Electronic Measurements and Signal Processing

  • Aimé Lay-Ekuakille
Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 10)


Electronic measurements and related signal processing are basic topics for understanding information acquisition, transmission, and its further use. In optical systems these topics are mostly important because of the use of light and its eventual interferences. This chapter illustrates the basic chains used in measurement procedures, methods of measurement, and issues regarding signal processing.


Lidar System Lidar Signal Aerosol Optical Property Aerosol Extinction Normalize Little Mean Square 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author gratefully acknowledges the technical support of P. Carlucci, A. Pascali, D. Laforgia, A. Ficarella, M.R. Perrone, and F. De Tomaso.


  1. Corney, A.: Atomic and Laser Spectroscopy. Oxford University Press, London (1977)Google Scholar
  2. Dally, J.W., Riley, W.F., McConnell, K.G.: Instrumentation for Engineering Measurements, 2nd edn. Wiley, New York (1993)Google Scholar
  3. Fernald, F.G.: Analysis of atmospheric lidar observations: some components. Appl. Opt. 23, 625–653 (1984)CrossRefGoogle Scholar
  4. Goldsmith, J.E.M., Blair, F.H., Bisson, S.E., Turner, D.D.: Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols. Appl. Opt. 37(21), 4979–4990 (1998)ADSCrossRefGoogle Scholar
  5. Griffiths, P.R.: Chemical Infrared Fourier Transform Spectroscopy. Wiley, New York (1975)Google Scholar
  6. Hamming, R.W.: Digital Filters, 2nd edn. Prentice-Hall, Englewood Cliffs (1983)Google Scholar
  7. Harsdorf, S., Reuter, R.: Stable deconvolution of noisy lidar signals. In: Proceedings of EARSeL-SIG-Workshop LIDAR, FRG, Dresden, 16–17 June 2000Google Scholar
  8. Hu, M., et al.: Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance. J. Mater. Chem. 18, 1949–1960 (2008)CrossRefGoogle Scholar
  9. Jones, A.R.: Light scattering for particle characterization. Prog. Energy Combust. Sci. 22, 1–53 (1999)CrossRefGoogle Scholar
  10. Kittelson, D.B.: Engines and nanoparticles: a review. Aerosol Sci. 29, 575–588 (1997)CrossRefGoogle Scholar
  11. Kittelson, D.B., Abdul-Khalek, I.: Formation of nanoparticles during exhaust dilution. In: EFI Members Conference: Fuel, Lubricants Engines, & Emissions, University of Minnesota, 18–20 Jan 1999Google Scholar
  12. Klett, J.D.: Stable analytical inversion solution for processing lidar returns. Appl. Opt. 20, 211–220 (1981)ADSCrossRefGoogle Scholar
  13. Lay Ekuakille, A., Trotta, A.: Aerosol extinction uncertainty determination for a laser-based detecting system. Trans. Syst. Signals Devices 1, 321–338 (2006)Google Scholar
  14. Lee, C.K., Wu, T.W.: Differential laser tnterferometer for nanometer displacement measurements. AIAA J. 33(9), 1675–1680 (1995)ADSCrossRefGoogle Scholar
  15. Lohmann, P., Koch, A., Schaeffer, M.: Approaches to the Filtering of Laser Scanner Data, vol. 33, part B3, pp. 540–547. International Archives of Photogrammetry and Remote Sensing, Amsterdam (2000)Google Scholar
  16. Nawrocki, W.: Measurement Systems and Sensors. Artech House, Norwood (2005)Google Scholar
  17. Neveux, P., Sekko, E., Thomas, G.: A constrained iterative deconvolution technique with an optimal filtering: application to a hydrocarbon concentration sensor. IEEE Trans. Instrum. Meas. 49(4), 852–856 (2000)CrossRefGoogle Scholar
  18. Northrop, R.B.: Introduction to Instrumentation and Measurements. CRC, Boca Raton (2005)Google Scholar
  19. Okada, K., Aoyagi, M., Iwata, S.: Accurate evaluation of Einstein’s A and B coefficients of rovibrational transitions of carbon monoxide: spectral simulation of Δv = 2 rovibrational transitions in the solar atmosphere observed by a satellite. J. Quant. Spectrosc. Radiat. Transf. 72(6), 813–825 (2002)ADSCrossRefGoogle Scholar
  20. Pelkim Elmer.: FT-IR, Spectrum 2000 User’s Reference, UK (1995)Google Scholar
  21. Reciprocating Internal Combustion Engines -Exhaust Emission Measurement- Part 3, SAE Standard ISO8178-3 (1994)Google Scholar
  22. Van de Hulst, H.C.: Light Scattering by Small Particles. Dover Publications, New York (1981)Google Scholar
  23. Whiteman, D.: Application of statistical methods to the determination of slope in lidar data. Appl. Opt. 38(15), 3360–3369 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Aimé Lay-Ekuakille
    • 1
  1. 1.Dipartimento d’Ingegneria dell’InnovazioUniversity of SalentoLecceItaly

Personalised recommendations