combined therapy with gemcitabine. Clin Cancer Res. 2006;12(16):4925–32.PubMedCrossRefGoogle Scholar
  210. 210.
    Buchler P, Reber HA, Eibl G, et al. Combination therapy for advanced pancreatic cancer using Herceptin plus chemotherapy. Int J Oncol. 2005;27(4):1125–30.PubMedGoogle Scholar
  211. 211.
    Safran H, Iannitti D, Ramanathan R, et al. Herceptin and gemcitabine for metastatic pancreatic cancers that overexpress HER-2/neu. Cancer Invest. 2004;22(5):706–12.PubMedCrossRefGoogle Scholar
  212. 212.
    Mihaljevic A, Buchler P, Harder J, et al. A prospective, non-randomized phase II trial of Trastuzumab and Capecitabine in patients with HER2 expressing metastasized pancreatic cancer. BMC Surg. 2009;9:1.PubMedCrossRefGoogle Scholar
  213. 213.
    Itakura J, Ishiwata T, Friess H, et al. Enhanced expression of vascular endothelial growth factor in human pancreatic cancer correlates with local disease progression. Clin Cancer Res. 1997;3(8):1309–16.PubMedGoogle Scholar
  214. 214.
    Baker CH, Solorzano CC, Fidler IJ. Blockade of vascular endothelial growth factor receptor and epidermal growth factor receptor signaling for therapy of metastatic human pancreatic cancer. Cancer Res. 2002;62(7):1996–2003.PubMedGoogle Scholar
  215. 215.
    Kindler HL, Ioka T, Richel DJ, et al. Axitinib plus gemcitabine versus placebo plus gemcitabine in patients with advanced pancreatic adenocarcinoma: a double-blind randomised phase 3 study. Lancet Oncol. 2011;12:256–62.PubMedCrossRefGoogle Scholar
  216. 216.
    Kindler HL, Niedzwiecki D, Hollis D, et al. Gemcitabine plus bevacizumab compared with gemcitabine plus placebo in patients with advanced pancreatic cancer: phase III trial of the Cancer and Leukemia Group B (CALGB 80303). J Clin Oncol. 2010;28(22):3617–22.PubMedCrossRefGoogle Scholar
  217. 217.
    Van Cutsem E, Vervenne WL, Bennouna J, et al. Phase III trial of bevacizumab in combination with gemcitabine and erlotinib in patients with metastatic pancreatic cancer. J Clin Oncol. 2009;27(13):2231–7.PubMedCrossRefGoogle Scholar
  218. 218.
    Feldmann G, Dhara S, Fendrich V, et al. Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers. Cancer Res. 2007;67(5):2187–96.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Andrew D. Rhim
    • 1
  • Davendra Sohal
    • 2
  • Hiroshi Nakagawa
    • 1
    Email author
  1. 1.Department of Medicine, Gastroenterology DivisionUniversity of Pennsylvania School of MedicinePhiladelphiaUSA
  2. 2.Solid Tumor OncologyTaussig Cancer Institute, Cleveland ClinicClevelandUSA

Personalised recommendations