Skip to main content

Some Applications of the Sheffer A-Type 0 Orthogonal Polynomial Sequences

  • Chapter
  • First Online:
On the Higher-Order Sheffer Orthogonal Polynomial Sequences

Part of the book series: SpringerBriefs in Mathematics ((BRIEFSMATH))

  • 648 Accesses

Abstract

In this chapter, we address several of the many applications of the classical orthogonal polynomial sequences. These applications include first-order differential equations that characterize linear generating functions, additional first-order differential equations, second-order differential equations (with applications to quantum mechanics), difference equations and numerical integration (Gaussian Quadrature). We first develop each of these applications in a general context and then cover examples using specific Sheffer Sequences, i.e. the Laguerre, Hermite, Charlier, Meixner, Meixner–Pollaczek, and Krawtchouk polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W.A. Al-Salam, Characterization theorems for orthogonal polynomials, in: Nevai, P. (Ed.), Orthogonal Polynomials: Theory and Practice. Kluwer Academic Publishers, Dordrecht, pp. 1–24, (1990).

    Google Scholar 

  2. M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing, New York: Dover, pp. 890 and 923, 1972.

    Google Scholar 

  3. F.V. Atkinson and W.N. Everitt, Orthogonal polynomials which satisfy second order differential equations, E. B. Christoffel (Aachen/Monschau, 1979), pp. 173–181, Birkh\(\mathrm{\ddot{a}}\)user, Basel-Boston, Mass., (1981).

    Google Scholar 

  4. W.C. Bauldry, Estimates of asymmetric Freud polynomials on the real line, J. Approx. Theory, 63(1990), 225–237.

    Google Scholar 

  5. W.C. Bauldry, Orthogonal Polynomials Associated With Exponential Weights (Christoffel Functions, Recurrence Relations), Ph.D. thesis, The Ohio State University, ProQuest LLC, 149 pp., 1985.

    Google Scholar 

  6. A. Beiser, Modern Physics, 6 ed., McGraw-Hill, New York, 2003.

    Google Scholar 

  7. S.S. Bonan and D.S. Clark, Estimates of the Hermite and the Freud polynomials, J. Approx. Theory, 63(1990), 210–224.

    Google Scholar 

  8. S. Chandrasekhar, Radiative Transfer, Dover, New York, pp. 61 and 64–65, 1960.

    Google Scholar 

  9. Y. Chen and M.E.H Ismail, Ladder operators and differential equations for orthogonal polynomials, J. Phys. A, 30(1997), 7817–7829.

    Google Scholar 

  10. F.B. Hildebrand, Introduction to Numerical Analysis, McGraw-Hill, New York, pp. 338–343, 1956.

    Google Scholar 

  11. R. Koekoek and R.F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, Reports of the Faculty of Technical Mathematics and Information, No. 98–17, Delft University of Technology, (1998). http://aw.twi.tudelft.nl/~koekoek/askey/index.html

  12. M.E.H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable, Encyclopedia of Mathematics and its Applications 98, Cambridge University Press, Cambridge, 2005.

    Google Scholar 

  13. M.E.H. Ismail, I. Nikolova and P. Simeonov, Difference equations and discriminants for discrete orthogonal polynomials, Ramanujan J., 8(2004), 475–502.

    Google Scholar 

  14. M.E.H. Ismail and J. Wimp, On differential equations for orthogonal polynomials, Methods Appl. Anal., 5(1998), 439–452.

    Google Scholar 

  15. J. Meixner, Orthogonale Polynomsysteme mit einer besonderen Gestalt der erzeugenden Funktion, J. London Math. Soc., 9(1934), 6–13.

    Google Scholar 

  16. H.N. Mhaskar, Bounds for certain Freud-type orthogonal polynomials, J. Approx. Theory, 63(1990), 238–254.

    Google Scholar 

  17. E.D. Rainville, Special Functions, Macmillan, New York, 1960.

    Google Scholar 

  18. E. Schr\(\mathrm{\ddot{o}}\)dinger, An undulatory theory of the mechanics of atoms and molecules, Phys. Rev., 28(1926), 1049–1070.

    Google Scholar 

  19. E. Schr\(\mathrm{\ddot{o}}\)dinger, Quantisierung als eigenwertproblem, Annalen der Physik, (1926), 361–377.

    Google Scholar 

  20. R. Shankar, Principles of Quantum Mechanics, 2nd ed., Plenum Publishers, 1994.

    Google Scholar 

  21. R.-C. Sheen, Plancherel-Rotach-type asymptotics for orthogonal polynomials associated with \(\exp (-{x}^{6}/6)\), J. Approx. Theory, 50(1987), 232–293.

    Google Scholar 

  22. I.M. Sheffer, Some properties of polynomial sets of type zero, Duke Math J., 5(1939), 590–622.

    Google Scholar 

  23. J. Shohat, A differential equation for orthogonal polynomials, Duke Math. J., 5(1939), 401–417.

    Google Scholar 

  24. G. Szegő, Orthogonal Polynomials, fourth ed., American Mathematical Society, Colloquium Publications, Vol. XXIII, Providence, 1975.

    Google Scholar 

  25. E.T. Whittaker and G.N Watson, Modern Analysis, 4th ed., Cambridge, 1927.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Daniel J. Galiffa

About this chapter

Cite this chapter

Galiffa, D.J. (2013). Some Applications of the Sheffer A-Type 0 Orthogonal Polynomial Sequences. In: On the Higher-Order Sheffer Orthogonal Polynomial Sequences. SpringerBriefs in Mathematics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5969-9_2

Download citation

Publish with us

Policies and ethics