Leukocytes, red blood capsules, and platelets constitute the pool of circulating cells and pseudocells (Table3.1). Red blood capsules, commonly called erythrocytes or red blood cells, are mainly devoted to blood gas transport, especially oxygen. When the demand for oxygen changes, appropriate signals are detected and transmitted so that the supply of oxygen by the cardiorespiratory system varies to match the demand. Leukocytes, or white blood cells, coordinate the immune response. Platelets, also named thrombocytes, are cell fragments that participate in blood coagulation and inflammation.


Dendritic Cell Major Histocompatibility Complex Natural Killer Cell TReg Cell Immunological Synapse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 97.
    Hickey MJ, Kubes P (2009) Intravascular immunity: the host–pathogen encounter in blood vessels. Nature Reviews – Immunology 9:364–375Google Scholar
  2. 98.
    Ozaki K, Leonard WJ (2002) Cytokine and cytokine receptor pleiotropy and redundancy. Journal of Biological Chemistry 277:29355–29358Google Scholar
  3. 99.
    Shaw AS, Filbert EL (2009) Scaffold proteins and immune-cell signalling. Nature Reviews – Immunology 9:47–56Google Scholar
  4. 100.
    Matza D, Badou A, Kobayashi KS, Goldsmith-Pestana K, Masuda Y, Komuro A, McMahon-Pratt D, Marchesi VT, Flavell RA (2008) A scaffold protein, AHNAK1, is required for calcium signaling during T cell activation. Immunity 28:64–74Google Scholar
  5. 101.
    Cokelet GR, Meiselman HJ (1968) Rheological comparison of hemoglobin solutions and erythrocyte suspensions. Science 162:275–277ADSGoogle Scholar
  6. 102.
    Yoshida H, Kawane K, Koike M, Mori Y, Uchiyama Y, Nagata S (2005) Phosphatidylserine-dependent engulfment by macrophages of nuclei from erythroid precursor cells. Nature 437:754–758ADSGoogle Scholar
  7. 103.
    Zhang L, Flygare J, Wong P, Lim B, Lodish HF (2011) MiR-191 regulates mouse erythroblast enucleation by down-regulating Riok3 and Mxi1. Genes and Development 25:119–124Google Scholar
  8. 104.
    Higgins JM, Mahadevan L (2010) Physiological and pathological population dynamics of circulating human red blood cells. Proceedings of the National Academy of Sciences of the United States of America 107:20587–20592ADSGoogle Scholar
  9. 105.
    Betz T, Lenz M, Joanny JF, Sykes C (2009) ATP-dependent mechanics of red blood cells. Proceedings of the National Academy of Sciences of the United States of America 106:15320–15325ADSGoogle Scholar
  10. 106.
    Sprague RS, Ellsworth ML, Stephenson AH, Lonigro AJ (2001) Participation of cAMP in a signal-transduction pathway relating erythrocyte deformation to ATP release. American Journal of Physiology – Cell Physiology 281:C1158–C1164Google Scholar
  11. 107.
    Carroll J, Raththagala M, Subasinghe W, Baguzis S, D’amico Oblak T, Root P, Spence D (2006) An altered oxidant defense system in red blood cells affects their ability to release nitric oxide-stimulating ATP. Molecular Biosystems 2:305–311Google Scholar
  12. 108.
    Carroll JS, Ku CJ, Karunarathne W, Spence DM (2007) Red blood cell stimulation of platelet nitric oxide production indicated by quantitative monitoring of the communication between cells in the bloodstream. Analytical Chemistry 79:5133–5138Google Scholar
  13. 109.
    Li J, Lykotrafitis G, Dao M, Suresh S (2007) Cytoskeletal dynamics of human erythrocyte. Proceedings of the National Academy of Sciences of the United States of America 104:4937–4942ADSGoogle Scholar
  14. 110.
    Li J, Dao M, Lim CT, Suresh S (2005) Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte. Biophysical Journal 88:3707–3719ADSGoogle Scholar
  15. 111.
    Lang PA, Kempe DS, Myssina S, Tanneur V, Birka C, Laufer S, Lang F, Wieder T, S M Huber SM (2005) PGE2 in the regulation of programmed erythrocyte death. Cell Death and Differentiation 12:415–428Google Scholar
  16. 112.
    Bruce LJ, Robinson HC, Guizouarn H, Borgese F, Harrison P, King MJ, Goede JS, Coles SE, Gore DM, Lutz HU, Ficarella R, Layton DM, Iolascon A, Ellory JC, Stewart GW (2005) Monovalent cation leaks in human red cells caused by single amino-acid substitutions in the transport domain of the band 3 chloride-bicarbonate exchanger, AE1. Nature – Genetics 37:1258–1263Google Scholar
  17. 113.
    McWhirter JL, Noguchi H, Gompper G (2009) Flow-induced clustering and alignment of vesicles and red blood cells in microcapillaries. Proceedings of the National Academy of Sciences of the United States of America 106:6039-6043ADSGoogle Scholar
  18. 114.
    Delaunay J, Boivin P (1990) Le squelette du globule rouge [The skeleton of the red blood cell]. La Recherche 223:845–852Google Scholar
  19. 115.
    Michaely P, Tomchick DR, Machius M, Anderson RGW (2002) Crystal structure of a 12 ANK repeat stack from human ankyrinR. EMBO Journal 21:6387–6396Google Scholar
  20. 116.
    Salomao M, Zhang X, Yang Y, Lee S, Hartwig JH, Chasis JA, Mohandas N, An X (2008) Protein 4.1R-dependent multiprotein complex: new insights into the structural organization of the red blood cell membrane. Proceedings of the National Academy of Sciences of the United States of America 105:8026–8031ADSGoogle Scholar
  21. 117.
    Park Y, Best CA, Auth T, Gov NS, Safran SA, Popescu G, Suresh S, Feld MS (2010) Metabolic remodeling of the human red blood cell membrane. Proceedings of the National Academy of Sciences of the United States of America 107:1289–1294ADSGoogle Scholar
  22. 118.
    Locovei S, Bao L, Dahl G (2006) Pannexin 1 in erythrocytes: Function without a gap. Proceedings of the National Academy of Sciences of the United States of America 103:7655–7659ADSGoogle Scholar
  23. 119.
    Wan J, Ristenpart WD, Stone HA (2008) Dynamics of shear-induced ATP release from red blood cells. Proceedings of the National Academy of Sciences of the United States of America 105:16432–16437ADSGoogle Scholar
  24. 120.
    Karunarathne W, Ku CJ, Spence DM (2009) The dual nature of extracellular ATP as a concentration-dependent platelet P2X1 agonist and antagonist. Integrative Biology 1:655–663Google Scholar
  25. 121.
    Oury C, Toth-Zsamboki E, Vermylen J, Hoylaerts MF (2002) P2X1-mediated activation of extracellular signal-regulated kinase 2 contributes to platelet secretion and aggregation induced by collagen. Blood 100:2499–2505Google Scholar
  26. 122.
    Medawala W, McCahill P, Giebink A, Meyer J, Ku CJ, Spence DM (2009) A molecular level understanding of zinc activation of C-peptide and its effects on cellular communication in the bloodstream. Review of Diabetic Studies 6:148–158Google Scholar
  27. 123.
    Keller SR, Skalak R (1982) Motion of a tank-treading ellipsoidal particle in a shear-flow. Journal of Fluid Mechanics 120:27–47ADSMATHGoogle Scholar
  28. 124.
    Skotheim JM, Secomb TW (2007) Red blood cells and other nonspherical capsules in shear flow: oscillatory dynamics and the tank-treading-to-tumbling transition. Physical Review Letters 98:078301ADSGoogle Scholar
  29. 125.
    Abkarian M, Faivre M, Viallat A (2007) Swinging of red blood cells under shear flow. Physical Review Letters 98:188302ADSGoogle Scholar
  30. 126.
    Forsyth AM, Wan J, Owrutsky PD, Abkarian M, Stone HA (2011) Multiscale approach to link red blood cell dynamics, shear viscosity, and ATP release. Proceedings of the National Academy of Sciences of the United States of America 108:10986–10991Google Scholar
  31. 127.
    Chasan B, Geisse NA, Pedatella K, Wooster DG, Teintze M, Carattino MD, Goldmann WH, Cantiello HF (2002) Evidence for direct interaction between actin and the cystic fibrosis transmembrane conductance regulator. European Biophysics Journal 30:617–624Google Scholar
  32. 128.
    Lewis IA, Campanella ME, Markley JL, Low PS (2009) Role of band 3 in regulating metabolic flux of red blood cells. Proceedings of the National Academy of Sciences of the United States of America 106:18515–18520ADSGoogle Scholar
  33. 129.
    Pittman RN (2010) Erythrocytes: surveyors as well as purveyors of oxygen? American Journal of Physiology – Heart and Circulatory Physiology 298:H1637–H1638Google Scholar
  34. 130.
    Ellis CG, Goldman D, Hanson M, Stephenson AH, Milkovich S, Benlamri A, Ellsworth ML, Sprague RS (2010) Defects in oxygen supply to skeletal muscle of prediabetic ZDF rats. American Journal of Physiology – Heart and Circulatory Physiology 298:H1661–1670Google Scholar
  35. 131.
    Chaudhuri A, Nielsen S, Elkjaer ML, Zbrzezna V, Fang F, Pogo AO (1997) Detection of Duffy antigen in the plasma membranes and caveolae of vascular endothelial and epithelial cells of nonerythroid organs. Blood 89:701–712Google Scholar
  36. 132.
    Hadley TJ, Lu ZH, Wasniowska K, Martin AW, Peiper SC, Hesselgesser J, Horuk R (1994) Postcapillary venule endothelial cells in kidney express a multispecific chemokine receptor that is structurally and functionally identical to the erythroid isoform, which is the Duffy blood group antigen. Journal of Clinical Investigation 94:985–991Google Scholar
  37. 133.
    Chapel-Fernandes S, Callebaut I, Halverson GR, Reid ME, Bailly P, Chiaroni J (2009) Dombrock genotyping in a native Congolese cohort reveals two novel alleles. Transfusion 49:1661–1671Google Scholar
  38. 134.
    Perutz MF (1964) The hemoglobin molecule. Scientific American 211:64–76ADSGoogle Scholar
  39. 135.
    Hu RG, Wang H, Xia Z, Varshavsky A (2008) The N-end rule pathway is a sensor of heme. Proceedings of the National Academy of Sciences of the United States of America 105:76-81ADSGoogle Scholar
  40. 136.
    Yin L, Wu N, Curtin JC, Qatanani M, Szwergold NR, Reid RA, Waitt GM, Parks DJ, Pearce KH, Wisely GB, Lazar MA (2007) Rev-erbα, a heme sensor that coordinates metabolic and circadian pathways. Science 318:1786–1789ADSGoogle Scholar
  41. 137.
    Brasier G, Tikellis C, Xuereb L, Craigie J, Casley D, Kovacs CS, Fudge NJ, Kalnins R, Cooper ME, Wookey PJ (2004) Novel hexad repeats conserved in a putative transporter with restricted expression in cell types associated with growth, calcium exchange and homeostasis. Experimental Cell Research 293:31–42Google Scholar
  42. 138.
    Meyer E, Ricketts C, Morgan NV, Morris MR, Pasha S, Tee LJ, Rahman F, Bazin A, Bessires B, Dchelotte P, Yacoubi MT, Al-Adnani M, Marton T, Tannahill D, Trembath RC, Fallet-Bianco C, Cox P, Williams D, Maher ER (2010) Mutations in FLVCR2 are associated with proliferative vasculopathy and hydranencephaly-hydrocephaly syndrome (Fowler syndrome). American Journal of Human Genetics 86:471–478Google Scholar
  43. 139.
    Keel SB, Doty RT, Yang Z, Quigley JG, Chen J, Knoblaugh S, Kingsley PD, De Domenico I, Vaughn MB, Kaplan J, Palis J, Abkowitz JL (2008) A heme export protein is required for red blood cell differentiation and iron homeostasis. Science 319:825–828ADSGoogle Scholar
  44. 140.
    Yang Z, Philips JD, Doty RT, Giraudi P, Ostrow JD, Tiribelli C, Smith A, Abkowitz JL (2010) Kinetics and specificity of feline leukemia virus subgroup C receptor (FLVCR) export function and its dependence on hemopexin. Journal of Biological Chemistry 285:28874–28882Google Scholar
  45. 141.
    Chen W, Paradkar PN, Li L, Pierce EL, Langer NB, Takahashi-Makise N, Hyde BB, Shirihai OS, Ward DM, Kaplan J, Paw BH (2009) Abcb10 physically interacts with mitoferrin-1 (Slc25a37) to enhance its stability and function in the erythroid mitochondria. Proceedings of the National Academy of Sciences of the United States of America 106:16263–16268ADSGoogle Scholar
  46. 142.
    Chen W, Dailey HA, Paw BH (2010) Ferrochelatase forms an oligomeric complex with mitoferrin-1 and Abcb10 for erythroid heme biosynthesis. Blood 116:628–630Google Scholar
  47. 143.
    Higgs DR, Vickers MA, Wilkie AO, Pretorius IM, Jarman AP, Weatherall DJ (1989) A review of the molecular genetics of the human α-globin gene cluster. Blood 73:1081-1104Google Scholar
  48. 144.
    Snyder SH, Ferris CD (2000) Novel neurotransmitters and their neuropsychiatric relevance. American Journal of Psychiatry 157:1738–1751Google Scholar
  49. 145.
    Hon YY, Sun H, Dejam A, Gladwin MT (2010) Characterization of erythrocytic uptake and release and disposition pathways of nitrite, nitrate, methemoglobin, and iron-nitrosyl hemoglobin in the human circulation. Drug Metabolism and Disposition 38:1707–1713Google Scholar
  50. 146.
    Palmer LA, Doctor A, Gaston B (2008) SNO-hemoglobin and hypoxic vasodilation. Nature – Medicine 14:1009Google Scholar
  51. 147.
    Palmer LA, Doctor A, Chhabra P, Sheram ML, Laubach VE, Karlinsey MZ, Forbes MS, Macdonald T, Gaston B (2007) S-nitrosothiols signal hypoxia-mimetic vascular pathology. Journal of Clinical Investigation 117:2592–2601Google Scholar
  52. 148.
    Stamler JS, Singel DJ, Piantadosi CA (2008) SNO-hemoglobin and hypoxic vasodilation. Nature – Medicine 14:1008–1009Google Scholar
  53. 149.
    Patel R, Townes T (2008) SNO-hemoglobin and hypoxic vasodilation. Nature – Medicine 14:1009–1010Google Scholar
  54. 150.
    Shi H, Bencze KZ, Stemmler TL, Philpott CC (2008) A cytosolic iron chaperone that delivers iron to ferritin. Science 320:1207–1210ADSGoogle Scholar
  55. 151.
    De Domenico I, McVey Ward D, Kaplan J (2008) Regulation of iron acquisition and storage: consequences for iron-linked disorders. Nature Reviews – Molecular Cell Biology 9:72-81Google Scholar
  56. 152.
    De Domenico I, McVey Ward D, Kaplan J (2009) Serum ferritin regulates blood vessel formation: A role beyond iron storage Proceedings of the National Academy of Sciences of the United States of America 106:1683–1684Google Scholar
  57. 153.
    Meynard D, Kautz L, Darnaud V, Canonne-Hergaux F, Coppin H, Roth MP (2009) Lack of the bone morphogenetic protein BMP6 induces massive iron overload. Nature – Genetics 41:478–481Google Scholar
  58. 154.
    Andriopoulos B, CorradiniE, Xia Y, Faasse SA, Chen S, Grgurevic L, Knutson MD, Pietrangelo A, Vukicevic S, Lin HY, Babitt JL (2009) BMP6 is a key endogenous regulator of hepcidin expression and iron metabolism. Nature – Genetics 41:482–487Google Scholar
  59. 155.
    Mason KD, Carpinelli MR, Fletcher JI, Collinge JE, Hilton AA, Ellis S, Kelly PN, Ekert PG, Metcalf D, Roberts AW, Huang DC, Kile BT (2007) Programmed anuclear cell death delimits platelet life span. Cell 128:1173–1186Google Scholar
  60. 156.
    Junt T, Schulze H, Chen Z, Massberg S, Goerge T, Krueger A, Wagner DD, Graf T, Italiano JE, Shivdasani RA, von Andrian UH (2007) Dynamic visualization of thrombopoiesis within bone marrow. Science 317:1767–1770ADSGoogle Scholar
  61. 157.
    Landry P, Plante I, Ouellet DL, Perron MP, Rousseau G, Provost P (2009) Existence of a microRNA pathway in anucleate platelets. Nature – Structural and Molecular Biology 16:961–966Google Scholar
  62. 158.
    Cramer EM, Berger G, Berndt MC (1994) Platelet alpha-granule and plasma membrane share two new components: CD9 and PECAM-1. Blood 84:1722–1730Google Scholar
  63. 159.
    Lorenz HP, Longaker MT (2004) Wounds: biology, pathology, and management.
  64. 160.
    Borel J-P, Maquart F-X (1991) La cicatrisation [The healing]. La Recherche 236:1174–1181Google Scholar
  65. 161.
    Boilard E, Nigrovic PA, Larabee K, Watts GF, Coblyn JS, Weinblatt ME, Massarotti EM, Remold-O’Donnell E, Farndale RW, Ware J, Lee DM (2010) Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 327:580–583ADSGoogle Scholar
  66. 162.
    Heijnen HF, Van Lier M, Waaijenborg S, Ohno-Iwashita Y, Waheed AA, Inomata M, Gorter G, Mbius W, Akkerman JW, Slot JW (2003) Concentration of rafts in platelet filopodia correlates with recruitment of c-Src and CD63 to these domains. Journal of Thrombosis and Haemostasis 1:1161–1173Google Scholar
  67. 163.
    McNicol A, Robson CA (1997) Thrombin receptor-activating peptide releases arachidonic acid from human platelets: a comparison with thrombin and trypsin. Journal of Pharmacology and Experimental Therapeutics 281:861–867Google Scholar
  68. 164.
    Michelson AD, Benoit SE, Furman MI, Barnard MR, Nurden P, Nurden AT (1996) The platelet surface expression of glycoprotein V is regulated by two independent mechanisms: proteolysis and a reversible cytoskeletal-mediated redistribution to the surface-connected canalicular system. Blood 87:1396–1408Google Scholar
  69. 165.
    Moraes LA, Swales KE, Wray JA, Damazo A, Gibbins JM, Warner TD, Bishop-Bailey D (2007) Nongenomic signaling of the retinoid X receptor through binding and inhibiting Gq in human platelets. Blood 109:3741-3744Google Scholar
  70. 166.
    O’Brien JJ, Ray DM, Spinelli SL, Blumberg N, Taubman MB, Francis CW, Wittlin SD, Phipps RP (2007) The platelet as a therapeutic target for treating vascular diseases and the role of eicosanoid and synthetic PPARγ ligands. Prostaglandins and Other Lipid Mediators 82:68-76Google Scholar
  71. 167.
    Moraes LA, Spyridon M, Kaiser WJ, Jones CI, Sage T, Atherton RE, Gibbins JM (2010) Non-genomic effects of PPARγ ligands: inhibition of GPVI-stimulated platelet activation. Journal of Thrombosis and Haemostasis 8:577–587Google Scholar
  72. 168.
    Gambaryan S, Kobsar A, Rukoyatkina N, Herterich S, Geiger J, Smolenski A, Lohmann SM, Walter U (2010) Thrombin and collagen induce a feedback inhibitory signaling pathway in platelets involving dissociation of the catalytic subunit of protein kinase A from an NFκB–IκB complex. Journal of Biological Chemistry 285:18352–18363Google Scholar
  73. 169.
    Malaver E, Romaniuk MA, D’Atri LP, Pozner RG, Negrotto S, Benzadn R, Schattner M (2009) NF-kappaB inhibitors impair platelet activation responses. Journal of Thrombosis and Haemostasis 7:1333–1343Google Scholar
  74. 170.
    Weyrich AS, Dixon DA, Pabla R, Elstad MR, McIntyre TM, Prescott SM, Zimmerman GA (1998) Signal-dependent translation of a regulatory protein, Bcl-3, in activated human platelets. Proceedings of the National Academy of Sciences of the United States of America 95:5556–5561ADSGoogle Scholar
  75. 171.
    Spinelli SL, Maggirwar SB, Blumberg N, Phipps RP (2010) Nuclear emancipation: a platelet tour de force. Science Signaling 3:pe37Google Scholar
  76. 172.
    Steele BM, Harper MT, Macaulay IC, Morrell CN, Perez-Tamayo A, Foy M, Habas R, Poole AW, Fitzgerald DJ, Maguire PB (2009) Canonical Wnt signaling negatively regulates platelet function. Proceedings of the National Academy of Sciences of the United States of America 106:19836–19841Google Scholar
  77. 173.
    Min B (2008) Basophils: what they “can do” versus what they “actually do”. Nature – Immunology 9:1333–1339Google Scholar
  78. 174.
    Denzel A, Maus UA, Gomez MR, Moll C, Niedermeier M, Winter C, Maus R, Hollingshead S, Briles DE, Kunz-Schughart LA, Talke Y, Mack M (2008) Basophils enhance immunological memory responses. Nature – Immunology 9:733–742Google Scholar
  79. 175.
    Lucey DR, Clerici M, Shearer GM (1996) Type 1 and type 2 cytokine dysregulation in human infectious, neoplastic, and inflammatory diseases. Clinical Microbiology Reviews 9:532–562Google Scholar
  80. 176.
    Ibelgaufts H (2010) Cytokines and Cells Online Pathfinder Encyclopaedia (
  81. 177.
    Yousefi S, Gold JA, Andina N, Lee JJ, Kelly AM, Kozlowski E, Schmid I, Straumann A, Reichenbach J, Gleich GJ, Simon HU (2008) Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nature – Medicine 14:949–953Google Scholar
  82. 178.
    De Santo C, Arscott R, Booth S, Karydis I, Jones M, Asher R, Salio M, Middleton M, Cerundolo V (2010) Invariant NKT cells modulate the suppressive activity of IL-10-secreting neutrophils differentiated with serum amyloid A. Nature – Immunology 11:1039–1046Google Scholar
  83. 179.
    McDonald B, Pittman K, Menezes GB, Hirota SA, Slaba I, Waterhouse CC, Beck PL, Muruve DA, Kubes P (2010) Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science 330:362–366ADSGoogle Scholar
  84. 180.
    Schroder K, Zhou R, Tschopp J (2010) The NLRP3 inflammasome: a sensor for metabolic danger? Science 327:296–300ADSGoogle Scholar
  85. 181.
    Syeda F, Tullis E, Slutsky AS, Zhang H (2008) Human neutrophil peptides upregulate expression of COX-2 and endothelin-1 by inducing oxidative stress. American Journal of Physiology – Heart and Circulatory Physiology 294:H2769–H2774Google Scholar
  86. 182.
    Afonso PV, Janka-Junttila M, Lee YJ, McCann CP, Oliver CM, Aamer KA, Losert W, Cicerone MT, Parent CA (2012) LTB4 is a signal-relay molecule during neutrophil chemotaxis. Developmental Cell 22:1079–1091Google Scholar
  87. 183.
    Heit B, Robbins SM, Downey CM, Guan Z, Colarusso P, Miller BJ, Jirik FR, Kubes P (2008) PTEN functions to ’prioritize’ chemotactic cues and prevent “distraction” in migrating neutrophils. Nature – Immunology 9:743–752Google Scholar
  88. 184.
    McEver RP (2010) Rolling back neutrophil adhesion. Nature – Immunology 11:282–284Google Scholar
  89. 185.
    Deban L, Russo RC, Sironi M, Moalli F, Scanziani M, Zambelli V, Cuccovillo I, Bastone A, Gobbi M, Valentino S, Doni A, Garlanda C, Danese S, Salvatori G, Sassano M, Evangelista V, Rossi B, Zenaro E, Constantin G, Laudanna C, Bottazzi B, Mantovani A (2010) Regulation of leukocyte recruitment by the long pentraxin PTX3. Nature – Immunology 11:328–334Google Scholar
  90. 186.
    Choi EY, Chavakis E, Czabanka MA, Langer HF, Fraemohs L, Economopoulou M, Kundu RK, Orlandi A, Zheng YY, Prieto DA, Ballantyne CM, Constant SL, Aird WC, Papayannopoulou T, Gahmberg CG, Udey MC, Vajkoczy P, Quertermous T, Dimmeler S, Weber C, Chavakis T (2008) Del-1, an endogenous leukocyte-endothelial adhesion inhibitor, limits inflammatory cell recruitment. Science 322:1101–1104ADSGoogle Scholar
  91. 187.
    Chavakis E, Hain A, Orlandi A, Carmona G, Quertermous T, Chavakis T, Dimmeler S (2008) Del-1, a new β2-integrin ligand, which inhibits adhesion and homing of progenitor cells. Circulation 118:S502Google Scholar
  92. 188.
    Koyama S, Sato E, Masubuchi T, Takamizawa A, Kubo K, Nagai S, Izumi T (1998) Alveolar type II-like cells release G-CSF as neutrophil chemotactic activity. American Journal of Physiology – Lung Cellular and Molecular Physiology 275:L687–L693Google Scholar
  93. 189.
    Weathington NM, van Houwelingen AH, Noerager BD, Jackson PL, Kraneveld AD, Galin FS, Folkerts G, Nijkamp FP, Blalock JE (2006) A novel peptide CXCR ligand derived from extracellular matrix degradation during airway inflammation. Nature – Medicine 12:317–323Google Scholar
  94. 190.
    Moon TC, St Laurent CD, Morris KE, Marcet C, Yoshimura T, Sekar Y, Befus AD (2010) Advances in mast cell biology: new understanding of heterogeneity and function. Mucosal Immunology 3:111–128Google Scholar
  95. 191.
    Galli SJ, Grimbaldeston M, Tsai M (2008) Immunomodulatory mast cells: negative, as well as positive, regulators of immunity. Nature Reviews – Immunology 8:478–486Google Scholar
  96. 192.
    Taghon T, Yui MA, Rothenberg EV (2007) Mast cell lineage diversion of T lineage precursors by the essential T cell transcription factor GATA-3. Nature – Immunology 8:845–855Google Scholar
  97. 193.
    Metz M, Maurer M (2007) Mast cells – key effector cells in immune responses. Trends in Immunology 28:234–241Google Scholar
  98. 194.
    Henz BM (2003) What is the physiological function of mast cells? Viewpoint 6. Experimental Dermatology 12:900–902Google Scholar
  99. 195.
    Vliagoftis H, Forsythe P, Befus D (2003) What is the physiological function of mast cells? Commentary 10. Experimental Dermatology 12:906–907Google Scholar
  100. 196.
    Metz M, Siebenhaar F, Maurer M (2008) Mast cell functions in the innate skin immune system. Immunobiology 213:251–260Google Scholar
  101. 197.
    Theoharides TC (2003) What is the physiological function of mast cells? Viewpoint 2. Experimental Dermatology 12:891–894Google Scholar
  102. 198.
    Kovanen PT (2003) What is the physiological function of mast cells? Commentary 7. Experimental Dermatology 12:902–903Google Scholar
  103. 199.
    Mackins CJ, Kano S, Seyedi N, Schfer U, Reid AC, Machida T, Silver RB, Levi R (2006) Cardiac mast cell-derived renin promotes local angiotensin formation, norepinephrine release, and arrhythmias in ischemia/reperfusion. Journal of Clinical Investigation 116:1063–1070Google Scholar
  104. 200.
    Levick SP, Meléndez GC, Plante E, McLarty JL, Brower GL, Janicki JS (2011) Cardiac mast cells: the centrepiece in adverse myocardial remodelling. Cardiovascular Research 89:12-9Google Scholar
  105. 201.
    Veerappan A, Reid AC, Estephan R, O’Connor N, Thadani-Mulero M, Salazar-Rodriguez M, Levi R, Silver RB (2008) Mast cell renin and a local renin-angiotensin system in the airway: role in bronchoconstriction. Proceedings of the National Academy of Sciences of the United States of America 105:1315–1320ADSGoogle Scholar
  106. 202.
    Lo WL, Donermeyer DL, Allen PM (2012) A voltage-gated sodium channel is essential for the positive selection of CD4(+) T cells. Nature – Immunology 13:880–887Google Scholar
  107. 203.
    Alarcón B, van Santen HM (2010) Two receptors, two kinases, and T cell lineage determination. Science Signaling 3:pe11Google Scholar
  108. 204.
    Saini M, Sinclair C, Marshall D, Tolaini M, Sakaguchi S, Seddon B (2010) Regulation of Zap70 expression during thymocyte development enables temporal separation of CD4 and CD8 repertoire selection at different signaling thresholds. Science Signaling 3:ra23Google Scholar
  109. 205.
    Iwasaki A, Medzhitov R (2010) Regulation of adaptive immunity by the innate immune system. Science 327:291–295ADSGoogle Scholar
  110. 206.
    Bonneville M, O’Brien RL, Born WK (2010) γδ T Cell effector functions: a blend of innate programming and acquired plasticity. Nature Reviews – Immunology 10:467–478Google Scholar
  111. 207.
    Bousso P, Albert ML (2010) Signal 0 for guided priming of CTLs: NKT cells do it too. Nature – Immunology 11:284–286Google Scholar
  112. 208.
    Bogeski I, Kummerow C, Al-Ansary D, Schwarz EC, Koehler R, Kozai D, Takahashi N, Peinelt C, Griesemer D, Bozem M, Mori Y, Hoth M, Niemeyer BA (2010) Differential redox regulation of ORAI ion channels: a mechanism to tune cellular calcium signaling. Science Signaling 3:ra24Google Scholar
  113. 209.
    Sauer K, Cooke MP (2010) Regulation of immune cell development through soluble inositol-1,3,4,5-tetrakisphosphate. Nature Reviews – Immunology 10:257–271Google Scholar
  114. 210.
    Ugolini S, Vivier E (2009) Immunology: natural killer cells remember. Nature 457:544–545ADSGoogle Scholar
  115. 211.
    Sun JC, Beilke JN, Lanier LL (2009) Adaptive immune features of natural killer cells. Nature 457:557–561ADSGoogle Scholar
  116. 212.
    Shinoda K, Tokoyoda K, Hanazawa A, Hayashizaki K, Zehentmeier S, Hosokawa H, Iwamura C, Koseki H, Tumes DJ, Radbruch A, Nakayama T (2012) Type II membrane protein CD69 regulates the formation of resting T-helper memory. Proceedings of the National Academy of Sciences of the United States of America 109:7409–7414ADSGoogle Scholar
  117. 213.
    Schoenberger SP (2012) CD69 guides CD4 + T cells to the seat of memory. Proceedings of the National Academy of Sciences of the United States of America 109:8358–8359ADSGoogle Scholar
  118. 214.
    Paust S, Gill HS, Wang BZ, Flynn MP, Moseman EA, Senman B, Szczepanik M, Telenti A, Askenase PW, Compans RW, von Andrian UH (2010) Critical role for the chemokine receptor CXCR6 in NK cell-mediated antigen-specific memory of haptens and viruses. Nature – Immunology 11:1127–1135Google Scholar
  119. 215.
    Di Santo JP (2010) A guardian of T cell fate. Science 329:44–45ADSGoogle Scholar
  120. 216.
    Li P, Burke S, Wang J, Chen X, Ortiz M, Lee SC, Lu D, Campos L, Goulding D, Ng BL, Dougan G, Huntly B, Gottgens B, Jenkins NA, Copeland NG, Colucci F, Liu P (2010) Reprogramming of T cells to natural killer-like cells upon Bcl11b deletion. Science 329:85–89ADSGoogle Scholar
  121. 217.
    Li L, Leid M, Rothenberg EV (2010) An early T cell lineage commitment checkpoint dependent on the transcription factor Bcl11b. Science 329:89–93ADSGoogle Scholar
  122. 218.
    Ikawa T, Hirose S, Masuda K, Kakugawa K, Satoh R, Shibano-Satoh A, Kominami R, Katsura Y, Kawamoto H (2010) An essential developmental checkpoint for production of the T cell lineage. Science 329:93–96ADSGoogle Scholar
  123. 219.
    Bi S, Earl LA, Jacobs L, Baum LG (2008) Structural features of galectin-9 and galectin-1 that determine distinct T cell death pathways. Journal of Biological ChemistryGoogle Scholar
  124. 220.
    Turley SJ, Fletcher AL, Elpek KG (2010) The stromal and haematopoietic antigen-presenting cells that reside in secondary lymphoid organs. Nature Reviews – Immunology 10:813–825Google Scholar
  125. 221.
    Huse M, Quann EJ, Davis MM (2008) Shouts, whispers and the kiss of death: directional secretion in T cells. Nature – Immunology 9:1105–1111Google Scholar
  126. 222.
    Guo F, Hildeman D, Tripathi P, Velu CS, Grimes HL, Zheng Y (2010) Coordination of IL-7 receptor and T-cell receptor signaling by cell-division cycle 42 in T-cell homeostasis. Proceedings of the National Academy of Sciences of the United States of America 107:18505–18510ADSGoogle Scholar
  127. 223.
    Ciofani M, Zúñiga-Pflücker JC (2010) Determining γδ versus αβ T cell development. Nature Reviews – Immunology 10:657–663Google Scholar
  128. 224.
    Johnson BJ, Costelloe EO, Fitzpatrick DR, Haanen JB, Schumacher TN, Brown LE, Kelso A (2003) Single-cell perforin and granzyme expression reveals the anatomical localization of effector CD8+ T cells in influenza virus-infected mice. Proceedings of the National Academy of Sciences of the United States of America 100:2657–2662ADSGoogle Scholar
  129. 225.
    Dong C, Martinez GJ (2010) T cells: the usual subsets (poster). Nature Reviews – Immunology ( )
  130. 226.
    Bettelli E, Korn T, Oukka M, Kuchroo VK (2008) Induction and effector functions of TH17 cells. Nature 453:1051–1057ADSGoogle Scholar
  131. 227.
    Muroi S, Naoe Y, Miyamoto C, Akiyama K, Ikawa T, Masuda K, Kawamoto H, Taniuchi I (2008) Cascading suppression of transcriptional silencers by ThPOK seals helper T cell fate. Nature – Immunology 9:1113–1121Google Scholar
  132. 228.
    Wang L, Wildt KF, Zhu J, Zhang X, Feigenbaum L, Tessarollo L, Paul WE, Fowlkes BJ, Bosselut R (2008) Distinct functions for the transcription factors GATA-3 and ThPOK during intrathymic differentiation of CD4 + T cells. Nature – Immunology 9:1122–1130Google Scholar
  133. 229.
    Egawa T, Littman DR (2008) ThPOK acts late in specification of the helper T cell lineage and suppresses Runx-mediated commitment to the cytotoxic T cell lineage. Nature – Immunology 9:1131–1139Google Scholar
  134. 230.
    Bonneville M (2008) γδ T Cell selection: is anyone useless? Immunity 29:3–5Google Scholar
  135. 231.
    Jensen KDC, Su X, Shin S, Li L, Youssef S, Yamasaki S, Steinman L, Saito T, Locksley RM, Davis MM, Baumgarth N, Chien Y (2008) Thymic selection determines γδ T cell effector fate: antigen-naive cells make interleukin-17 and antigen-experienced cells make interferon γ. Immunity 29:90–100Google Scholar
  136. 232.
    Godfrey DI, Rossjohn J, McCluskey J (2010) Fighting infection with your MAITs. Nature – Immunology 11:693–695Google Scholar
  137. 233.
    Le Bourhis L, Martin E, Péguillet I, Guihot A, Froux N, Coré M, Lévy E, Dusseaux M, Meyssonnier V, Premel V, Ngo C, Riteau B, Duban L, Robert D, Huang S, Rottman M, Soudais C, Lantz O (2010) Antimicrobial activity of mucosal-associated invariant T cells. Nature – Immunology 11:701–708Google Scholar
  138. 234.
    Harrington LE, Janowski KM, Oliver JR, Zajac AJ, Weaver CT (2008) Memory CD4 T cells emerge from effector T-cell progenitors. Nature 452:356–360ADSGoogle Scholar
  139. 235.
    Woodland Dl, Kohlmeier JE (2009) Migration, maintenance and recall of memory T cells in peripheral tissues. Nature Reviews – Immunology 9:153–161Google Scholar
  140. 236.
    Araki K, Turner AP, Shaffer VO, Gangappa S, Keller SA, Bachmann MF, Larsen CP, Ahmed R (2009) mTOR regulates memory CD8 T-cell differentiation. Nature 460:108-112ADSGoogle Scholar
  141. 237.
    Mold JE, Venkatasubrahmanyam S, Burt TD, Michaëlsson J, Rivera JM, Galkina SA, Weinberg K, Stoddart CA, McCune JM (2010) Fetal and adult hematopoietic stem cells give rise to distinct T cell4 lineages in humans. Science 330:1695–1699ADSGoogle Scholar
  142. 238.
    Rubtsov YP, Niec RE, Josefowicz S, Li L, Darce J, Mathis D, Benoist C, Rudensky AY (2010) Stability of the regulatory T cell lineage in vivo. Science 329:1667–1671ADSGoogle Scholar
  143. 239.
    Zheng Y, Chaudhry A, Kas A, deRoos P, Kim JM, Chu TT, Corcoran L, Treuting P, Klein U, Rudensky AY (2009) Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control TH2 responses. Nature 458:351–356ADSGoogle Scholar
  144. 240.
    Feuerer M, Hill JA, Kretschmer K, von Boehmer H, Mathis D, Benoist C (2010) Genomic definition of multiple ex vivo regulatory T cell subphenotypes. Proceedings of the National Academy of Sciences of the United States of America 107:5919–5924ADSGoogle Scholar
  145. 241.
    Feuerer M, Hill JA, Mathis D, Benoist C (2009) Foxp3 +  regulatory T cells: differentiation, specification, subphenotypes. Nature – Immunology 10:689–695Google Scholar
  146. 242.
    Zanin-Zhorov A, Ding Y, Kumari S, Attur M, Hippen KL, Brown M, Blazar BR, Abramson SB, Lafaille JJ, Dustin ML (2010) Protein kinase C-θ mediates negative feedback on regulatory T cell function. Science 328:372–376ADSGoogle Scholar
  147. 243.
    Vignali DAA, Collison LW, Workman CJ (2008) How regulatory T cells work. Nature Reviews – Immunology 8:523–532Google Scholar
  148. 244.
    Sakaguchi S, Miyara M, Costantino CM, Hafler DA (2010) FOXP3 + regulatory T cells in the human immune system. Nature Reviews – Immunology 10:490–500Google Scholar
  149. 245.
    Shevach E, Davidson T (2010) Regulatory T cells (poster nri1001_treg_poster.pdf), Ryan G (copyed.), Bradbrook S (design). Nature Reviews – Immunology (Macmillan Publishers Ltd.
  150. 246.
    Zou W (2006) Regulatory T cells, tumour immunity and immunotherapy. Nature Reviews – Immunology 6:295–307Google Scholar
  151. 247.
    Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A, Parizot C, Taflin C, Heike T, Valeyre D, Mathian A, Nakahata T, Yamaguchi T, Nomura T, Ono M, Amoura Z, Gorochov G, Sakaguchi S (2009) Functional delineation and differentiation dynamics of human CD4 + T cells expressing the FoxP3 transcription factor. Immunity 30:899–911Google Scholar
  152. 248.
    Liu B, Tahk S, Yee KM, Fan G, Shuai K (2010) The ligase PIAS1 restricts natural regulatory T cell differentiation by epigenetic repression. Science 330:521–525ADSGoogle Scholar
  153. 249.
    Liu B, Yang Y, Chernishof V, Loo RR, Jang H, Tahk S, Yang R, Mink S, Shultz D, Bellone CJ, Loo JA, Shuai K (2007) Proinflammatory stimuli induce IKKalpha-mediated phosphorylation of PIAS1 to restrict inflammation and immunity. Cell 129:903–914Google Scholar
  154. 250.
    Lund JM, Hsing L, Pham TT, Rudensky AY (2008) Coordination of early protective immunity to viral infection by regulatory T cells. Science 320:1220–1224ADSGoogle Scholar
  155. 251.
    O’Shea JJ, Paul WE (2010) Mechanisms underlying lineage commitment and plasticity of helper CD4 +  T cells. Science 327:1098–1102ADSGoogle Scholar
  156. 252.
    Paul WE, Zhu J (2010) How are TH2-type immune responses initiated and amplified? Nature Reviews – Immunology 10:225–235Google Scholar
  157. 253.
    Larch M, Akdis A, Valenta R (2006) Immunological mechanisms of allergen-specific immunotherapy. Nature Reviews – Immunology 6:761–771Google Scholar
  158. 254.
    Neill DR, McKenzie ANJ (2010) TH9: the latest addition to the expanding repertoire of IL-25 targets. Immunology and Cell Biology 88:502–504Google Scholar
  159. 255.
    Ghoreschi K, Laurence A, Yang XP, Tato CM, McGeachy MJ, KonkelJE, Ramos HL, Wei L, Davidson TS, Bouladoux N, Grainger JR, Chen Q, Kanno Y, Watford WT, Sun HW, Eberl G, Shevach EM, Belkaid Y, Cua DJ, Chen WJ, O’Shea JJ (2010) Generation of pathogenic TH17 cells in the absence of TGF-β signalling. Nature 467:967–971ADSGoogle Scholar
  160. 256.
    Schraml BU, Hildner K, Ise W, Lee WL, Smith WA, Solomon B, Sahota G, Sim J, Mukasa R, Cemerski S, Hatton RD, Stormo GD, Weaver CT, Russell JH, Murphy TL, Murphy KM (2009) The AP-1 transcription factor Batf controls TH17 differentiation. Nature 460:405–409ADSGoogle Scholar
  161. 257.
    Zou W, Restifo NP (2010) TH17 cells in tumour immunity and immunotherapy. Nature Reviews – Immunology 10:248–256Google Scholar
  162. 258.
    Duhen T, Geiger R, Jarrossay D, Lanzavecchia A, Sallusto F (2009) Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nature – Immunology 10:857–863Google Scholar
  163. 259.
    Trifari S, Kaplan CD, Tran EH, Crellin NK, Spits H (2009) Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from TH-17, TH1 and TH2 cells. Nature – Immunology 10:864–871Google Scholar
  164. 260.
    Demotte N, Stroobant V, Courtoy P, van der Smissen P, Colau D, Luescher I, Hivroz C, Nicaise J, Squifflet J, Mourad M (2008) Restoring the association of the T cell receptor with CD8 reverses anergy in human tumor-infiltrating lymphocytes. Immunity 28:414–424Google Scholar
  165. 261.
    Goetz JG, Joshi B, Lajoie P, Strugnell SS, Scudamore T, Kojic LD, Nabi IR (2008) Concerted regulation of focal adhesion dynamics by galectin-3 and tyrosine-phosphorylated caveolin-1. Journal of Cell Biology 180:1261–1275Google Scholar
  166. 262.
    Buzza MS, Bird PI (2006) Extracellular granzymes: current perspectives. Biological Chemistry 387:827–837Google Scholar
  167. 263.
    Semmling V, Lukacs-Kornek V, Thaiss CA, Quast T, Hochheiser K, Panzer U, Rossjohn J, Perlmutter P, Cao J, Godfrey DI, Savage PB, Knolle PA, Kolanus W, Frster I, Kurts C (2010) Alternative cross-priming through CCL17-CCR4-mediated attraction of CTLs toward NKT cell-licensed DCs. Nature – Immunology 11:313–320Google Scholar
  168. 264.
    Nieda M, Okai M, Tazbirkova A, Lin H, Yamaura A, Ide K, Abraham R, Juji T, Macfarlane DJ, Nicol AJ (2004) Therapeutic activation of Vα24 + Vβ11 + NKT cells in human subjects results in highly coordinated secondary activation of acquired and innate immunity. Blood 103:383–389Google Scholar
  169. 265.
    Zajonc DM, Wilson IA (2007) Architecture of CD1 proteins. Current Topics in Microbiology and Immunology 314:27–50Google Scholar
  170. 266.
    Sköld M, Behar SM (2005) The role of group 1 and group 2 CD1-restricted T cells in microbial immunity. Microbes and Infection 7:544–551Google Scholar
  171. 267.
    Song L, Asgharzadeh S, Salo J, Engell K, Wu HW, Sposto R, Ara T, Silverman AM, DeClerck YA, Seeger RC, Metelitsa LS (2009) Vα24-invariant NKT cells mediate antitumor activity via killing of tumor-associated macrophages. Journal of Clinical Investigation 119:1524–1536Google Scholar
  172. 268.
    Kovalovsky D, Uche OU, Eladad S, Hobbs RM, Yi W, Alonzo E, Chua K, Eidson M, Kim HJ, Im JS, Pandolfi PP, Sant’Angelo DB (2008) The BTB-zinc finger transcriptional regulator PLZF controls the development of invariant natural killer T cell effector functions. Nature – Immunology 9:1055–1064Google Scholar
  173. 269.
    Hu T, Simmons A, Yuan J, Bender TP, Alberola J (2010) The transcription factor c-Myb primes CD4 + CD8 +  immature thymocytes for selection into the iNKT lineage. Nature – Immunology 11:435–441Google Scholar
  174. 270.
    Kamijuku H, Nagata Y, Jiang X, Ichinohe T, Tashiro T, Mori K, Taniguchi M, Hase K, Ohno H, Shimaoka T, Yonehara S, Odagiri T, Tashiro M, Sata T, Hasegawa H, Seino KI (2008) Mechanism of NKT cell activation by intranasal coadministration of alpha-galactosylceramide, which can induce cross-protection against influenza viruses. Mucosal Immunology 1:208–218Google Scholar
  175. 271.
    Cerutti A (2008) The regulation of IgA class switching. Nature Reviews – Immunology 8:421–434Google Scholar
  176. 272.
    Spits H, Di Santo JP (2011) The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nature – Immunology 12:21–27Google Scholar
  177. 273.
    Veldhoen M, Withers DR (2010) Innate lymphoid cell relations. Science 330:594–595Google Scholar
  178. 274.
    Sawa S, Cherrier M, Lochner M, Satoh-Takayama N, Fehling HJ, Langa F, Di Santo JP, Eberl G (2010) Lineage relationship analysis of RORγt +  innate lymphoid cells. Science 330:665–669ADSGoogle Scholar
  179. 275.
    Neill DR, Wong SH, Bellosi A, Flynn RJ, Daly M, Langford TK, Bucks C, Kane CM, Fallon PG, Pannell R, Jolin HE, McKenzie ANJ (2010) Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464:1367–1370ADSGoogle Scholar
  180. 276.
    Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM, Ugolini S (2011) Innate or adaptive immunity? The example of natural killer cells. Science 331:44–49ADSGoogle Scholar
  181. 277.
    Shi FD, van Kaer L (2006) Reciprocal regulation between natural killer cells and autoreactive T cells. Nature Reviews – Immunology 6:751–760Google Scholar
  182. 278.
    Lanier LL (2008) Up on the tightrope: natural killer cell activation and inhibition. Nature – Immunology 9:495–502Google Scholar
  183. 279.
    Raulet DH, Guerra N (2009) Oncogenic stress sensed by the immune system: role of natural killer cell receptors. Nature Reviews – Immunology 9:568–580Google Scholar
  184. 280.
    Cruz-Munoz ME, Veillette A (2010) Do NK cells always need a license to kill? Nature – Immunology 11:279–280Google Scholar
  185. 281.
    Orr MT, Murphy WJ, Lanier LL (2010) “Unlicensed” natural killer cells dominate the response to cytomegalovirus infection. Nature – Immunology 11:321–327Google Scholar
  186. 282.
    Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S (2008) Functions of natural killer cells. Nature – Immunology 9:503–510Google Scholar
  187. 283.
    Rachitskaya AV, Hansen AM, Horai R, Li Z, Villasmil R, Luger D, Nussenblatt RB, Caspi RR (2008) Cutting edge: NKT cells constitutively express IL-23 receptor and RORγt and rapidly produce IL-17 upon receptor ligation in an IL-6-independent fashion. Journal of Immunology 180:5167–5171Google Scholar
  188. 284.
    Martin F, Kearney JF (2000) B-cell subsets and the mature preimmune repertoire. Marginal zone and B1 B cells as part of a “natural immune memory”. Immunological Reviews 175:70–79Google Scholar
  189. 285.
    Tarlinton DM, McLean M, Nossal GJV (1995) B1 and B2 cells differ in their potential to switch immunoglobulin isotype. European Journal of Immunology 25:3388–3393Google Scholar
  190. 286.
    Khalil AM, Cambier JC, Shlomchik MJ (2012) B cell receptor signal transduction in the GC is short-circuited by high phosphatase activity. Science 336:1178–1181ADSGoogle Scholar
  191. 287.
    Ehrenstein MR, Notley CA (2010) The importance of natural IgM: scavenger, protector and regulator. Nature Reviews – Immunology 10:778–786Google Scholar
  192. 288.
    Pierce SK, Liu W (2010) The tipping points in the initiation of B cell signalling: how small changes make big differences. Nature Reviews – Immunology 10:767–777Google Scholar
  193. 289.
    Vinuesa CG, Tangye SG, Moser B, Mackay CR (2005) Follicular B helper T cells in antibody responses and autoimmunity. Nature Reviews – Immunology 5:853–865Google Scholar
  194. 290.
    Lefebvre C, Rajbhandari P, Alvarez MJ, Bandaru P, Lim WK, Sato M, Wang K, Sumazin P, Kustagi M, Bisikirska BC, Basso K, Beltrao P, Krogan N, Gautier J, Dalla-Favera R, Califano A (2010) A human B-cell interactome identifies MYB and FOXM1 as master regulators of proliferation in germinal centers. Molecular Systems Biology 6:377Google Scholar
  195. 291.
    Lund FE, Randall TD (2010) Effector and regulatory B cells: modulators of CD4 +  T cell immunity. Nature Reviews – Immunology 10:236–247Google Scholar
  196. 292.
    Radbruch A, Muehlinghaus G, Luger EO, Inamine A, Smith KGC, Drner T, Hiepe F (2006) Competence and competition: the challenge of becoming a long-lived plasma cell. Nature Reviews – Immunology 6:741–750Google Scholar
  197. 293.
    Doulatov S, Notta F, Eppert K, Nguyen LT, Ohashi PS, Dick JE (2010) Revised map of the human progenitor hierarchy shows the origin of macrophages and dendritic cells in early lymphoid development. Nature – Immunology 11:585–593Google Scholar
  198. 294.
    Saha P, Geissmann F (2011) Multifunctional monocytes. Toward a functional characterization of blood monocytes. Immunology and Cell Biology 89:2–4Google Scholar
  199. 295.
    Slaney CY, Toker A, La Flamme A, Bäckström BT, Harper JL (2011) Naïve blood monocytes suppress T-cell function. A possible mechanism for protection from autoimmunity. Immunology and Cell Biology 89:7–13Google Scholar
  200. 296.
    Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K (2010) Development of monocytes, macrophages, and dendritic cells. Science 327:656–661ADSGoogle Scholar
  201. 297.
    Otero K, Turnbull IR, Poliani PL, Vermi W, Cerutti E, Aoshi T, Tassi I, Takai T, Stanley SL, Miller M, Shaw AS, Colonna M (2009) Macrophage colony-stimulating factor induces the proliferation and survival of macrophages via a pathway involving DAP12 and β-catenin. Nature Immunology 10:734–743Google Scholar
  202. 298.
    Tickenbrock L, Schwble J, Strey A, Sargin B, Hehn S, Baas M, Choudhary C, Gerke V, Berdel WE, Mller-Tidow C, Serve H (2006) Wnt signaling regulates transendothelial migration of monocytes. Journal of Leukocyte Biology 79:1306–1313Google Scholar
  203. 299.
    Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nature Reviews – Immunology 8:958–969Google Scholar
  204. 300.
    Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nature Reviews – Immunology 5:953–964Google Scholar
  205. 301.
    Auffray C, Fogg D, Garfa M, Elain G, Join-Lambert O, Kayal S, Sarnacki S, Cumano A, Lauvau G, Geissmann F (2007) Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317:666–670ADSGoogle Scholar
  206. 302.
    Liu H, Shi B, Huang CC, Eksarko P, Pope RM (2008) Transcriptional diversity during monocyte to macrophage differentiation. Immunology Letters 117:70–80Google Scholar
  207. 303.
    Montaner LJ, da Silva RP, Sun J, Sutterwala S, Hollinshead M, Vaux D, Gordon S (1999) Type 1 and type 2 cytokine regulation of macrophage endocytosis: differential activation by IL-4/IL-13 as opposed to IFN-γ or IL-10. Journal of Immunology 162:4606–4613Google Scholar
  208. 304.
    Pollard JW (2009) Trophic macrophages in development and disease. Nature Reviews – Immunology 9:259–270Google Scholar
  209. 305.
    Kohyama M, Ise W, Edelson BT, Wilker PR, Hildner K, Mejia C, Frazier WA, Murphy TL, Murphy KM (2009) Role for Spi-C in the development of red pulp macrophages and splenic iron homeostasis. Nature 457:318–321ADSGoogle Scholar
  210. 306.
    Snelgrove RJ, Goulding J, Didierlaurent AM, Lyonga D, Vekaria S, Edwards L, Gwyer E, Sedgwick JD, Barclay AN, Hussell T (2008) A critical function for CD200 in lung immune homeostasis and the severity of influenza infection. Nature – Immunology 9:1074–1083Google Scholar
  211. 307.
    Strauch UG, Mueller RC, Li XY, Cernadas M, Higgins JM, Binion DG, Parker CM (2001) Integrin αE (CD103) β7 mediates adhesion to intestinal microvascular endothelial cell lines via an E-cadherin-independent interaction. Journal of Immunology 166:3506–3514Google Scholar
  212. 308.
    Norris PC, Dennis EA (2012) Omega-3 fatty acids cause dramatic changes in TLR4 and purinergic eicosanoid signaling. Proceedings of the National Academy of Sciences of the United States of America 109:8517–8522ADSGoogle Scholar
  213. 309.
    Karin M, Greten FR (2005) NF-κB: linking inflammation and immunity to cancer development and progression. Nature Reviews – Immunology 5:749–759Google Scholar
  214. 310.
    Takamatsu H, Takegahara N, Nakagawa Y, Tomura M, Taniguchi M, Friedel RH, Rayburn H, Tessier-Lavigne M, Yoshida Y, Okuno T, Mizui M, Kang S, Nojima S, Tsujimura T, Nakatsuji Y, Katayama I, Toyofuku T, Kikutani H, Kumanogoh A (2010) Semaphorins guide the entry of dendritic cells into the lymphatics by activating myosin II. Nature – Immunology 11:594–600Google Scholar
  215. 311.
    Geissmann F (2007) The origin of dendritic cells. Nature – Immunology 8:558–560Google Scholar
  216. 312.
    Asagiri M, Hirai T, Kunigami T, Kamano S, Gober HJ, Okamoto K, Nishikawa K, Latz E, Golenbock DT, Aoki K, Ohya K, Imai Y, Morishita Y, Miyazono K, Kato S, Saftig P, Takayanagi H (2008) Cathepsin K-dependent toll-like receptor 9 signaling revealed in experimental arthritis. Science 319:624–627Google Scholar
  217. 313.
    Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, Nomura T, Sakaguchi S (2008) CTLA-4 control over Foxp3 + regulatory T cell function. Science 322:271–275ADSGoogle Scholar
  218. 314.
    Sasai M, Linehan MM, Iwasaki A (2010) Bifurcation of Toll-like receptor 9 signaling by adaptor protein 3. Science 329:1530–1534ADSGoogle Scholar
  219. 315.
    Proietto AI, van Dommelen S, Zhou P, Rizzitelli A, D’Amico A, Steptoe RJ, Naik SH, Lahoud MH, Liu Y, Zheng P, Shortman K, Wu L (2008) Dendritic cells in the thymus contribute to T-regulatory cell induction. Proceedings of the National Academy of Sciences of the United States of America 105:19869–19874ADSGoogle Scholar
  220. 316.
    Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nature Reviews – Immunology 9:162–174Google Scholar
  221. 317.
    Rose S, Misharin A, Perlman H (2012) A novel Ly6C/Ly6G-based strategy to analyze the mouse splenic myeloid compartment. Cytometry Part A 81(4):343–350Google Scholar
  222. 928.
    Ibelgaufts H (2010) Cytokines and Cells Online Pathfinder Encyclopaedia (

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Marc Thiriet
    • 1
  1. 1.Project-team INRIA-UPMC-CNRS REO Laboratoire Jacques-Louis Lions, CNRS UMR 7598Université Pierre et Marie CurieParis Cedex 05France

Personalised recommendations