Surfactant is an interfacial material of respiratory conduits and its annexes. It modulates the surface tension and innate immune defense of the lung. The alveolar surface film stretches as the lung expands, raising the surface tension, then molecules are packed as the lung deflates, lowering the surface tension.


Surface Tension Contact Angle Cystic Fibrosis Transmembrane Conductance Regulator Surfactant Protein Lamellar Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1595.
    Hoppin FG, Lee GC, Dawson SV (1975) Properties of lung parenchyma in distortion. Journal of Applied Physiology 39:742–751Google Scholar
  2. 1596.
    von Neergaard K (1929) Neue Auffassungen über einen Grundbegriff der Atemmechanik. Zeitschrift für die Gesamte Experimentelle Medizin 66:373–394CrossRefGoogle Scholar
  3. 1597.
    Pattle RE (1955) Properties, function and origin of the alveolar lining layer. Nature 175:1125–1126ADSCrossRefGoogle Scholar
  4. 1598.
    Radford EP (1963) Mechanical stability of the lung. Determination by surface active agents. Archives of Environmental Health 6:128–133Google Scholar
  5. 1599.
    Clements JA (1956) Dependence of pressure-volume characteristics of lungs on intrinsic surface active material. American Journal of Physiology 187:592Google Scholar
  6. 1600.
    Clements JA (1957) Surface tension of lung extracts. Proceedings of the Society of Experimental Biology and Medicine 95:170-172Google Scholar
  7. 1601.
    Clements JA, Brown ES, Johnson RP (1958) Pulmonary surface tension and the mucus lining of the lungs: some theoretical considerations. Journal of Applied Physiology 12:262–268Google Scholar
  8. 1602.
    Pattle RE (1958) Properties, function, and origin of the alveolar lining layer. Proceedings of the Royal Society London – Series B Biological Sciences 148:217–240Google Scholar
  9. 1603.
    Avery ME, Mead J (1959) Surface properties in relation to atelectasis and hyaline membrane disease. American Journal of Diseases of Childhood 97,517–523Google Scholar
  10. 1604.
    Johnson MD (2007) Ion transport in alveolar type I cells. Molecular BioSystems 3:178–186CrossRefGoogle Scholar
  11. 1605.
    Factor P, Mutlu GM, Chen L, Mohameed J, Akhmedov AT, Meng FJ, Jilling T, Lewis ER, Johnson MD, Xu A, Kass D, Martino JM, Bellmeyer A, Albazi JS, Emala C, Lee HT, Dobbs LG, Matalon S (2007) Adenosine regulation of alveolar fluid clearance. Proceedings of the National Academy of Sciences of the United States of America 104:4083–4088ADSCrossRefGoogle Scholar
  12. 1606.
    Klaus MH, Clements JA, Havel RJ (1961) Composition of surface-active material isolated from beef lung. Proceedings of the National Academy of Sciences of the United States of America 47:1858–1859ADSCrossRefGoogle Scholar
  13. 1607.
    Gluck L, Motoyama EK, Smits HL, Kulovich MV (1967) The biochemical development of surface activity in mammalian lung. I. The surface-active phospholipids; the separation and distribution of surface-active lecithin in the lung of the developing rabbit fetus. Pediatric Research 1:237–246CrossRefGoogle Scholar
  14. 1608.
    Schürch S, Goerke J, Clements JA (1978) Direct determination of volume- and time-dependence of alveolar surface tension in excised lungs. Proceedings of the National Academy of Sciences of the United States of America 75:3417–3421ADSCrossRefGoogle Scholar
  15. 1609.
    Fujiwara T, Maeta H, Chida S, Morita T, Watabe Y, Abe, T (1980) Artificial surfactant therapy in hyaline-membrane disease. Lancet 1:55–59CrossRefGoogle Scholar
  16. 1610.
    Perez-Gil J, Keough KM (1998) Interfacial properties of surfactant proteins. Biochimica et Biophysica Acta 1408:203–217CrossRefGoogle Scholar
  17. 1611.
    Oosterlaken-Dijksterhuis MA, van Eijk M, van Buel BL, van Golde LMG, Haagsman HP (1991) Surfactant protein composition of lamellar bodies isolated from rat lung. Biochemical Journal 274:115–119Google Scholar
  18. 1612.
    Petrache I, Natarajan V, Zhen L, Medler TR, Richter AT, Cho C, Hubbard WC, Berdyshev EV, Tuder RM (2005) Ceramide upregulation causes pulmonary cell apoptosis and emphysema-like disease in mice. Nature Medicine 11:491–498CrossRefGoogle Scholar
  19. 1613.
    Haagsman HP, Diemel RV (2001) Surfactant-associated proteins: functions and structural variation. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology 129:91–108CrossRefGoogle Scholar
  20. 1614.
    Palaniyar N, Ikegami M, Korfhagen T, Whitsett J, McCormack FX (2001) Domains of surfactant protein A that affect protein oligomerization, lipid structure and surface tension. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology 129:109–127CrossRefGoogle Scholar
  21. 1615.
    Krol S, Ross M, Sieber M, Kunneke S, Galla HJ, Janshoff A (2000) Formation of three-dimensional protein-lipid aggregates in monolayer films induced by surfactant protein B. Biophysical Journal 79:904–918ADSCrossRefGoogle Scholar
  22. 1616.
    Bush JMW (2011) Surface tension. In Ben Amar M, Goriely A, Müller MM, Cagliandolo LF (eds) New Trends in the Physisc and Mechanics of Biological Systems, Oxford University Press, New YorkGoogle Scholar
  23. 1617.
    Tadmor R (2009) Marangoni flow revisited. Journal of Colloid and Interface Science 332:451-454CrossRefGoogle Scholar
  24. 1618.
    Halpern D, Bull JL, Grotberg JB (2004) The effect of airway wall motion on surfactant delivery. ASME Journal of Biomechanical Engineering 126:410–419CrossRefGoogle Scholar
  25. 1619.
    Halpern D, Jensen OE, Grotberg JB (1998) A theoretical study of surfactant and liquid delivery into the lung. Journal of Applied Physiology 85:333–352Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Marc Thiriet
    • 1
  1. 1.Project-team INRIA-UPMC-CNRS REO Laboratoire Jacques-Louis Lions, CNRS UMR 7598Université Pierre et Marie CurieParis Cedex 05France

Personalised recommendations